Phase relations in the Cabeza de Araya cordierite monzogranite, Iberian Massif: implications for the formation of cordierite in a crystal mush

O. García Moreno, L.G. Corretgé, F. Holtz, M. García-Arias, C. Rodríguez


Experimental investigations and thermodynamic calculations of the phase relations of a cordierite-rich monzogranite of the Cabeza de Araya batholith (Cáceres, Spain) have been performed to understand the formation of cordierite. The experiments failed to crystallize cordierite in the pressure range 200 - 600 MPa, in the temperature range 700 - 975 ºC and for different water activities (melt water contents between 2 and wt. 6%). In contrast, clinopyroxene and orthopyroxene (absent in the natural mineral rock assemblage), together with biotite, were observed as ferromagnesian assemblage in a wide range of experimental conditions. Numerical modelling, using the software PERPLE_X, describe the formation of cordierite only at 200 and 400 MPa and very low water contents, and the amount of cordierite formed in the models is always below 3.5 vol.%. The results indicate that cordierite is not in equilibrium with the bulk rock compositions. The most probable explanation is that cordierite nucleated and crystallized from a melt that is not in equilibrium with part of the mineral assemblage present in the magma. This “non reactive” mineral assemblage is mainly composed of plagioclase. The silicate melt from which cordierite crystallized was more Al-rich and K-rich than the silicate melt composition in equilibrium with the bulk composition. One possible process for the high Al content of the silicate melt is related to assimilation and partial melting of Al-rich metasediments. An exoperitetic reaction is assumed to account for both textural and geochemical observations. On the other hand, hybridization processes typical for calc-alkaline series can also explain the high proportions of “non reactive” minerals observed in relatively high temperature magmas. This study clearly demonstrates that silicate melts in a crystal mush can depart significantly from the composition of melts that should be in equilibrium with the bulk solid assemblage.


cordierite, monzogranites, experimental petrology, peritectic, Perple_X

Full Text:




  • There are currently no refbacks.

Geoscience e-Journals










Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike License.
Geologica Acta (ISSN-1695-6133)
Biblioteca de Geologia (UB-CSIC) | Facultat de Ciències de la Terra, Martí i Franquès s/n 08028 Barcelona | Spain
Phone: +34 93 403 19 89 | Fax: +34 93 402 14 21 | E-mail:
RCUB Avís Legal RCUB Universitat de Barcelona