Geology, age and tectonic evolution of the Sierra Maestra Mountains, southeastern Cuba

Authors

  • Franz Neubauer Fachbereich Geographie, Geologie und Mineralogie, Universität Salzburg
  • Ana-Voica Bojar Institut für Geologie und Paläontologie, Universität Graz
  • Ewald Hejl Fachbereich Geographie, Geologie und Mineralogie, Universität Salzbur
  • Robert Handler Fachbereich Geographie, Geologie und Mineralogie, Universität Salzbur
  • Dora Elisa García Delgado nstituto de Geología y Paleontología

DOI:

https://doi.org/10.1344/105.000000361

Keywords:

Cuba, Calc-alkaline granitoids, Geochronology, Palaeostress analysis, Subduction magmatism, Transform fault, Wrench corridor

Abstract

We summarize the available geological information on the Sierra Maestra Mountains in southeastern Cuba and report new zircon fission track and biotite Ar-Ar ages for this region. Two different and genetically unrelated volcanic arc sequences occur in the Sierra Maestra, one Cretaceous in age (pre-Maastrichtian) and restricted to a few outcrops on the southern coast, and the other Palaeogene in age, forming the main expression of the mountain range. These two sequences are overlain by middle to late Eocene siliciclastic, carbonatic and terrigenous rocks as well as by late Miocene to Quaternary deposits exposed on the southern flank of the mountain range. These rocks are britle deformed and contain extension gashes filled with calcite and karst material. The Palaeogene volcanic arc successions were intruded by calc-alkaline, low- to medium-K tonalites and trondhjemites during the final stages of subduction and subsequent collision of the Caribbean oceanic plate with the North American continental plate. U-Pb SHRIMP single zircon dating of five granitoid plutons yielded 206Pb/238U emplacement ages between 60.5 ± 2.2 and 48.3 ± 0.5 Ma. These granitoids were emplaced at pressures ranging from 1.8 to 3.0 kbar, corresponding to depths of ca. 4.5-8 km. 40Ar/39Ar dating of two biotite concentrates yielded ages of 50 ± 2 and 54 ± 4 Ma, indicating cooling through ca. 300 ºC. Zircon and apatite fission track ages range from 32 ± 3 to 46 ± 4 Ma and 31 ± 10 to 44 ± 13 Ma, respectively, and date cooling through 250 ± 50 ºC and 110 ± 20 ºC. The granitoids are the result of subduction-related magmatism and have geochemical characteristics similar to those of magmas from intra-oceanic island-arcs such as the Izu Bonin-Mariana arc and the New Britain island arc. Major and trace element patterns suggest evolution of these rocks from a single magmatic source. Geochemical features characterize these rocks as typical subduction-related granitoids as found worldwide in intra-oceanic arcs, and they probably formed through fractional crystallization of mantlederived low- to medium-K basalts. Several distinct phases of deformation were recognized in the Sierra Maestra, labelled D1 to D6, which define the transition from collision of the Palaeogene island arc to the formation of the Oriente Transform Wrench Corridor south of Cuba and later movement of the Caribbean plate against the North American plate. The first phase (D1) is related to the intrusion of a set of extensive subparallel, N-trending subvertical basalt-andesite dykes, probably during the early to middle Eocene. Between the late-middle Eocene and early Oligocene (D2), rocks of the Sierra Maestra were deformed by approximately east-west trending folds and north-vergent thrust faults. This deformation (D2) was linked to a shift in the stress regime of the Caribbean plate from mainly NNE-SSW to E-W. This shift in plate motion caused the abandonment of the Nipe-Guacanayabo fault system in the early Oligocene and initiation of a deformation front to the south where the Oriente Transform Wrench corridor is now located. Compressive structures were overprinted by widespread extensional structures (D3), mainly faults with southward-directed normal displacement in the Oligocene to early Miocene. During this period the plate boundary jumped to the Oriente fault. This event was followed by transpressive and transtensive structures (D4–D6) due to further development of the sinistral E-trending Oriente Transform wrench corridor. These structures are consistent with oblique convergence in a wide zone of left-lateral shear along an E-W-oriented transform fault.

References

Ague, J.J., 1997. Thermodynamic calculation of emplacement pressures for batholithic rocks, California: Implications for the aluminium-in-hornblende barometer. Geological Society of America Bulletin, 25, 563–566.

Alioshin, V., Burov, V., Eguipko, O., Eliseev, V., Sánchez Menéndez, F., Shelagurov, V., Koñujov, A., Varvarov, V., Lorkin, V., 1975, Sobre los resultados de los trabajos de levantamiento geológico y búsqueda en escala 1:100 000 ejecutados en las montañas de la Sierra Maestra, en la provincia de Santiago de Cuba y Granma (1972–75) Sierra Maestra nororiental. Instituto Nacional de Recursos Minerales, Ministry of Basic Industries, Havana, Cuba. Unpublished.

Bojar, A.V., Neubauer, F., Fritz, H., 1998. Cretaceous to Cenozoic thermal evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophysics, 297, 229–249.

Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society of London, 141, 413–426.

Cabrera-Castellanos, M., García-Delgado, D., Rojas-Agramonte, Y., Reyes-Pérez, C., Rivera- Alvarez, Z., 2003.

Depósitos Cuaternarios al sur de la Sierra Maestra. V Congreso de Geología y Minería, Havana, Cuba, CD-ROM, ISBN-959-7117-11-8.

Calais, E., Perrot, J., Mercier de Lépinay, B., 1998. Strike-slip tectonics and seismicity along the northern Caribbean plate boundary from Cuba to Hispaniola. In: Dolan, J.F., Mann, P. (eds.). Active strike-slip and collisional tectonics of the northern Caribbean plate boundary zone. Boulder, Colorado, USA, Geological Society of America, Special Paper, 326, 125–141.

Case, J.T., Holcombe, L., Martin, R.G., 1984. Map of the geologic provinces in the Caribbean region. Geological Society of America, Memoir, 162, 1–30.

Cazañas, X., Proenza, J.A., Matietti Kysar, G., Lewis, J., Melgarejo, J.C., 1998. Rocas volcánicas de las series Inferior y Media del Grupo El Cobre en la Sierra Maestra (Cuba Oriental): volcanismo generado en un arco de islas tholeiítico. Acta Geologica Hispanica, 33, 57–74.

Coastal and Marine Geology Program: CMG InfoBank Atlas: Caribbean Sea region. http://walrus.wr.usgs.gov/infobank/gazette/html/bathymetry/cb.html

Dengo, G., Case, J.E., 1990, The Caribbean region. In: Dengo, G., Case, J.E. (eds.). The geology of North America. Boulder, Colorado, USA, Geological Society of America, Vol. H, 527 pp.

Dachs, E., 1998. PET. Petrological elementary tools for mathematica. Computers & Geosciences, 24, 219–235.

Draper, G., Barros, J.A., 1994. Cuba. In: Donovan, S.K., Jackson, T.A. (eds.). Caribbean geology: An introduction. Kingston, Jamaica, University of the West Indies Publishers Association, 65–86.

Eguipko, O., Sukar, K., Pavlov, V., Pérez, M., Gurbanov, A., Soto, T., 1984. Principales particularidades petroquímicas de los granitoides del eugeosinclinal cubano y sus formaciones. Ciencias de la Tierra y del Espacio, 9, 59–73.

Eguipko, O., Perez, M., 1976. Breves características petrográficas y petroquímicas de los principales tipos de rocas magmáticas en la parte central de la Sierra Maestra. Centro de Investigaciones Geológicas, Serie 1, 14 pp.

Ewart, A., Brothers, R.N., Mateen, A., 1977. An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand Island Arc. Journal of Volcanology and Geothermal Research, 2, 205-270.

Ewart, A., Hawkesworth, C.J., 1987. The Pleistocene recent Tonga-Kermadec arc lava: interpretation of new isotopic and rare earth data in terms of a depleted source model. Journal of Petrology, 28, 495-530.

Hejl, E., 1997. “Cold spots” during the Cenozoic evolution of the Eastern Alps. Thermochronological interpretation of apatite fission-track data. Tectonophysics, 272, 159–172.

Hernández, J.R., González, R., Arteaga, F., 1989. Diferenciación estructuro-geomorfológica de la zona de sutura de la microplaca cubana con la Placa Caribe. La Habana, Editorial Academia, 48pp.

Hernández-Santana, J.R., Díaz Díaz, J.L., Magaz García, A., Lilienberg, D.A., 1991. Evidencias morfoestructuro-geodinámicas del desplazamiento lateral siniestro de la zona de sutura interplacas de Bartlett. In: Morfotectónica de Cuba Oriental. Ed. Academia de Ciencias de Cuba, La Habana, 5–9.

Holland, T.J.B., Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometr. Contributions to Mineralogy and Petrology, 116, 433–447.

Hine, R., Williams, I.S., Chappell, B., White, A.J.R., 1978. Contrasts between I- and S-type granitoids of the Osciusko Batholith. Journal of the Geological Society of Australia, 25, 19–234.

Hurford, A.J., Green, P.F., 1983. The zeta age calibration of fission-track dating. Isotope Geoscience, 1, 285-317.

Iturralde-Vinent, M.A., 1991. Deslizamientos y descensos del terreno en el flanco meridional de la Sierra Maestra, Cuba sudoriental. In: Morfotectónica de Cuba Oriental. Ed. Academia de Ciencias de Cuba, La Habana, 24–27.

Iturralde-Vinent, M.A., 1994. Cuban geology: A new plate tectonic synthesis. Journal of Petroleum Geology, 17, 39–70.

Iturralde-Vinent, M.A., 1996a. Introduction to Cuban geology and geophysics. In: Iturralde-Vinent, M.A. (ed.). Cuban ophiolites and volcanic arcs. Miami, Florida, USA, IGCP Project, 364, 3–35.

Iturralde-Vinent, M.A., 1996b. Cuba: El archipielago volcánico Paleoceno-Eoceno medio. In: Iturralde-Vinent, M.A. (ed.). Cuban ophiolites and volcanic arcs. Miami, Florida, USA, IGCP Project, 364, 231–246.

Iturralde-Vinent, M.A., 1998. Synopsis de la constitución geológica de Cuba. Acta Geologica Hispanica, 33, 9–56.

Iturralde-Vinent, M.A., 2003. The relationship between the ophiolites, the metamorphic terrains, the Cretaceous volcanic arcs and the Paleocene–Eocene volcanic arc. Field guide to a geological excursion to eastern Cuba. V Geological and mining congress. IGCP Project 433 Caribbean Plate Tectonics. Cuban Geological Society, 16 pp.

Iturralde-Vinent, M.A., Gahagan, L., 2002. Late Eocene to middle Miocene Tectonic evolution of the Caribbean: Some principles and their implications for plate tectonic modeling. In: Jackson, T.A. (ed.). Caribbean geology into the Third Millennium. Transactions of the Fifteenth Caribbean Geological Conference. Jamaica, Ed. Pear Tree Press Ltd., 47–62.

Iturralde-Vinent, M.A., Macphee, R.D.E., 1999. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 95 pp.

Jackson, T.A., Smith, T.E., 1979. Tectonic significance of basalts and dacites in the Wagwater belt, Jamaica. Geological Magazine, 116, 365–374.

Kawate, S., Arima, M., 1998. Petrogenesis of Tanzawa plutonic complex, central Japan: exposed felsic middle of the IzuBonin-Mariana arc. The Island Arc, 7, 342–358.

Kobayashi, K., Nakamura, E., 2001. Geochemical evolution of Akagi Volcano, NE Japan: Implications for interaction between island-arc magma and lower crust, and generation of isotopically various magmas. Journal of Petrology, 42, 2303–2331.

Kysar, G., Mortensen, J.K., Lewis, J.F., 1998. U-Pb zircon age constraints for Paleogene igneous rocks of the Sierra Maestra, Southeastern Cuba; implications for short-lived arc magmatism along the northern Caribbean margin. Geological Society of America, Abstracts with Programs, 30, A–185.

Kysar Mattietti, G., 2001. The role of the Paleogene magmatism in the evolution of the northern Caribbean margin, the Sierra Maestra (southern Cuba). Unpublished doctoral dissertation. The George Washington University, 187 pp.

Kysar Mattietti, G., Lewis, J.F., Wysoczanski, R., 2001. Lead isotope study of the Paleogene igneous rocks of the Sierra Maestra, southeastern Cuba. Geological Society of America, Abstracts with Programs, 33, A–304.

Laverov, N., Cabrera, R., 1967. Algunas particularidades de la geología de los alrededores del yacimiento “El Cobre” relacionadas con su génesis. Revista de Geología, Academia de Ciencias de Cuba, 1, 104-121.

Laznicka, P., Notak, P., Schovanek, J., 1970. Geología, Petrografía y Mineralogía de las pendientes meridionales de la Sierra Maestra, al oeste de Santiago de Cuba. Serie oriente, 4, 1–46.

Leroy, S., 1995. Structure et origine de la plaque Caraibe: Implications geodynamiques. Doctoral thesis. Université Pierre et Marie Curie, Paris, 249 pp. Unpublished.

Leroy, S., Mauret, A., Patriat, P., Mercier de Lépinay, B., 2000. An alternative interpretation of the Cayman trough evolution from a reidentification of magnetic anomalies. Geophysical Journal International, 141, 539–557.

Lewis, G.E, Straczek, J.A, 1955. Geology of South–Central Oriente province, Cuba. United States Geological Survey, Bulletin, 975D, 171–336.

Lewis, J.F., Escuder Viruete, J., Hernaiz Huerta, P.P., Gutierrez, G., Draper, G., Pérez-Estaún, A., 2002. Subdivisión geoquímica del Arco de Isla Circum-Caribeño, Cordillera Central Dominicana: Implicaciones para la formación, acreción y crecimiento cortical en un ambiente intraoceánico. Acta Geologica Hispanica, 37, 81–122.

Lidiak, E.G., Jolly, W.T., 1996. Circum-Caribbean granitoids: Characteristics and origin. International Geological Review, 38, 1098–1133.

Liu, Y., Genser, J., Handler, R., Friedl, G., Neubauer, F., 2001. 40Ar/39Ar muscovite ages from the Penninic/Austroalpine plate boundary, Eastern Alps. Tectonics, 20, 528–547.

MacDougall, I., Harrison, T.M., 1999. Geochronology and thermochronology by the 40Ar-39Ar method. Second edition, Oxford University Press, 269 pp.

Mahlburg Kay, S., Kay, R.W., 1994. Aleutian magmatism in space and time. In: Plafker, G., Berg, H.C. (eds.). The geology of Alaska. Geological Society of America, The geology of North America, G-1, 687–722.

Mandl, G., 1988. Mechanic of tectonic faulting. Models and basic concepts. Zwart, H.J. (ed.). Developments in structural geology. Amsterdam, Elsevier, 407 pp.

Mann, P., Calais, E., Ruegg, J.C., DeMets, Ch., Jansma, P.E., Mattioli, G.S., 2002. Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics, 21, 1057, doi: 10.1029/2001TC001304.

Mattietti-Kysar, G., 1999. The role of Paleogene volcanism in the evolution of the northern Caribbean margin. Penrose Conference on “Subduction to Strike-Slip Transitions on Plate Boundaries”. Puerto Rico, Abstract-volume, 18–24.

Méndez-Calderón, I., Rodríguez-Crombet, R., Rodríguez, E., Fernández, A., Rodríguez-Mejías, M., Ruiz, R., Hernández, R., 1994. Atlas de rocas de la Sierra Maestra. Empresa Geominera, Santiago de Cuba, 125 pp.

Méndez-Calderón, I., 1997. Apuntes sobre el vulcanismo del Paleógeno en la región Sierra Maestra y características de su composición química. In: Furrazola-Bermúdez, G., Núñez

Cambra, K. (eds.). Estudios sobre Geología de Cuba. La Habana, Centro Nacional de Información Geológica, 446–462.

Moreno, B., Grandison, M., Atakan, K., 2002. Crustal velocity model along the southern Cuban margin: implications for the tectonic regime at an active plate boundary. Geophysical Journal International, 151, 632–645.

Pérez-Pérez, C.M., García-Delgado, D., 1997. Tectónica de la Sierra Maestra (Sureste de Cuba). In: Furrazola-Bermúdez, G., Núñez Cambra, K., (eds.). Estudios sobre Geología de Cuba. La Habana, Centro Nacional de Información Geológica, 464–476.

Pindell, J., Kennan, L., 2001. Kinematic evolution of the Gulf of Mexico and Caribbean. 21st Annual Gulf Coast Section Society of Economic Paleontologist and Mineralogist Foundation Bob F. Perkins Research Conference, Houston, Texas. Abstract.

Pitcher, W., 1983. Granite types and tectonic environment. In: Hsü, K. (ed.). Mountain building processes. London, Academic Press, 19–40.

Pubellier, M., Mauffret, A., Leroy, S., Marie Vila, J., Amilcar, H., 2000. Plate boundary readjustment in oblique convergence: Example of the Neogene of Hispaniola, Greater Antilles. Tectonics, 19, 630–648.

Remane, J., Cita, M.B., Dercourt, J., Bouysse, P., Repetto, F., Faure-Muret, A. (eds.), 2002. International Stratigraphic Chart. International Union of Geological Sciences: International Commission on Stratigraphy, Paris.

Renne, P., Mattinson, J. M., Hatten, C. W., Somin, T.S., Millán, G., Linares, E., 1989. 40Ar-39Ar and U-Pb evidence for late Proterozoic (Grenville age) continental crust in north-central

Cuba and regional tectonic implications. Precambrian Research, 42, 325–341.

Rodríguez-Crombet, R., Rodríguez M., Yassel A., 1997. Características del magmatismo granitoideo de Cuba Oriental (región Sierra Maestra). In: Furrazola-Bermúdez, G., Núñez Cambra, K. (eds.). Estudios sobre Geología de Cuba. La Habana, Centro Nacional de Información Geológica, 446–462.

Rojas-Agramonte, Y., 2003. Tectonic evolution of the Sierra Maestra mountain range, Cuba: from subduction to arc-continent collision and transform motion. Doctoral thesis, Salzburg University, Austria, 143 pp. Unpublished.

Rojas-Agramonte, Y., Neubauer, F., Handler, R., García-Delgado, D.E., Friedl, G., Delgado-Damas, R., 2005, Variation of

paleostress patterns along the Oriente Transform Fault, Cuba: Significance for Neogene-Quaternary tectonics of the Caribbean realm. Tectonophysics, 396, 161–180.

Rojas-Agramonte, Y., Neubauer, F., Kröner, A., Wan, Y.S., Liu, D.Y., Garcia-Delgado, D.E., Handler, R., 2004. Geochemistry and age of late orogenic island arc granitoids in the Sierra Maestra, Cuba: evidence for subduction magmatism in the early Palaeogene. Chemical Geology, 213, 307–324.

Rojas-Agramonte, Y., Neubauer, F., García-Delgado, D.E., Handler, R., Friedl, G., Delgado- Damas, R. Tectonic evolution of the Sierra Maestra Mountains, Cuba, during Tertiary times: from arc-continent collision to transform motion. Journal of South American Earth Science (submitted).

Rosencrantz, E., 1990. Structure and tectonics of the Yucatan Basin, Caribbean Sea, as determined from seismic reflection studies. Tectonics, 9, 1037–1059.

Rosencrantz, E., Ross, I.R., Sclater, J.G., 1988. Age and spreading history of the Cayman trough as determined from depth, heat flow and magnetic anomalies. Journal of Geophysical Research, 93, 2141–2157.

Rueda-Pérez, J.S., Arango Arias, E.D., Lobaina Teruel, A., 1994. Algunos resultados del estudio de los movimientos recientes de la corteza terrestre en el poligono geodinámico Santiago de Cuba. Holguín, Cuba, Edición ORISOL, Instituto Cubano de Geodesia y Cartografía, 20 pp.

Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Alin-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–310.

Somin, M.L., Millán, G., 1977. Sobre la edad de las rocas metamórficas de Cuba. Informe Científico-Técnico, Academia de Ciencias de Cuba, 80, 11 pp.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.).

Magmatism in ocean basins. Geological Society of London, Special Publication, 42, 313–345.

Tagami, T., Carter, A., Hurford, A.J., 1996. Natural long-term annealing of the fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chemical Geology, 130, 147–157.

Wagner, G.A., 1968. Fission track dating of apatites. Earth and Planetary Science Letters, 4, 411–415.

Wagner, G.A., Van den Haute, P., 1992. Fission-track dating. Dordrecht, Kluwer Academic Publishers, 285 pp.

Whalen, J.B., 1985. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, Papua New Guinea. Journal of Petrology, 26, 603–632.

White, W.M., Patchett, B.J., 1984. Hf- Nd- and Sr-isotopes and incompatible element abundance in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters, 67, 167–185.

Downloads

Published

2006-01-11