Natural groundwater quality and health

Authors

  • Salvador Jordana Enviros Spain S. L. Passeig de Rubí 29-31, 08197 Valldoreix.
  • Eduardo Batista Piera Agència Catalana de l’Aigua C/ Provença, 204-208, 08036 Barcelona

DOI:

https://doi.org/10.1344/105.000001438

Keywords:

Groundwater quality, Health, Natural composition, Essential elements, Toxic elements

Abstract

Natural groundwater composition and quality is of concern because it is used worldwide as a freshwater supply. Discarding artificial pollution, epidemiological studies have shown that many communities suffer important diseases linked to the groundwater ingested since several tens of years ago. As the available resources of freshwater decrease due to pollution and overexploitation, and the need of water increases, more efforts have to be devoted to guarantee water quality. Of course preventing pollution is the main task but studying and controlling the natural groundwater quality is also very important, mainly in developing countries. To study the relationship between natural groundwater composition and health implies working in many scientific disciplines such as hydrology, geology, geochemistry and toxicology. During its cycle, water acquires its natural composition depending on the hydrogeological scenario, which, in turn, depends on the climate, topography and rock properties (hydraulic properties, chemical composition). Nearly all natural waters contain traces of most chemical elements but often at extremely low concentrations. Major species invariably make up over 99% of the solute content. Major compounds as well as trace elements can be essential, toxic, potentially toxic and potentially beneficial. Special attention has to be paid to chemical elements present in many natural waters whose insufficient or excess intake produces critical illness and whose intake is mainly through the ingestion of water. A first approach to groundwater quality can be made using element concentrations in water but many efforts have to be devoted to perform epidemiological and risk assessment studies based on intake doses of chemical species.

References

Appelo, C.A.J., Postma, D., 1993. Geochemistry, groundwater and pollution. Rotterdam, Balkema, 526 pp.

Bocanegra, O.C., Bocanegra, E.M., Álvarez, A.A., 2002. Arsénico en aguas subterráneas: su impacto en la Salud. XXXII IAH and VI ALHSUD CONGRESS “Aguas Subterráneas y Desarrollo Humano”. Mar del Plata, 21-27.

Carrillo-Rivera, J.J., Cardona, A., Edmunds, W.M., 2002. Use ob abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: Sant Luis Potosí basin, Mexico. Journal of

Hydrology, 261, 24-47.

Custodio, E., Herrera, C., 2000. Utilización de la relación Cl/Br como trazador hidrogeoquímico en hidrologia subterránea. Boletín Geológico y Minero, 111(4), 49-68.

Custodio, E., Llamas, M.R., 1983. Hidrología Subterránea. Barcelona, ed. Omega, 2 vols., 2350 pp.

De Armijo Valenzuela M., 1968. Compendio de Hidrología Médica. Barcelona, Editorial Científico-Médica, 483 pp.

Dissanayake, C.B., 1996. Water quality and dental health in the Dry Zone of Sri Lanka. In: Appleton, J.D., Fuge, R. and McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 131-140.

Dissanayake, C.B., Chandrajith, R.L.R., 1996. Iodine in the environment and edemic goitre in Sri Lanka. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 213-221.

Edmunds, W.M., Smedley, P.L., 1996. Groundwater geochemestry and health: and overview. In: Appleton, J.D., Fuge, R., McCall G.J.H. (eds.). Environmental Geochemestry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 91-105.

Environmental Protection Agency, 2000.Technical Fact Sheet: Final Rule for (Non-Radon) Radionuclides in Drinking Water EPA 815-F-00-013. November 2000. Washington, DC, Environmental Protection Agency. Environmental Protection Agency, 2002. 2002 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-02-038. Office of Water U.S., Washington, DC, Environmental Protection Agency, 19 pp.

European Union, 1998. Council Directive 98/83/CE concerning quality of human use water.

Fuge, R., 1996. Geochemistry. of iodine inrelation to iodine deficiency diseases. In: Appleton, J. D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 201-211.

Hem, J.D., 1985. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey, Water Supply Paper 2254. 3rd edition.

IEC, 1997. Diccionari de Geologia. Institut d’Estudis Catalans. Barcelona.

Instituto Geológico Minero de España, 2002. Catálogo de Proyectos IGME 2001-2002. Hidrogeología y Aguas subterráneas. Ministerio de Ciencia y Tecnología. Madrid.

Komatina M., Komatina S., 2002. Trace elements in Water XXXII IAH & VI ALHSUD CONGRESS “Aguas Subterráneas y Desarrollo Humano”. Mar del Plata, 77-81.

Llamas, M.R., Fornés, J.M., Hernández-Mora, N., Martínez, L., 2001. Aguas subterráneas: retos y oportunidades. Fundación

Marcelino Botín. Ediciones Mundi-Prensa, Colección Ciencia y Economia nº 5.

Mitjà, A., 1999. Balnearis. Els Recursos Minerals de Catalunya: Les Aigües Minerals. Departament d’Indústria, Comerç i Turisme. Generalitat de Catalunya. Barcelona,173 pp.

Nordstrom D.K., 2002. Worldwide occurrences of arsenic in ground water. Science, 296, 2143-2145.

Otton, J.K., 1994. Natural Radioactivity in the Environment. Energy Resource Surveys Program. U.S. Geological Survey Fact Sheet.

Pedersen, K., 2000. Exploration of deep intraterrestrial microbial life: current perspectives. MiniReview. FEMS Microbiology Letters, 185, 9-16.

Plant, J.A., Baldock, J.W., Smith, B., 1996. The role of geochemestry in environmental and epidemiological studies in developping countries: a review. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemestry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 7-22.

Siegel, F.R., 2002. Environmentaal Geochemistry of Potentially Toxic Metals. Berlin, ed. Springer-Verlag, 230 pp.

Smedley, P.L., Edmunds, W.M., 2002. Redox patterns and traceelements behaviour in the East Midlands Triassic Sandstone aquifer, U.K. Ground Water, 40, 44-58.

Smedley, P.L., Edmunds, W.M., Pelig-ba, K.B., 1996. Mobility of arsenic in groundwater in the Oubasi gold-mining area of

Ghana: some implications for human health. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry

and Health With special reference to developing countries. Geological Society, Special Publication, 113, 163-181.

Smith, B., Breward, N., Crawford, M.B., Galimaka, D., Mushiri, S.M., Reeder, S., 1996. The environmental geochemestry of aluminium in tropical terrains and its implications to health. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 141-152.

Stewart, A.G., Pharoah, P.O.D., 1996. Clinical and epidemiological correlates of iodine deficiency disorders. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 223-230.

Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry. Chemical equilibria and rates in natural waters. 3rd Edition. New York, ed. John Wiley & Sons, Inc., 1022 pp.

Thornton, I., 1996. Sources and pathways of arsenic in the geochemical environment: health implications. In: Appleton, J.D., Fuge, R., McCall, G.J.H. (eds.). Environmental Geochemistry and Health With special reference to developing countries. Geological Society, Special Publication, 113, 153-161.

Tóth, J., 1970. A conceptual model of the grounndwater regime and the hydrogeologic environment. Journal of Hydrology,

, 164-176.

Tóth, J.,2000. Las aguas subteráneas como agente geológico: causas, procesos y manifestaciones. Boletín Geológico y

Minero, 111(4), 9-25.

Warner, K. L., 2001. Arsenic in Glacial Drift Aquifers and the implication for drinking water - Lower Illinois Rives Basin. Ground Water, 39, 433-442.

World Health Organisation, 1996.Guidelines for drinking-water quality. Geneva, vol. 2, 989 pp.

Downloads

Published

2004-01-12

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.