Isotopic characterization of Jurassic evaporites. Aconcagua-Neuquén Basin, Argentina

Gabriela Lo Forte, Federico Ortí Cabo, Laura Rosell Ortíz


Isotopic analysis can be used to interpret the origin of evaporitic sediments. A preliminary isotopic study of strontium, oxygen and sulphur has been carried out in Ca-sulphate facies of Jurassic marine evaporates (Tábanos Formation and Auquilco Formation) outcropping in southern Mendoza, Aconcagua-Neuquén Basin (Argentina), as a part of a comprehensive sedimentologic study. The analysed sections are located at arroyo Las Leñitas, Cañada Ancha and arroyo Blanco. Sampled units include laminated, banded, and nodular lithofacies, made up of anhydrite, secondary gypsum and calcite. The mineralogy was studied by conventional petrographic analysis and X-ray diffraction. The 87Sr/86Sr ratio was obtained in six samples, with values ranging from 0.706793 to 0.706839, which match marine calcium-sulphate data of the same age. A similar conclusion may be derived from ten samples analysed for oxygen (d18O) and sulphur (d34S) isotopic composition: the obtained values are between +11.55‰ and +14.42‰, and between +17.25‰ and +18.48‰ respectively. The sedimentologic- stratigraphic evidence and the isotopic data both suggest a marine origin for the Tábanos and Auquilco evaporites, without an analytically detectable contribution of continental waters or hydrothermal solutions. The results also suggest that no isotope fractionation occurred during the primary gypsum-to-anhydrite-to-secondary gypsum transformations.

Full Text:




  • There are currently no refbacks.

Geoscience e-Journals










Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike License.
Geologica Acta (ISSN-1695-6133)
Biblioteca de Geologia (UB-CSIC) | Facultat de Ciències de la Terra, Martí i Franquès s/n 08028 Barcelona | Spain
Phone: +34 93 403 19 89 | Fax: +34 93 402 14 21 | E-mail:
RCUB Avís Legal RCUB Universitat de Barcelona