Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria)

Authors

  • J.M. GONZÁLEZ JIMÉNEZ Departamento de Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra (Universidad de Granada-CSIC), Facultad de CienciasAvda. Fuentenueva s/n, 18002 Granada, Spain.
  • T. KERESTEDJIAN Geological Institute, Bulgarian Academy of Sciences24 Georgi Bonchev Str., 1113 Sofia, Bulgaria.
  • J.A. PROENZA FERNÁNDEZ Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de BarcelonaMartí i Franquès s/n, 08028 Barcelona, Spain.
  • F. GERVILLA LINARES Departamento de Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra (Universidad de Granada-CSIC), Facultad de CienciasAvda. Fuentenueva s/n, 18002 Granada, Spain.

DOI:

https://doi.org/10.1344/104.000001447

Keywords:

Ophiolite, Chromite, Metamorphism, Dobromirtsi Ultramafic Massif, Bulgaria

Abstract

Podiform chromitite bodies occur in highly serpentinized peridotites at Dobromirtsi Ultramafic Massif (Rhodope Mountains, southeastern Bulgaria). The ultramafic body is believed to represent a fragment of Palaeozoic ophiolite mantle. The ophiolite sequence is associated with greenschist - lower-temperature amphibolite facies metamorphosed rocks (biotitic gneisses hosting amphibolite). This association suggests that peridotites, chromitites and metamorphic rocks underwent a common metamorphic evolution. Chromitites at Dobromirtsi have been strongly altered. Their degree of alteration depends on the chromite/silicate ratio and to a lesser extent, on the size of chromitite bodies. Alteration is recorded in individual chromite grains in the form of optical and chemical zoning. Core to rim chemical trends are expressed by MgO- and Al2O3- impoverish-ment, mainly compensated by FeO and/or Fe2O3 increases. Such chemical variations correspond with threemain alteration events. The first one was associated with ocean-floor metamorphism and was characterized by alizardite replacement of olivine and the absence of chromite alteration. The second event took place during greenchist facies metamorphism. During this event, MgO- and SiO2- rich fluids (derived from low temperature serpentinization of olivine and pyroxenes) reacted with chromite to form chlorite; as a consequence, chromite became altered to a FeO- and Cr2O3- rich, Al2O3- poor chromite. The third event, mainly developed during lower temperature amphibolite facies metamorphism, caused the replacement of the primary and previously altered chromite by Fe2O3- rich chromite (ferritchromite).

References

Arai, S., 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173-784.

Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W., Humphris, S.E., 2006. Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15ºN (ODP Leg 209, Site 1274). Geophysical Research Letters, 25, 1467-1470.

Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279-2302.

Beeson, M.H., Jackson, E.D.,1969. Chemical composition of altered chromites from the Stillwater complex, Montana. American Mineralogist, 54, 1084-1100.

Bliss, N.W., MacLean, W.H., 1975. The paragenesis of zoned chromite from the Manitoba. Geochimica et Cosmochimica Acta, 39, 973-990.

Carmichael, I.S.E., 1967. The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contributions to Mineralogy and Petrology, 14, 36-64.

Caruso, LJ., Chernosky, J.V., 1979. The stability of lizardite. The Canadian Mineralogist, 17, 757-769.

Cerny, P., 1968. Comments on serpentinization and related metasomatism. American Mineralogist, 53, 1377-1385.

Dick, H.J.N., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abysal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54-76.

Eckstrand, O.D., 1975. The Dumont serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70, 183-201.

Evans, B.W., Frost, B.R., 1975. Chrome-spinel in progressive metamorphism - a preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959-972.

Frost, B.R., 1985. On the stability of sulfides, oxides and native metals in serpentinite. Journal of Petrology, 26, 31-63.

Garuti, G., Proenza, J.A., Zaccarini, F., 2007. Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): their control by magmatic and hydrothermal processes. Mineralogy and Petrology, 89, 159-188.

Hill, R., Roeder, P., 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. Journal of Geology, 82, 709-729.

Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator; Part II, Petrologic applications. Canadian Journal of Earth Sciences, 4, 71-103.

Kimball, K.L., 1990. Effects of hydrothermal alteration on the composition of chromian spinels. Contributions to Mineralogy and Petrology, 105, 337-346.

Marchev, P., Kaiser-Rohrmeier, M., Heinrich C., Ovtcharova, M., Von Quadt, A., Raicheva, R., 2005. Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope Massif of Bulgaria and Greece. Ore Geology Reviews, 27, 53-89.

Maurel, C., Maurel, P., 1982. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles. Bulletin de Minéralogie, 105, 197-202.

Mellini, M., Rumori, C., Viti, C., 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contribution to Mineralogy and Petrology, 149, 266-275.

Leblanc, M., Nicolas, A., 1992. Les chromitites ophiolitiques. Chronique de la Recherche Minière, 507, 3-25.

Payakov, I., Zhelyaskova-Panayotova, M., Ivehinova, L., 1961. Structural-textural peculiarities and mineral composition of chromite ore from from Dobrimirtzi deposit. Annuaire de l’Université de Sofia, 56, 219-229.

Prichard, H.M., Sá, J.H.S., Fisher, P.C., 2001. Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuni complex, Amapa, northeastern Brazil. The Canadian Mineralogist, 39, 377-396.

Proenza, J.A., Gervilla, F., Melgarejo, J.C., Bodinier, J.L., 1999. Al-rich and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94, 547-566.

Proenza, J.A., Ortega-Gutiérrez, F., Camprubí, A., Tritlla, J., Elías-Herrera, M., Reyes-Salas, M., 2004. Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. Journal of South American Earth Sciences, 16, 649-666.

Proenza, J.A., Zaccarini, F., Escayola, M., Cábana, C., Shalamuk, A., Garuti, G., 2008. Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Córdoba Pampeans Ranges, Argentine. Ore Geology Reviews, 33, 32-48.

Purvis, A.C., Nesbitt, R.W., Halberg, J.A., 1972. The geology of part of Carr Boyd Complex and its associated nickel mineralization, Western Australia. Economic Geology, 67, 1093-1113.

Roeder, P.L., Reynolds, I., 1991. Crystallization of chromite and chromium solubility in basaltic melts. Journal of Petrology, 32, 909-934.

Spangenberg, K., 1943. Die Chromerzlagerstätte von Tampadel Zobten. Zeitschrift für praktische Geologie, 51, 13-35.

Stowe, C.W., 1994. Compositions and tectonic setting of chromite deposits through time. Economic Geology, 89, 528-564.

Suita, M.T., Streider, A.J., 1996. Cr-spinels from Brazilian mafic-ultramafic complexes: metamorphic modifications. International Geology Review, 38, 245-267.

Thalhammer, O.A.R., Prochaska, W., Mühlhans H.W., 1990. Solid inclusions in chrome-spinels and platinum group element

concentrations from the Hochgrössen and Kraubath ultramafic massif (Austria). Contributions to Mineralogy and Petrology, 105, 66-80.

Thayer T.P., 1966. Serpentinisation considered as a constant volume metasomatic process. American Mineralogist, 51, 685-710.

Ulmer, G.C., 1974. Alteration of Chromite during Serpentinization in the Pennsylvania-Maryland District. American Mineralogist, 59, 1236-1241.

Wylie, A.G., Candela, P.A., Burke, T.M., 1987. Compositional zoning in unusual Zn-rich chromite from Sykesville district of Maryland and its bearing on the origin of “ferrichromit”. American Mineralogist, 72, 413-422.

Zaccarini, F., Proenza, J.A., Ortega-Gutiérrez, F., Garuti., G., 2005. Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlán complex, southern Mexico): implications for post-magmatic modification. Mineralogy and Petrology, 84(3-4),147-168.

Zhelyaskova-Panayotova, M., Economou-Eliopoulos, M., 1994. Platinum-group elements and gold concentration in oxide and sulfide mineralizations from ultramafic rocks of Bulgaria. Annuaire de l’Université de Sofia, 86(1), 196-218.

Zhelyaskova-Panayotova, M., Zinzov, Z., Pashov, 2000. Hydrothermal gold mineralization in ultrabasites near Dobromirtsi village, Kurdjali region. Annuaire de l’Université de Sofia, 93(1), 173-186.

Zhou, M.F., Robinson, P.T., 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92, 259-262.

Zhou, M.F., Sun, M., Keays, R.R., Kerrich, R.W., 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62, 677-688.

Downloads

Published

2009-10-06

Issue

Section

Articles

Most read articles by the same author(s)