Genesis of self-organized zebra textures in burial dolomites: Displacive veins, induced stress, and dolomitization

Authors

  • E. MERINO Department of Geological Sciences, Indiana UniversityBloomington IN 47405, USA.
  • À. CANALS I SABATÉ Dpt. Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de BarcelonaMartí i Franquès, s/n, 08028 Barcelona, Spain.
  • R. C. FLETCHER Department of Geosciences, Pennsylvania State UniversityUniversity Park, PA 16802, USA.

DOI:

https://doi.org/10.1344/105.000000352

Keywords:

Rhythmite, Zebra texture, Breccia texture, Displacive Veins, Induced stress, Self-organization, Burial dolomitization

Abstract

The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein’s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors’s induced stress haloes, now forming a set of equidistant veins, as observed.

References

Arne, D.C., Kissin, S.A., 1989. The significance of the « diagenetic crystallization rhythmites » at the Nanisivik Pb-Zn-Ag deposit, Baffin Island, Canada. Mineralium Deposita, 24, 230-232.

Becker, G.F., Day, A.L., 1916. Note on the linear force of growing crystals. Journal of Geology, 24, 313-333.

Bathurst, R.G.C., 1975. Carbonate Sediments and Their Diagenesis. Amsterdam, Elsevier, 658 pp.

Boni, M., Parente, G., Bechstädt, T., De Vivo, B., Iannace, A., 2000. Hidrotermal dolomites in SW Sardinia: Evidence for a widespread late Variscan fluid flow event. Sedimentary Petrology, 131, 181-200.

Carmichael, D.M., 1986. Induced stress and secondary mass transfer: strain in diffusion metasomatism. In: Helgeson, H.C. (ed.). Chemical Transport in Metasomatic Processes. Dordrecht, Reidel Publishing Company, NATO ASI series C, 218, 237-264.

Clark, S.P., Jr, 1966. Handbook of Physical Constants. New York. Geological Society of America Memoir, 97, 587 pp.

Dorward, R.C., 1985. Origin of zebra textures in the Leadville Fm (Mississippian) of Central Colorado. Geological Society of America Abstracts, 17(4), 216.

El-Tabakh, M.E., Schreiber, B.C., 1998. Diagenesis of the Newark Rift Basin, Eastern North America. Sedimentology, 45, 855-874.

Ferguson, C.C., Harvey, P.K., 1980. Porphyroblasts and “crystallization force”: Some textural criteria. Geological Society of America Bulletin, 83, 3839-3840.

Fletcher, R., Merino, E., 2001. Mineral growth in rocks: Kinetic-rheological models of replacement, vein formation, and syntectonic crystallization. Geochimica Cosmochimica Acta, 65, 3733-3748.

Folk, R.L., 1965. Some aspects of recrystallization in ancient limestones. In: Pray, L.C., Murray, R.D. (eds.). Dolomitization and Limestone Diagenesis. Society of Economic Paleontologists and Mineralogists, Special Publication, 13, 14-48.

Fontboté, L., 1981. Strata-bound Zn-Pb-F-Ba-deposits in carbonate rocks: new aspects of paleogeographic location, facies factors and diagenetic evolution: (with a comparison of occurences from the Triassic of southern Spain, the Triassic/Liassic of central Perú and other localities). Doctoral thesis. University of Heidelberg, 192 pp.

Fontboté, L., 1993. Self-organization fabrics in carbonate-hosted ore deposits: Example of diagenetic crystallization rhythmites. In: Fenoll Hach-Alí, P., Torres-Ruiz, J., Gervilla, F. (eds.) Current Research in Geology Applied to Ore Deposits, Granada, University of Granada, 11-14.

Fontboté, L., Amstutz, G.C., 1980. New observations on diagenetic crystallization rhythmites in the carbonate facies of the Triassic of the Alpujárrides (Betic Cordillera, Spain): Comparison with other diagenetic rhythmites. Revista Inst. Investigaciones Geológicas, 34, 293-310.

Fontboté, L., Gorzawski, H., 1990. Genesis of the MVT Zn-Pb deposit of San Vicente, Central Perú: Geologic and Isotopic (Sr, O, C, S, Pb) evidence. Economic Geology, 85, 1402-1437.

Gasparrini M., 2003. Large-scale hydrothermal dolomitisation in the southwestern Cantabrian Zone (NW Spain): Causes and controls of the process and origin of the dolomitising fluids. PhD Thesis. University of Heidelberg, 203 pp., http://www.ub.uni-heidelberg.de/archiv/3586.

Gasparrini, M., Bakker, R.J., Bechstädt, T., Boni, M., 2003. Hot dolomites in a Variscan foreland belt: hydrothermal flow in the Cantabrian Zone (NW Spain). Journal of Geochemical Exploration, 78-79, 501-507.

Horton, R.A., 1989. Origin of zebra texture in dolomite: Evidence from the Leadville Dolomite (Mississippian), Central Colorado. Geological Society America Abstracts, 21(5), 97.

Lugli, S., Torres-Ruiz, J., Garuti, G., Olmedo, F., 2000. Petrography and Geochemistry of the Eugui Magnesite Deposit (Western Pyrenees, Spain): Evidence for the Development of a Peculiar Zebra Banding by Dolomite Replacement. Economic Geology, 95, 1775-1791.

Machel, H.G., 1985. Fibrous gypsum and fibrous anhydrite in veins. Sedimentology, 32, 443-454.

Machel, H.G., 1997. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research. Sedimentary Geology, 113, 161–168.

Machel, H.G., Lonnee, J., 2002. Hydrothermal dolomite a product of poor definition and imagination. Sedimentary Geology, 152, 163–171.

Maliva, R.G., Siever, R., 1988. Diagenetic replacement controlled by force of crystallization. Geology, 16, 688-691.

Maliva, R.G., 1989. Displacive calcite syntaxial overgrowths in open marine limestone, Journal of Sedimentary Petrology, 59, 397-403.

Merino, E., 1984. Survey of geochemical self-patterning phenomena. In: Nicolis, G., Baras, F. (eds.). Chemical Instabilities. Dordrecht, Reidel Publishing Company NATO ASI series C, 120, 305-328.

Merino, E., 1992. Self-organization in stylolites. American Scientist, 80, 466-473.

Merino E., 2006. Self-accelerating dolomite-for-calcite replacement and displacive veins: Dynamics of burial dolomitization. 16th Goldschmidt Geochemistry Conference, Melbourne, Abstract.

Merino, E., Ortoleva, P., Strickholm, P., l983. Generation of evenly-spaced pressure-solution seams during (late) diagenesis: a kinetic theory. Contributions to Mineralogy and Petrology, 82, 360-370.

Misch, P., 1971. Porphyroblasts and “crystallization force”. Geological Society of America Bulletin, 82, 245-251.

Nabarro, F.R.N., 1940. The influence of elastic strain on the shape of particles segregation in an alloy. Proceedings Physical Society, 52(1), 90-93.

Nelson, J., Paradis, S., Zantvoort, W., 1999. The Robb Lake carbonate-hosted lead-zinc deposit, northeastern British Columbia: a Cordilleran MVT deposit: Ministry of Energy and Mines, Canada, Geological Fieldwork 1998, Paper 1999-1, 89-102.

Nicolis, G., Prigogine, I., 1977. Self-Organization in Non-equilibrium Systems. New York, Wiley, 491 pp.

Nielsen, P., Swennen, R., Munchez, P., Keppens, E., 1998. Origin of Dinantian zebra dolomites south of the BrabantWales Massif, Belgium. Sedimentology, 45, 727-743.

Ortoleva, P., Merino, E., Moore, C., Chadam, J., 1987. Geochemical self-organization, I. Feedbacks and quantitative modeling. American Journal of Science, 287, 979-1007.

Ovejero, G., Tona, F., Marin, J.M., Gutiérrez, Q., Jacquin, J.P., Servajean, G., Zubiaur, J.F., 1982. Las mineralizaciones estratiformes F2Ca-Pb en las dolomías triásicas de Sierra de Lújar, Granada (Cordilleras Béticas, España). Boletín Geológico y Minero, XCIII-VI, 475-495.

Ramberg, H., 1952. The Origin of Metamorphic and Metasomatic Rocks. Chicago, University of Chicago Press, 317 pp.

Roure, F., Swennen, R., Schneider, F., Faure, J.L., Ferket, H., Guilhaumou, N., Osadetz, K., Robion, P., Vandeginste, V., 2005, Incidence and Importance of Tectonics and Natural Fluid Migration on Reservoir Evolution in Foreland Foldand-Thrust Belts. Oil & Gas Science and Technology – Revue de l’Institut Français du Pétrole, 60, 67-106.

Spry, A., 1969. Metamorphic Textures. Oxford, Pergamon, 350 pp.

Swennen, R., Vandeginste, V., Ellan, R., 2003. Genesis of zebra dolomites (Catedral Formation: Canadian Cordillera Ford and Thrust Belt, British Columbia). Journal of Geochemical Exploration, 78-79, 571-577.

Taber, S., 1918. The origin of veinlets in the Silurian and Devonian strata of central New York. Journal of Geology, 26, 56-73.

Tona, F., 1973. Positions des horizons dolomitiques minéralisés en fluorite et galène au sein des sédiments Triasiques de la Sierra de Lújar (Grenade): Évolution et géochimie. Doctoral thesis. Université de Paris-VI, 166 pp.

Tornos, F., Spiro, B.F., 2000. The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, Northern Spain). Economic Geology, 95, 1277-1296.

Tucker, M.E., 2001. Sedimentary Petrology. Oxford, Blackwell Science, (3rd ed.), 262 pp.

Vanderginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K., Roure, F., 2005. Zebra dolomitization as a result of focused fluid flow in the Rocky Mountains Fold and Thrust Belt, Canada. Sedimentology, 52, 1067–1095.

Walder, J.S., Hallet, B., 1985. A theoretical model of the fracture of rock during freezing. Geological Society of America Bulletin, 96, 336-346.

Wallace, A.M., Both, R.A., Morales-Ruano, S., Fenoll HachAli, P., Leeds, T., 1994. Zebra textures from carbonate-hosted sulfide deposits: Sheet cavity networks produced by fracture and solution enlargement. Economic Geology, 89, 1183-1191.

Williams, H., Turner, F.J., Gilbert, C.M., 1954. Petrography. San Francisco, Freeman, 1st edition, 406 pp. (also, 2nd ed., 1982).

Yardley, B.W.D., 1974. Porphyroblasts and crystallization force: Discussion of theoretical considerations. Geological Society America Bulletin 85, 61-62.

Zeeh, S., 1995. Complex replacement of saddle dolomite by fluorite within zebra dolomites. Mineralium Deposita, 30, 469-475.

Downloads

Published

2006-01-12

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.