Fe-Mg M1 site distribution in some clinopyroxenes from Santa Olalla (Huelva, Spain)

By María Isabel ARRIORTUA, José María AMIGO

Departamento de Cristalografía y Mineralogía, Universidad del País Vasco. Apartado 644, Bilbao.

Jean Paul DECLERCQ and Gabriel GERMAIN

Laboratoire de Chimie-Physique et Cristallographie, Université de Louvain, 1 Place L. Pasteur, B-1348 Louvain-la-Neuve.

SUMMARY

The crystal structures of two clinopyroxenes related to the skarns from Santa Olalla (Huelva, Spain) have been refined. From these refinements it is shown that pyroxene SO-1 of metamorphic origin is almost pure diopside, whereas for pyroxene SO-2 of metasomatic origin the following formula CaMg_{x}Fe^{+}Si_{2}O_{6} was found. These clinopyroxenes show cation ordering.

INTRODUCCIÓN

A previous X-ray and Mössbauer study (Amigo et al., 1980) showed the existence of different oxidation states in clinopyroxenes related to the skarns from Santa Olalla (Ve- lasco and Amigo, 1979) as a consequence of replacement reactions under the influence of hydrothermal solutions that transform carbonates into calc-silicates.

Fe^{+}Mg M1 site distribution has been carried out by structural refinement of X-ray diffraction data of these clinopyroxenes. Two types of pyroxenes have been studied: pyroxene SO-1 of metamorphic origin, and pyroxene SO-2 of metasomatic origin.

According to X-ray study and to previous work (Amigo, et al., 1980) carried out with these pyroxenes, it is confirmed that these two clinopyroxenes show cation ordering.

EXPERIMENTAL

Two samples (SO-1 and SO-2) were prepared as spheres. Information on the material used is compiled in Table I. X-ray intensities were collected on a Phillips PW1100 diffractometer (MoKα radiation, graphite monochromator, θmax = 40°, 2θ scan). Intensities with 1 ≥ 2.5σ were considered to be observed (1429 for sample SO-1, 1402 for sample SO-2). The relative intensities were corrected for the usual Lorentz and polarization factors. No corrections were made for absorption.

Refinement was begun with the coordinates of other known pyroxenes (Warren and Bragg, 1928) and carried out by the programme SHELX76 (Sheldrick, 1976) with anisotropic thermal parameters to a final R value of 0.0287 (Rw = 0.0403) and 0.0262 (Rw = 0.0319) for pyroxenes SO-1 and SO-2, respectively.

The final parameters are shown in Table II. Our results for these clinopyroxenes closely agree with those of Clark et al. (1969).

RESULTS

Tables III and IV show the interatomic distances and angles in these clinopyroxenes. All values perfectly agree with those shown in the bibliography for ordered clinopyroxenes.
CONCLUSIONS
The unit formula of these clinopyroxenes calculated from the electron microscope analysis (Amigo et al., 1980) and the one obtained from X-ray single crystal data are in mutual agreement. From the X-ray and chemical studies it is deduced that pyroxene SO-1 is an almost pure diopside, whereas in pyroxene SO-2 there is substitution of Mg\(^{2+}\) ion by Fe\(^{2+}\) ion in the M1 site in the ratio Mg (0.64): Fe\(^{2+}\) (0.36). This is in agreement with the data obtained by Mössbauer spectroscopy (Bancroft et al., 1971; Matsu et al., 1971; Virgo, 1973; Marfunin, 1979; Amigo et al., 1980).

Table I. Data on the material used for X-ray intensity collection

<table>
<thead>
<tr>
<th>Formula</th>
<th>Occupation factors and anisotropic temperature factors (x10(^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO-1</td>
<td></td>
</tr>
<tr>
<td>SO-2</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Atomic coordinates (x10\(^4\)), occupation factors and anisotropic temperature factors (x10\(^6\))

Table III. Bond distances in \(\text{Å}\), standard deviation in parentheses.

Table IV. Bond angles (in degree), standard deviation in parentheses.

ACKNOWLEDGEMENTS
The research of M.I. Arriortua is supported by a grant of the "Patronato de la Euskal Herriko Unibertsitatea".

REFERENCES

