Trace element analysis provides insight into the diets of early Late Miocene ungulates from the Rudabánya II locality (Hungary)

Authors

  • L.C. EASTHAM Anthropology department, University of Toronto 19 Russell Street, Toronto, ON M5S 2S2, Canada.
  • R.S. FERANECC Research and collections, new York state Museum 3140 Cultural Education Center, Albany, New York, 12230, United States.
  • D.R. BEGUN Anthropology department, University of Toronto 19 Russell Street, Toronto, ON M5S 2S2, Canada.

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.3.6

Keywords:

Paleoecology, Sr/Ca ratios, Late Miocene, Ungulates, Hungary

Abstract

The early Late Miocene vertebrate locality of Rudabánya II (R. II) in northeastern Hungary preserves an abundance of forest-adapted ungulate species. To better understand the ecological relationships within this ancient ecosystem, we used analysis of enamel strontium/calcium (Sr/Ca) ratios to infer dietary preferences. The goals of the analysis were to: i) determine whether these ungulate species specialized in specific plants or plant parts; ii) discern whether the Sr/Ca ratios support what was previously suggested about the ecology of these species; and iii) evaluate the factors that may have acted to promote coexistence within this diverse community of predominantly browsing herbivores. Results show significant differences in the diets of the sampled species. The highest Sr/Ca ratios were displayed by the suids Parachleuastochoerus kretzoii [B1] and Propotamochoerus palaeochoerus implying a preference for Sr-rich underground plant parts. Elevated Sr/Ca ratios yielded by the cervid Lucentia aff. pierensis and equid Hippotherium intrans are indicative of intermediate feeding. The bovid Miotragocerus sp. showed higher Sr/Ca ratios than the gomphothere Tetralophodon longirostris, which is incongruent with morphological and stable isotope data, and suggested browsing by both taxa. This finding is likely the result of a difference in digestive physiology (ruminant vs. monogastric) rather than a difference in dietary behaviour. The lowest Sr/Ca ratios were displayed by the traguild Dorcatherium naui and moschid Micromeryx flourensianussuggesting a preference for Sr-poor fruits. Resource specialization and partitioning within the local environment likely acted to decrease interspecific competition and promote coexistence within the diverse ungulate community at R. II.

References

Agustí, J., Moyà-Solà, S., 1990. Mammal extinctions in the Vallesian (Upper Miocene). Lecture Notes in Earth Sciences, 30, 425-432.

Agustí, J., Antón, M., 2002. Mammoths, Sabertooths, and Hominids: 65 Million Years of Mammalian Evolution in Europe. New York, Columbia University Press, 313pp.

Agustí, J., Cabrera, L., Garcés, M., Parés, J.M., 1997. The Vallesian mammal succession in the Vallès-Penedès basin (Northeast Spain): paleomagnetic calibration and correlation with global events. Palaeogeography, Palaeoclimatology,

Palaeoecology, 133, 149-180.

Agustí, J., Cabrera, L., Garcés, M., Llenas, M., 1999. Mammal turnover and Global climate change in the Late Miocene terrestrial record of the Vallès-Penedès Basin (NE Spain). In: Agustí, J., Rook, L., Andrews, P. (eds.). Hominoid Evolution and Climatic Change in Europe. Vol. 1: The Evolution of Neogene Terrestrial Ecosystems in Europe. Cambridge, Cambridge University Press, 390-397.

Agustí, J., Siria, A.S.D., Garcés, M., 2003. Explaining the end of the hominoid experiment in Europe. Journal of Human Evolution, 45, 145-153.

Agustí, J., Cabrera, L., Garcés, M., 2013. The Vallesian mammal turnover: A Late Miocene record of decoupled land-ocean

evolution. Geobios, 46, 151-157.

Aiglstorfer, M., Bocherens, H., Böhme, M., 2014. Large Mammal Ecology in the late Middle Miocene locality Gratkorn (Austria). Palaeobiodiversity and Palaeoenvironments, 94, 189-213.

Alba, D.M., Moyà-Solà, S., Robles, J.M., Casanovas-Vilar, I., Rotgers, C., Carmona, R., Galindo, J., 2011. Middle Miocene tragulid remains from Abocador de Can Mata: the earliest record of Dorcatherium naui fromWestern Europe. Geobios,

, 135-150.

Andrews, P., Cameron, D., 2010. Rudabànya: Taphonomic analysis of a fossil hominid site from Hungary. Palaeogeography,

Palaeoclimatology, Palaeoecology, 297, 311-329.

Andrews, P., Harrison, T., Martin, L., Delson, E., Bernor, R.L., 1996. Systematics and biochronology of European Neogene

catarrhines. In: Bernor, R., Fahlbusch, V. (eds.). Evolution of Neogene Continental Biotopes in Europe and the Eastern Mediterranean. New York, Columbia University Press, 168-207.

Armour-Chelu, M., Andrews, P., Bernor, R.L., 2005. Further observations on the primate community at Rudabánya II (Late Miocene, early Vallesian age), Hungary. Journal of Human Evolution, 49, 88-98.

Avioli, L.V., 1988. Calcium and phosphorus. In: Shils, M.E., Young, V.R. (eds.). Modern Nutrition in Health and Disease. Philadelphia, Lea and Febiger, 142-148.

Balter, V., 2004. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. Oecologia, 139, 83-88.

Balter, V., Bocherens, H., Person, A., Labourdette, N., Renard, M., Vandermeersch, B., 2002. Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs. Palaeogeography, Palaeoclimatology, Palaeoecology, 186, 127-143.

Balter, V., Braga, J., Telouk, P., Thackeray, F., 2012. Evidence for dietary change but not landscape use in South African early

hominins. Nature, 489, 558-560.

Begun, D.R., 2007. Fossil record of Miocene hominoids. In: Henke, W., Tattersall, I. (eds.). Handbook of Paleoanthropology.

Heidelberg, Springer, 921-977.

Bernor, R.L., Armour-Chelu, M., Kaiser, T.M., Scott, R.S., 2003. An evaluation of the late MN 9 (Late Miocene, Vallesian age), hipparion assemblage from Rudabánya (Hungary): Systematic background, functional anatomy and paleoecology. Coloquios de Paleontología, Volumen Extraordinario, 1, 35-45.

Bernor, R.L., Kordos, L., Rook, L., Agustí, J., Andrews, P., Armour-Chelu, M., Begun, D.R., de Bonis, L., Cameron, D.W., Damuth, J., Daxner-Höck, G., Fessaha, N., Fortelius, M., Franzen, J.L., Gasparik, M., Gentry, A., Heissig, K., Hernyak, G., Kaiser, T.M., Koufos, G.D., Krolopp, E., Jánossy, D., Llenas, M., Meszáros, L., Müller, P., Renne, P.R., Rocek, Z., Sen, S., Scott, R.S., Szindlar, Z., Topál, G.Y., Ungar, P.S., Untescher, T., van Dam, J.A., Werdelin, L., Ziegler, R., 2004. Recent advances on multidisciplinary research at Rudabánya, Late Miocene (MN9), Hungary: a compendium. Paleontographica Italia, 89, 3-36.

Blum, J.D., Taliaferro, H., Weisse, M.T., Holmes, R.T., 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic

levels in two forest ecosystems in the northeastern USA. Biogeochemistry, 49, 87-101.

Bowen, H.J.M., Dymond, J.A., 1955. Strontium and barium in plants and soils. Proceedings of the Royal Society of London,

(B), 355-368.

Brügmann, G., Krause, J. Brachert, T.C., Stoll, B., Weis, U., Kullmer, O., Semmanda, I., Mertz, D.F., 2012. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance. Biogeosciences, 9, 4803-4817.

Burton, J.H., 2008. Bone chemistry and trace element analysis. In: Katzenberg, A.M., Saunders, S.R., (eds.). Biological Anthropology of the Human Skeleton. New Jersey, John Wiley & Sons, Inc., Second Edition, 443-460.

Burton, J.H., Wright, L.E., 1995. Nonlinearity in the relationship between bone Sr/Ca and diet: paleodietary implications. American Journal of Physical Anthropology, 96, 273-282.

Burton, J.H., Price, T.D., 2002. The use and abuse of trace elements for paleodietary research. In: Ambrose, S.H., Katzenberg, M.A. (eds.). Biogeochemical Approaches to Paleodietary Analysis, Advances in Archaeological and Museum Science. Springer, 159-171.

Burton, J.H., Price, T.D., Middleton, W.D., 1999. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science, 26, 609-616.

Casanovas-Vilar, I., Alba, D.M., Garcés, M., Robles, J.M., Moyá-Solá, S., 2011. Updated chronology for the Miocene hominoid radiation in western Eurasia. Proceedings of the National Academy of Sciences, 108, 5554-5559.

Casanovas-Vilar, I., Van den Hoek Ostende, L.W., Furió, M., Madern, P.A., 2014. The range and extent of the Vallesian Crisis (Late Miocene): new prospects based on the micromammal record from the Vallès-Penedès basin (Catalonia, Spain). Journal of Iberian Geology, 40, 29-48.

Casanovas-Vilar, I., Madern, A., Alba, D., Cabrera, L., GarcíaParedes, I., van den Hoek Ostende, L., DeMiguel, D., Robles, J.M., Furió, M., van Dam, J., Garcés, M., Angelone, C., Moyà-Solà, S., 2016. The Miocene mammal record of the Vallès-Penedès Basin (Catalonia). Comptes Rendus Palevol, 15, 791-812.

Cerling, T.E., Hart, J.A., Hart, T.B., 2004. Stable isotope ecology in the Ituri forest. Oecologia, 138, 5-12.

Chattopadhyay, N., Quinn, S.J., Kifor, O., Ye, C., Brown, E.M., 2007. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochemical Pharmacology, 74, 438-447.

Cork, S., 1996. Optimal digestive strategies for arboreal herbivorous mammals in contrasting 354 forest types: why koalas and colobines are different. Australian Journal of Ecology, 21, 10-20.

Daxner-Höck, G., 2004. Biber und ein zwerghamster aus Mataschen (unter-pannonium, steirisches becken). Joannea Geologie und Paläontologie, 5, 19-33.

Daxner-Höck, G., Harzhauser, M., Göhlich, U., 2016. Fossil record and dynamics of the Late Miocene small mammal faunas of the Vienna Basin and adjacent basins. Austria. Comptes Rendus Palevol, 15, 855-862.

Demment, M.W., Van Soest, P.J., 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist, 125, 641-672.

DiBitetti, M.S., Di Blanco, Y.E., Pereira, J.A., Paviolo, A., Jiménez Pérez, I., 2009. Time partitioning favors the coexistence of

sympatric crab-eating foxes (Cerdocyon thous) and pampas foxes (Lycalopex gymnocercus). Journal of Mammalogy, 90, 479-490.

Djagoun, C., Kassa, B., Mensah, G., Sinsin, B., 2013. Seasonal habitat and diet partitioning between two sympatric bovid species in Pendjari Biosphere Reserve (northern Benin): waterbuck and western kob. African Zoology, 48, 279-289.

Domingo, L., Cuevas-González, J., Grimes, S.T., Hernández Fernández, M., López-Martínez, N., 2009. Multiproxy reconstruction of the palaeoclimate and palaeoenvironment of the Middle Miocene Somosaguas site (Madrid, Spain) using herbivore dental enamel. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 53-68.

Domingo, L., López-Martínez, N., Grimes, S.T., 2012. Trace element analyses indicative of paleodiets in Middle Miocene Mammals from the Somosaguas site (Madrid, Spain). Geologica Acta, 10(3), 239-247.

Domingo, M.S., Domingo, L., Badgley, C., Sanisidro, O., Morales, J., 2013. Resource partitioning among top predators in a Miocene food web. Proceedings of the Royal Society of London, B: Biological Sciences, 280 (1750), 9pp. DOI:10.1098/rsbp.2012.2138.

Drouet, T., Herbauts, J., 2008. Evaluation of the mobility and discrimination of Ca, Sr and Ba in forest ecosystems: consequence on the use of alkaline-earth element ratios as tracers of Ca. Plant Soil, 302, 105-124.

Eastham, L., Feranec, R.S., Begun, D.R., Kordos, L., 2011. Resource partitioning in Late Miocene Central European Mammals: Isotopic evidence from the Rudabánya fauna. Journal of Vertebrate Paleontology, 31 (Supplement 2), 103.

Eastham, L., Feranec, R.S., Begun, D.R., 2016. Stable isotopes show resource partitioning among the early Late Miocene herbivore community at Rudabánya II: Palaeoenvironmental implications for the hominoid, Rudapithecus hungaricus. Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 161-174.

Eberle, J., Sponheimer, M., Marchitto, T., 2009. Biogenic patterning of Sr and Ba in Early Oligocene (Orellan) mammalian tooth enamel. Journal of Vertebrate Paleontology, 29, 91A.

Elias, R.W., Hirao, Y., Patterson, C.C., 1982. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochimica et Cosmochimica Acta, 46, 2561-2580.

Erdei, B., Hably, L., Kázmér, M., Utescher, T., Bruch, A., 2007. Neogene flora and vegetation development of the Pannonian

domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 131-156.

Fortelius, M., Hokkanen, A., 2001. The trophic context of hominoid occurrence in the later Miocene of western Eurasia—a primate-free view. In: de Bonis, L., Koufos, G., Andrews, A., (eds.). Phylogeny of the Neogene Hominoid Primates of Eurasia. Cambridge, Cambridge University Press, 19-47.

Fortelius, M., Werdelin, L., Andrews, P., Bernor, R.L., Gentry, A., Humphrey, L., Mittmann, H.-W., Viranta, S., 1996. Provinciality, diversity, turnover and palaeoecology in land mammal faunas of the Late Miocene of Western Eurasia. In: Bernor, R.L., Fahlbusch, V., Mittmann, H.-W. (eds.). The evolution of Western Eurasian Neogene mammal faunas. Columbia University Press, New York, 414-448.

Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005-1016.

Fortelius, M., Armour-Chelu, M., Bernor, R.L., Fessaha, N., 2005. Systematics and palaeobiology of the Rudabánya Suidae. Palaeontographica Italica, 90, 259-278.

Fourie, N.H., Lee-Thorp, J.A., Rogers-Ackermann, R., 2008. Biogeochemical and craniometric investigation of dietary ecology, niche separation, and taxonomy of Plio-Pleistocene Cercopithecoids from the Makapansgat Limeworks. American Journal of Physical Anthropology, 135, 121-135.

Franzen, J.L., Storch, G., 1999. Late Miocene mammals from central Europe. Hominoid Evolution and Climatic Change in Europe. In: Agustí, J.L., Rook, L., Andrews, P. (eds). The evolution of Neogene terrestrial ecosystems in Europe. Cambridge, Cambridge University Press, 165-190.

Franzen, J.L., Pickford, M., Costeur, L., 2013. Palaeobiodiversity, palaeoecology, palaeobiogeography and biochronology of Dorn-Dürkheim 1 – a summary. Palaeodiversity and Palaeoenvironments, 93, 277-284.

Gilbert, C., Sealy, J., Sillen, A., 1994. An investigation of barium, calcium and strontium as palaeodietary indicators in the

Southwestern Cape, South Africa. Journal of Archaeological Science, 21, 173-184.

Gordon, I.J., Illius, A.W., 1989. Resource partitioning by ungulates on the Isle of Rhum. Oecologia, 79, 383-389.

Hably, L., 2013. The Late Miocene flora of Hungary. Geolologica Hungarica Series Palaeontologica, 56, 1-173.

Hably, L., Erdei, B., 2013. A refugium of mastixia in the Late Miocene of eastern central Europe. Review of Palaeobotany

and Palynology, 197, 218-225.

Hardin, G., 1960. The competitive exclusion principle. Science, 131, 1292-1297.

Harrison, T., 2002. Late Oligocene to middle Miocene catarrhines from Afro−Arabia. In: Hartwig, W. (ed.). The Primate Fossil

Record. Cambridge University Press, Cambridge, 311-338.

Harzhauser, M., Mandic, O., 2004. The muddy bottom of Lake Pannon - A challenge for dreissenid settlement (Late Miocene; bivalvia). Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 331-352.

Harzhauser, M., Latal, C., Piller, W.E., 2007. The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate

change. Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 335-350.

Harzhauser, M., Kern, A., Soliman, A., Minati, K., Piller, W.E., Danielopol, D.L., 2008. Centennial- to decadal scale environmental shifts in and around Lake Pannon (Vienna Basin) related to a major Late Miocene lake level rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 102-115.

Herwartz, D., Tütken, T., Jochum, K.P., Sander, P.M., 2013. Rare earth element systematics of fossil bone revealed by LAICPMS analysis. Geochimica et Cosmochimica Acta, 103, 161-183.

Hillson, S., 2005. Teeth, Cambridge Manuals in Archaeology (2nd edition). Cambridge, Cambridge University Press, 373pp.

Hofmann, R.R., 1973. The ruminant stomach. Nairobi, East African Literature Bureau, 342-349.

Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., DordjevicMilutinovic, D., Molchanoff, S., 2011. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 262-275.

Kartzinel, T., Chen, P., Coverdale, T., Erickson, D., Kress, J., Kuzmina, M., Rubenstein, D., Wang, W., Pringle, R., 2015. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the National Academy of Sciences, 112, 8019-8024.

Kaup, J.J., 1832. Description d’ossements fossiles de mammifères inconnus jusqu’à présent qui se trouvent au Muséum grand ducal de Darmstadt. Darmstadt, Meyer, 1-119.

Kaup, J.J., 1833. Description d’Ossements fossiles de Mammifères inconnus jusqu’à présent. Qui se trouvent au Muséum grandducal de Darmstadt, 1-64.

Kaup, J.J., Scholl, J.B., 1834. Verzeichniss der Gypsabgüsse von den ausgezeichnetsten urweltlichen. Thierresten des Grossherzoglichen Museum zu Darmstadt, 6-28.

Kázmér, M., 1990. Birth, life and death of the Pannonian Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 79, 171-188

Koch, P.L., Tuross, N., Fogel, M.L., 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science, 24, 417-429.

Kohn, M.J., Moses, R.J., 2013. Trace element diffusivities in bone rule out simple diffusive uptake during fossilization but explain in vivo uptake and release. Proceedings of the National Academy of Sciences, 110, 419-424.

Kohn, M.J., Schoeninger, M.J., Barker, W.W., 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 63, 2737-2747.

Kohn, M.J., Morris, J., Olin, P., 2013. Trace element concentrations in teeth – a modern Idaho baseline with implications for archeometry, forensics, and paleontology. Journal of Archaeological Science, 40, 1689-1699.

Kordos, L., 1991. Le Rudapithecus hungaricus de Rudabànya (Hongrie). L’Anthropologie, 95, 343-362.

Kordos, L., Begun, D.R., 2002. Rudabánya: A Late Miocene subtropical swamp deposit with evidence of the origin of the African apes and humans. Evolutionary Anthropology, 11, 45-57.

Kretzoi, M., 1969. Geschichte der Primaten und der Hominisation. Symposia Biologica Hungarica, 9, 3-11.

Kretzoi, M., 1975. New ramapithecines and Pliopithecus from the lower Pliocene of Rudabánya in north-eastern Hungary.

Nature, 257, 578-581.

Kretzoi, M., 1983. Gerinces Indexfajok Felsö-neozói rétegtanunkban Hipparion. Magyr Állami Földtani Intézet Évi Jelentése AZ. Évröl, 513-521.

Kretzoi, M., Krolopp, E., Lörincz, H., Pálfalvy, I., 1976. A Rudabanyai also pannonai prehominidas lelohely floraja, faunaja es retegtani helyzete. Annual Report of the Hungarian Geological Institute, 365-394.

Kyle, J.H., 1986. Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth: the implications for palaeodietary research. Journal of Archaeological Science, 13, 403-416.

Landman, M., Schoeman, D., Kerley, G., 2013. Shift in the black rhinoceros diet in the presence of the elephant: evidence for competition? PLoS ONE, 8(7), e69771.

Lartet, É., 1851. Notice sur la colline de Sansan. Suivie d’une récapitulation de diverses espèces d’animaux vértébres fossiles trouves soit à Sansan, soit dans d’autres gisements du terrain tertiaire miocène dans le bassin sous-pyrénéen. Auch (Portes), 1-45.

Lee-Thorp, J.A., Van der Merwe, N.J., 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science, 83, 712-715.

Lee-Thorp, J.A., Van der Merwe, N.J., 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of

Archaeological Science, 18, 343-354.

Lee-Thorp, J.A., Sponheimer, M., van der Merwe, N.J., 2003. What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene? International Journal of Osteoarchaeology, 13, 104-113.

Lengemann, F.W., 1963. Over-all Aspects of Calcium and Strontium Absorption, the Transfer of Calcium and Strontium across Biological Membranes. New York, Academic Press, 85pp.

Levine, J.M., Hille Ris Lambers, J., 2009. The importance of niches for maintenance of species diversity. Nature, 461, 254-257.

Linnaeus, C., 1758. Systema Naturae, regnum animale, ed. X. (Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata.). London, British Museum, 853pp.

Magyar, I., Geary, D.H., Müller, P., 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in central Europe.

Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151-167.

Martin, J.E., Vance, D., Balter, V., 2015. Magnesium stable isotope ecology using mammal tooth enamel. Proceedings of the National Academy of Sciences, 112, 430 -435.

Merceron, G., 2009. The early Valleisan vertebrates of Atzelsdorf (Late Miocene, Austria). Annals of the Natural History Museum Vienna, 111A, 647-660.

Merceron, G., Schulz, E., Kordos, L., Kaiser, T.M., 2007. Paleoenvironment of Dryopithecus brancoi at Rudabánya, Hungary: Evidence from dental meso- and micro-wear analyses of large vegetarian mammals. Journal of Human Evolution, 53, 331-349.

Nowak, R.M. 1991. Walker’s Mammals of the World (Fifth Edition). Baltimore, Johns Hopkins University Press, 1081-1084.

Ogilby, C., 1840. Hyemoschus aquaticus. Proceedings of the Zoological Society of London, 1-35.

Palmqvist, P., Gröcke, D.R., Arribas, A., Fariña, R.A., 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology, 29,

-229.

Peek, S., Clementz, M.T., 2012. Sr/Ca and Ba/Ca variations in environmental and biological sources: A survey of marine and terrestrial systems. Geochimica et Cosmochimica Acta, 95, 36-52.

Pilgrim, G.E., 1926. The Fossil Suidae of India. Memoirs of the Geological Survey of India. Palaeontologia Indica, 8, 1-65.

Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., Kováè, M., 2004. Lithological–paleogeographic maps of Paratethys. 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg, 250, 1-46.

Price, T.D., Blitz, J., Burton, J., Ezzo, J.A., 1992. Diagenesis in prehistoric bone: problems and solutions. Journal of Archaeological Science, 19, 513-529.

Pyke, G.H., Pulliam, H.R., Charnov, E.L., 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology, 52, 137-157.

Qu, Y., Jin, C., Zhang, Y., Hu, Y., Shang, X., Wang, C., 2013. Distribution patterns of elements in dental enamel of G

blacki: a preliminary dietary investigation using SRXRF. Applied Physics A, Materials Science & Processing, 111(1), 75-82.

Rao, S.R., 1979. Elemental concentration in fruit and leaves of chicku and mango under natural environmental conditions.

Proceedings of the Indian Academy of Science, 88, 175-182.

Rögl, V.F., 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annals of the Natural History Museum Vienna, 99A, 279-310.

Rossipal, E., Krachler, M., Li, F., Turk Micetic, D., 2000. Investigation of the transport of trace elements across barriers in humans: studies of placental and mammary transfer. Acta Paediatrica, 89, 1190-1195.

Rössner, G.E., 2007. Family tragulidae. In: Prothero, D.R., Foss, S.E. (eds.). The Evolution of Artiodactyls. Johns Hopkins University Press (Baltimore), 213-220.

Runia, L.T., 1987. Strontium and calcium distribution in plants: Effect on palaeodietary studies. Journal of Archaeological Science, 14, 599-608.

Sánchez, I.M., Salesa, M.J., Morales, J., 1998. Revisión sistemática del género Anchitherium Meyer 1834 (Equidae; perissodactyla) en España. Estudios Geológicos, 54, 39-63.

Sasaki, T., Garant, P., 1986. Ultracytochemical demonstration of ATP-dependent calcium pump in ameloblasts of rat incisor

enamel organ. Calcified Tissue International, 39, 86-96.

Schoener, T.W., 1974. Resource partitioning in ecological communities. Science, 185, 27-39.

Scott, R.S., Amour-Chelu, M., Bernor, R.L., 2005. Hipparionine horses of the greater Pannonian Basin: morphometric evidence from the postcranial skeleton. Paleontographia Italica, 90, 193-212.

Sealy, J.C., Sillen, A., 1988. Sr and Sr/Ca in marine and terrestrial foodwebs in the Southwestern Cape, South Africa. Journal of Archaeological Science, 15, 425-438.

Ségalen, L., de Rafélis, M., Lee-Thorp, J.A., Maurer, A.-F., Renard, M., 2008. Cathodoluminescence tools provide clues to depositional history in Miocene and Pliocene mammalian teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 246-253.

Sillen, A., 1986. Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation. Paleobiology, 12,

-323.

Sillen, A., 1992. Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. Journal of Human Evolution, 23, 495-516.

Sillen, A., Kavanagh, M., 1982. Strontium and paleodietary research: A review. Yearbook of Physical Anthropology, 25, 67-90.

Sillen, A., Hall, G., Armstrong, R., 1995. Strontium calcium ratios (Sr/Ca) and strontium isotopic ratios (87Sr/86Sr) of

Australopithecus robustus and Homo sp. from Swartkrans. Journal of Human Evolution, 28, 277-285.

Singh, M., Roy, K., Singh, M., 2011. Resource partitioning in sympatric langurs and macaques in tropical rainforests of the western Ghats, South India. American Journal of Primatology, 73, 355-346.

Smith, H., 1827. Griffith’s Cuvier, Animal Kingdom. London, George Whittaker, 1-344.

Solounias, N., Dawson-Saunders, B., 1988. Dietary adaptations and palaeoecology of the Late Miocene ruminants from Pikermi and Samos in Greece. Palaeogeography, Palaeoclimatology, Palaeoecolology, 65, 149-172.

Spassov, N., Geraads, D., 2004. Tragoportax pilgrim, 1937 and Miotragocerus stromer, 1928 (Mammalia, Bovidae) from the

Turolian of Hadjidimovo, Bulgaria, and a revision of the Late Miocene Mediterranean boselaphini. Geodiversitas, 26, 339-370.

Sponheimer, M., Lee-Thorp, J.A., 1999. Alteration of enamel carbonate environments during fossilization. Journal of Archaeological Science, 26, 143-150.

Sponheimer, M., Lee-Thorp, J.A., 2006. Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta, 70, 1644-1654.

Sponheimer, M., de Ruiter, D., Lee-Thorp, J., Spath, A., 2005. Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution, 48, 147-156.

Stevenson, P.R., Quinone, M.J., Ahumada, J.A., 2000. Influence of fruit availability on ecological overlap among four Neotropical primates at Tinigua National Park, Colombia. Biotropica, 32, 533-544.

Stewart, K.M., Bowyer, R.T., Kie, J.G., Cimon, N.J., Johnson, B.K., 2002. Temporospatial distributions of elk, mule, deer, and cattle: resource partitioning and competitive displacement. Journal of Mammalogy, 83, 229-244.

Stromer, E., 1928. Wirbeltiere im obermiozänen Flinz Münchens. Abhandlungen der Bayerische Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 32, 1-71.

Taylor, D., Bligh, P., Duggan, M.H., 1962. The absorption of calcium, strontium, barium and radium from the gastrointestinal

tract of the rat. Biochemical Journal, 83, 25-29.

Thomas, J.M., 1951. Eostyloceros pierensis nov. sp., nouveau cervuline du Pontien européen. Compte rendu sommaire desséances de la Société géologique de France, 6, 255-257.

Trueman, C.N., Benton, M.J., 1997. A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology, 25, 263-266.

Trueman, C.N., Tuross, N., 2002. Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry,

, 489-521.

Tütken, T., Vennemann, T.W., Janz, H., Heizmann, E.P.J., 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene

lake in the Steinheim Basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography,

Palaeoclimatology, Palaeoecology, 241, 457-491.

Tütken, T., Vennemann, T.W., Pfretzschner, H.U., 2008. Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology,

Palaeoecology, 266, 254-268.

Tütken, T., Vennemann, T.W., Pfretzschner, H.-U., 2011. Nd and Sr isotope compositions in modern and fossil bones: Proxies

for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta, 75, 5951-5970.

Tütken, T., Kaiser, T.M., Vennemann, T., Merceron, G., 2013. Opportunistic feeding strategy for the earliest hypsodont equids: Evidence from stable isotopes and dental wear proxies. PLoS ONE, 8(9), E74463.

Underwood, E.J., 1977. Trace Elements in Human and Animal Nutrition. New York, Academic Press Inc., Fourth edition, 545pp.

Utescher, T., Erdei, B., Hably, L., Mosbrugger, V., 2017. Late Miocene vegetation of the Pannonian Basin. Palaeogeography,

Palaeoclimatology, Palaeoecology, 467, 131-148.

Walser, M., Robinson, B.H.B., 1963. Renal Excretion and Tubular Reabsorption of Calcium and Strontium, Transfer of Calcium and Strontium across Biological Membranes. New York, Academic Press, 326pp.

Wang, Y., Cerling, T.E., 1994. A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 281-289.

Wang, K.M., 1929. Die fossilen Rhinocerotiden des Wiener Beckens. Shanghai, Memoirs of the Institute of Geology, 7, 53-59.

de Winter, N.J., Snoeck, C., Claeys, P., 2016. Seasonal cyclicity in trace elements and stable isotopes of modern horse enamel. PLoS ONE, 11, E0166678.

Downloads

Published

2017-09-04

Issue

Section

Articles