Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northerm Apennines (Italy): palaeogeographic and hidrogeochemical implications

Authors

  • T. BOSCHETTI Department of Earth Sciences, University of Parma. Via G.P. Usberti 157/a, I-43100 Parma, Italy.
  • G. CORTECCHI Institute of Geosciences and Earth Resources, CNR Research Area. Via Moruzzi 1, I-56124 Pisa, Italy.
  • L. TOSCANI Department of Earth Sciences, University of Parma. Via G.P. Usberti 157/a, I-43100 Parma, Italy.
  • P. IACUMIN Institute of Geosciences and Earth Resources, CNR Research Area. Via Moruzzi 1, I-56124 Pisa, Italy.

DOI:

https://doi.org/10.1344/105.000001690

Keywords:

Evaporite sulfate, Sulfur isotopes, Oxygen isotopes, Burano Formation, Late Triassic rifting

Abstract

Upper Triassic bedded evaporite sulfate of the Burano Formation outcropping at Cerreto Pass between Tuscany and Emilia-Romagna in the Northern Apennines were analyzed for sulfur and oxygen isotope compositions, yielding d34S and d18O values of 15.5±0.4‰ and 10.8±1.2‰, respectively (mean ±99% confidence intervals). Combining these values with those of other Burano Formation sulfate deposits along the Apennine chain, mean for d34S and d18O values are obtained (15.2±0.2‰ and 10.9±0.5‰, respectively). These isotopic signatures are interpreted as preserved primary features, despite the fact that the Burano Formation underwent anchizone to epizone metamorphism during the Apennine orogenesis. An overall d18O value of 10.9±1.5‰ (mean ± pooled standard deviation), obtained by combining consistent sets of data from Italy and Spain, closely approaches that of gypsum deposited from the Tethys ocean during the Late Triassic. In addition, reviewing the isotope data published on Late Triassic evaporite sulfates from the Mediterranean area and abroad, several d34S values appear to be lower than the inferred primary isotopic signature, and seemly decrease from East to West in the Mediterranean region, suggesting a similar trend for the Tethys ocean sulfate. Possibly, 34S-depleted sulfate entered the ocean through oxidation of volcanic SO2 emitted in the atmosphere and degassed from the seafloor during the development of Late Triassic rifting. On the other hand, positive shifts of d34S and d18O values also occur, defining a common trend that may be related to synsedimentary biological effects or post-depositional metasomatic-metamorphic effects, the latter affecting particularly the d18O signature. Therefore, the d34S and d18O signatures of evaporite sulfate may provide a like “slide-rule” diagram to distinguish between isotopic effects related to biological or abiological processes, thus contributing to the reconstruction of paleoenvironments and paleogeographic settings. Based on the d34S-d18O “slide-rule”, the isotopic composition of sulfate dissolved in spring and stream waters of northern Tuscany was interpreted in terms of origin of the sulfate and modifying processes in solution. It was concluded that sulfate in springs derives from Upper Triassic evaporite existing locally at depth (Burano Formation), whereas sulfate in streams is manifestly a mixture of Burano Formation sulfate with supergene sulfate from oxidation of sulfide in the rocks. In sulfurous springs, both sulfur and oxygen isotope fractionations with respect to the source sulfate signatures may be ascribed to bacterial effects. However, the oxygen isotope exchange of sulfate with water should have been a very minor process as supported by the nearsurface temperature values estimated by sulfate-water oxygen isotope thermometry.

References

Adam, P., Dowgiałło, J., 2009. Application of selected geothermometers to exploration of low-enthalpy thermal water: the Sudetic Geothermal Region in Poland. Environmental Geology, 58, 1629-1638.

Alonso-Azcárate, J., Bottrell, S.H., Mas, J.R., 2006. Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin. Spain, Chemical Geology, 234, 46-57.

Arnòrsson, S., 1983. Chemical equilibria in Icelandic geothermal systems, implications for chemical geothermal investigations. Geothermics, 12, 119-128.

Bernini, M., Papani, G., 2002. La distensione della fossa tettonica della Lunigiana nord-occientale (con Carta Geologica alla scala 1:50000). Bollettino della Societa Geologica Italiana, 121, 313-341.

Bigazzi, G., Laurenzi, M.A., Principe, C., Brocchini, D., 1996. New geochronological data on igneous rocks and evaporites of the Pietre Nere Point (Gargano Peninsula, southern Italy). Bollettino della Societa Geologica Italiana, 115, 439-448.

Boccaletti, M., Decandia, F.A., Gasperi, G., Gelmini, R., Lassarotto, A., Zanzucchi, G., 1987. Note illustrative della Carta Strutturale dell’Appennino Settentrionale. Siena (Italy), Consiglio Nazionale delle Ricerche, Progetto Finalizzato Geodinamica, Sottoprogetto 5, Modello Strutturale – Gruppo Appennino Settentrionale, Tipografia Senese, 429-1982, 203pp.

Böhlke, J.K., Mroczkowski, S.J., Coplen, T.B., 2003. Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Communication in Mass Spectrometry, 17, 1835-1846.

Boschetti, T., Venturelli, G., Toscani, L., Barbieri, M., Mucchino, C., 2005. The Bagni di Lucca thermal waters (Tuscany, Italy): an example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. Journal of Hydrology, 307, 270-293.

Boschetti, T., Iacumin, P., 2005. Continuous-flow 18O measurements: new approach to standardization, hightemperature thermodynamic and sulfate analysis. Rapid Communication in Mass Spectrometry, 19, 3007-3014.

Brand, W.A., Coplen, T.B., Aerts-Bijma, A.T., Böhlke, J.K., Gehre, M., Geilmann, H., Gröning, M., Jansen, H.G., Meijer, H.A.J., Mroczkowski, S.J., Qi, H., Soergel, K., Stuart-Williams, H., Weise, S.M., Werner, R.A., 2009. Comprehensive interlaboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Communication in Mass Spectrometry, 23, 999-1019.

Brunner, B., Bernasconi, S.M., Kleikemper, J., Schroth, M.H., 2005. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochimica et Cosmochimica Acta, 69, 4773-4785.

Carmignani, L., Kligfield, R., 1990. The transistion from compression to extention in mountain belts: evidence from Northern Apennines Core Complex. Tectonics, 9, 1275-1303.

Cerrina Feroni, A., Plesi, G., Fanelli, G., Leoni, L., Martinelli, P., 1983. Contributo alla conoscenza dei processi di grado molto basso (anchimetamorfismo) a carico della Falda Toscana nell’area del ricoprimento apuano. Bollettino della Società Geologica Italiana, 102, 269-280.

Chiba, H., Kusakabe, M., Hirano, S.I, Matsuo, S., Somiya, A., 1981. Oxygen isotope fractionation factors between anhydrite and water from 100 to 550°C. Earth and Planetary Science Letters, 53, 55-62.

Chiba, H., Sakai, H., 1985. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochimica et Cosmochimica Acta, 49, 993-1000.

Ciarapica, G., Cirilli, S., Passeri, L., Trincianti, E., Zaninetti, L., 1987. Anidriti di Burano et Formation du Monte Cetona (nouvelle formation), biostratigraphie de deux series-types du Trias superieur dans l’Apennin septentrional. Revue de Paléobiologie, 6, 341-409.

Ciarapica, G., 2007. Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian– Hettangian history of the Apennine basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 34-51.

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28,199-260.

Colombetti, A., Zerilli, A., 1987. Prime valutazioni dello spessore dei gessi triassici mediante sondaggi elettrici verticali nella Valle del F. Secchia (Villa Minozzo-R.E.). Memorie della Società Geologica Italiana, 39, 83-90.

Coplen, T.B., Krouse, H.R., 1998. Sulphur isotope data consistency improved. Nature, 398, 32.

Cortecci, G., Longinelli, A., 1971. 18O/16O ratios in sulfate from living marine organisms. Earth and Planetary Science Letters, 11, 273-276.

Cortecci, G., Longinelli, A., 1973.18O/16O ratios in sulfate from fossil shells. Earth and Planetary Science Letters, 19, 410-412.

Cortecci, G., Reyes, E., Berti, G., Casati, P., 1981. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology, 34, 65-79.

Cortecci, G., Lattanzi, P., Tanelli, G., 1989. Sulfur, oxygen and carbon isotope geochemistry of barite-iron oxide-pyrite deposits from the Apuane Alps (northern Tuscany, Italy). Chemical Geology, 76, 249-257.

Cortecci, G., Dinelli, E., Civitavecchia, V., 2000. Isotopic and geochemical features of rocks from Punta delle Pietre Nere, Gargano peninsula, southern Italy. Periodico di Mineralogia, 69, 205-216.

Cortecci, G., Dinelli, E, Boschetti, T., Arbizzani, P., Pompilio, L., Mussi, M., 2008. The Serchio River catchment, northern Tuscany: Geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate. Applied Geochemistry, 23, 1513-1543.

Costagliola, P., Barbieri, M., Benvenuti, M., Lattanzi, P., Castorina, F., 1997. Sr-isotope composition of barite veins at Pollone deposit, Apuane Alps, Tuscany (Italy). Chemie der Erde, 57, 231-242.

Costantini, A., Lazzarotto, A., Liotta, D., Mazzanti, R., Mazzei, R., Salvatorini, G., 2002. Note illustrative della Carta geologica d’Italia, alla scala 1:50.000, Firenze, Massa Marittima. Siena (Italy), Servizio Geologico d’Italia, Università degli Studi di Siena, Foglio 306, 174pp.

Delfrati, L., Falorni, P., Groppelli, G., Petti, F.M., 2002. Carta Geologica d’Italia - 1:50.000 - Catalogo delle Formazioni. Fascicolo III - Unità Validate. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT), Quaderni del Servizio Geologico d’Italia, 7(3), 208pp.

Dinelli, E., Testa, G., Cortecci, G., Barbieri, M., 1999. Stratigraphic and petrographic constraints to trace element and isotope geochemistry of Messinian sulfates of Tuscany. Memorie della Società Geologica Italiana, 54, 61-74.

Dronkert, H., 1987. Diagenesis of Triassic evaporites in northern Switzerland. Eclogae Geologicae Helvetiae, 80, 397-413.

Eaton, A.D., Clesceri, L.S., Greenberg, A.E., 1995. Standard Methods for the Examination of Water and Wastewater. Washington DC. (USA), 19th Edition, American Public Health Association-American Water Works Association-Water Environment Federation (APHA-AWWA-WEF), 1325pp.

Fanlo, I., Ayora, C., 1998. The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean. Chemical Geology, 146, 135-154.

Fazzuoli, M., Sani, F., Ferrini, G., Garzonio, C.A., Sguazzoni, G., Becarelli, S., Burchietti, G., Mannori, G., 1998. Geologia del nucleo mesozoico della Val di Lima (Province di Pistoia e Lucca, Appennino Settentrionale). Nota illustrativa della carta geologica (scala 1:25.000). Bollettino Società Geologia Italiana, 117, 479-535.

Forti, P., Francavilla, F., Prata, E., Rabbi, E., 1988. Idrochimica ed idrogeologia della formazione evaporitica Triassica dell’alta val Secchia con particolare riguardo alle fonti di Poiano. In: Forti, P. (ed.). L’area carsica dell’alta val Secchia - Studio interdisciplinare dei caratteri ambientali. Regione EmiliaRomagna e Provincia di Reggio Emilia, 82-111.

Fournier, R.O., 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41-50.

Fournier, R.O., 1991. Water geothermometers applied to geothermal energy. In: D’Amore, F. (ed.). Application of Geochemistry in Geothermal Reservoir Development. Rome (Italy), United Nations Institute for Training and Research/ United Nations Development Programme (UNITAR/UNDP) Publications, 37-69.

Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., Qureshi, R.M. 1989. Oxygen isotope exchange between sulfate and water during bacterial reduction of sulfate. Chemical Geology, Isotope Geoscience Section, 79, 99-105.

Giesemann, A., Jager H.J., Norman, A.L., Krouse, H.P., Brand, W.A. 1994. On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Analytical Chemistry, 66, 2816-2819.

Gonfiantini, R., Stichler, W., Rozanski, K., 1995. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. Viena (Austria), Reference and Intercomparison Materials for Stable Isotopes of Light Elements, International Atomic Energy Agency - Technical Document (IAEA-TECDOC), 825, 13-29.

Götzinger, M.A., Lein, R., Pak, E., 2001. Geologie, Mineralogie und Schwefelisotopie ostalpiner “Keuper-Gipse”: Vorbericht und Diskussion. Mitteilungen der Österreichische Mineralogische Gesellschaft, 146, 95-96.

Grinenko, V.A., Ustinov, V.I., 1991. Dynamics of sulfur and oxygen isotope fractionation during bacterial reduction. Geochemistry International, 28, 21-30.

Gündoğan, İ., Helvaci, C., Sözbilir, H., 2008. Gypsiferous carbonates at Honaz Dağı (Denizli): First documentation of Triassic gypsum in western Turkey and its tectonic significance. Journal of Asian Earth Sciences, 32, 49-65.

Halas, S., Szaran, J., Czarnacki, M., Tanweer, A., 2007. Refinements in BaSO4 to CO2 preparation and δ18O calibration of the sulfate reference materials NBS-127, IAEA SO-5 and IAEA SO-6. Geostandards and Geoanalytical Research, 31, 61-68.

Holser, W.T., 1977. Catastrophic chemical events in the history of the ocean. Nature, 267, 403-408.

Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1979. Isotope geochemistry of oxygen in the sedimentary sulfate cycle. Chemical Geology, 25, 1-17.

Kampschulte, A., Strauss, H., 2004. The sulphur isotopic evolution of Phanerozoic seawater based on the analysis of structural substituted sulphate in carbonates. Chemical Geology, 204, 255-286.

Kusakabe, M., Komoda, Y., 1992. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide at hydrothermal temperatures. Report of Geological Survey of Japan, 279, 93-96.

Lloyd, R.M., 1968. Oxygen isotope behaviour in the sulfate-water system. Journal of Geophysical Research, 73, 6099-7110.

Leoni, L, Pertusati, P.C., 2002. Il metamorfismo dei depositi clastici triassici di Lerici – S. Terenzio, del Passo del Cerreto, di Collagna (Val di Secchia) e di Soraggio (Appennino Settentrionale). Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, 108, 113-124.

Longinelli, A., 1968. Oxygen isotopic composition of sulfate ions in water from thermal springs. Earth and Planetary Science Letters, 4, 206-210.

Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz, P., Fontes, J.Ch. (eds.). Handbook of Environmental Isotope Geochemistry, The Marine Environment. Amsterdam, Elsevier, 3, 219-255.

Longinelli, A., Flora, O., 2007. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Palaeoenvironmental implications. Chemical Geology, 245, 275-284.

Lugli, S., 2001. Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum-anhydrite transitions and carbonate metasomatism. Sedimentary Geology, 140, 107-122.

Lugli, S., Morteani, G., Blamart, D., 2002. Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources. Mineralium Deposita, 37, 480-494.

Marcoux, J., Baud, A., Ricou, L.E., Gaetani, M., Krystyn, L., Bellion, Y., Guiraud, R., Besse, J., Gallet, Y., Jaillard, E., Moreau, C., Theveniaut, H., 1993. Late Norian (215-212 Ma). In: Dercourt, J., Ricou, L.E., Vrielynck, B. (eds.). Atlas Tethys Palaeoenvironmetal Maps. Gauthier-Villars (Paris), Explanatory Notes, 35-53.

Martini, R., Gandin, A., Zaninetti, L., 1989. Sedimentology, stratigraphy and micropaleontology of the Triassic evaporitic sequence in the subsurface of Boccheggiano and in some outcrops of southern Tuscany (Italy). Rivista Italiana di Paleontologia e Stratigrafia, 95, 3-28.

Martinis, B., Pieri, M., 1963. Alcune notizie sulla formazione evaporitica del Triassico nell’Italia centrale e meridionale. Memorie della Società Geologica Italiana, 4, 649-678.

McHone, J.G., 2003. Volatile Emissions From Central Atlantic Magmatic Province Basalts: Mass Assumptions and Environmental Consequences. In: Hames, W., Mchone, J.G., Renne, P.R., Ruppel, C. (eds.). The Central Atlantic Magmatic Province. Insights from Fragments of Pangea. American Geophysical Union (AGU), Geophysical Monograph series, 136, 241-254.

Milanese, F., 1993. Metamorfismo ed assetto strutturale del basamento nella porzione sud-orientale dell’area geotermica toscana. Master Degree Thesis. Pisa (Italy), University of Pisa, 292pp.

Mizutani, Y., Rafter, T.A., 1969. Oxygen isotopic composition of sulphates: Part 3. Oxygen isotopic fractionation in the bisulphate ion water system. New Zealand Journal of Science, 12, 54-59.

Motulsky, H.M.D., 1995. Intuitive Biostatistics. New York, Oxford University Press, 386pp.

Newton, R.J., Pevitt, E.L., Wignall, P.B., Bottrell, S.H., 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters, 218, 331-345.

Nielsen, H., 1989. Local and global aspects of the sulphur isotope age curve of oceanic sulphate. In: Brimblecombe, P., Lein,

.Yu. (eds.). Evolution of the Global Biogeochemical Sulphur Cycle, SCOPE 39. New York, John Wiley & Sons Ltd., 57-64.

Nishimura, Y., Kajiwara, Y., 2000. Sulfur isotope fractionation of carbonate structurally substitutes sulfate in modern marine mollusk shells. University of Tsukuba, Annual Report of the Institute of Geoscience, 26, 37-40.

Ogg, J.G., 2004. The Triassic Period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (eds.). A Geologic Time Scale. Cambridge, Cambridge University Press, 271-306.

Passeri, L., 1975. L’ambiente deposizionale della formazione evaporitica nel quadro della paleogeografia del Norico ToscoUmbro-Marchigiano. Bollettino della Società Geologica Italiana, 94, 231-268.

Paytan, A., Kastner, M., Campell, D., Thiemens, M.H., 2004. Seawater sulfur isotope fluctuations in the Cretaceous. Science, 304, 1663-1665.

Pearson, F.J., Balderer, W., Loosli, H.H., Lehaman, B.E., Matter, A., Peters, Tj., Schmassmann, H., Gautschi, A., 1991. Applied Isotope Hydrogeology-A case study in Northern Switzerland. Studies in Environmental Science 43. Amsterdam, Elsevier, 439pp.

Prokoph, A., Shields, G.A., Veizer, J., 2008. Compilation and timeseries analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Review, 87, 113-133.

Raab, M., Spiro, B., 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology, Isotope Geoscience Section, 86, 323-333.

Rees, C.E., Holt, B.D., 1991. The isotopic analysis of sulfur and oxygen. In: Krouse, H.R., Grinenko, V.A. (eds.). Stable Isotopes - Natural and Anthropogenic Sulphur in the Environment, SCOPE 43. New York, John Wiley & Sons Ltd., 43-64.

Reutter, K.J., Teichmüller, M., Teichmüller, R., Zanzucchi, G., 1983. The Coalification Pattern in the Northern Apennines and its Palaeogeothermic and Tectonic Significance. International Journal of Earth Sciences, 72, 861-893.

Rick, B., 1990. Sulphur and oxygen isotopic composition of Swiss Gipskeuper (Upper Triassic). Chemical Geology, Isotope Geoscience Section, 80, 243-250.

Robertson, A.H.F., Ustaömer, T., Pickett, E.A., Collins, A.S., Andrew, T., Dixon, J.E., 2004. Testing models of Late Palaeozoic–Early Mesozoic orogeny in Western Turkey: support for an evolving open-Tethys model. Journal of the Geological Society, 161, 501-511.

Seal, R.R.II, Alpers, C.N., Rye, R.O., 2000. Stable isotope systematics of sulfate minerals. In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (eds.). Sulfate Minerals - Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, 40, 541-602.

Schoeller, H., 1962. Les eaux souterraines. Hydrologie dynamique et chimique, Recherche, Exploitation et Évaluation des Ressources. Paris, Masson et Cie, 642pp.

Schroll, E., Shulz, O., Pak, E., 1983. Sulphur isotope distribution in the Pb-Zn-deposit Bleiberg (Carinthia, Austria). Mineralium Deposita, 18, 17-25.

Schroll, E., Rantitsch, G., 2005. Sulfur isotope patterns in the Bleiberg deposit (Eastern Alps) and their implications for genetically affiliated. Mineralogy and Petrology, 84, 1-18.

Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17-33.

Stampfli, G.M., Marchant, R.H., 1997. Geodynamic evolution of the Tethyan margins of the western Alps. In: Pfiffner, O.A, Lehner, P., Heitzmann P., Müller, St., Steck A. (eds.). Deep Structure of the Swiss Alps – Results from NRP20. Birkhaüser Verlag, Basel, 123-138.

Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 97-118.

Szaran, J., Niezgoda, H., Halas, S., 1998. New determination of oxygen and sulphur isotope fractionation between gypsum and dissolved sulphate. Materials and Geoenvironment (RMZ), 45, 180-182.

Tanner, L.H., Lucas, S.G., Chapman, M.G., 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65, 103-139.

Taylor, B.E., 1986. Magmatic volatiles: isotopic variation of C, H, and S. In: Valley, J.W., Taylor, H.P., O’Neil, J.R. (eds.). Stable Isotopes in High Temperature Geological Processes. Washington D.C., Mineralogical Society of America, Reviews in Mineralogy, 16, 185-225.

Turchyn, A.V., Brüchert, V., Lyons, T.W., Engel, G.S., Balci, N., Schrag, D.P., Brunner, B., 2010. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: a combined theoretical and experimental approach. Geochimica et Cosmochimica Acta, 74, 2011-2024. doi: 10.1016/j.gca.2010.01.004

Utrilla, R., Pierre, C., Ortí, F., Pueyo, J.J., 1992. Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain. Chemical Geology, Isotope Geoscience Section, 102, 229-244.

Van Stempvoort, D.R., Krouse, H.R., 1994. Controls of δ18O in sulfate. In: Alpers, C.N., Blowes, D.W. (eds.). Environmental geochemistry of Sulfide Oxidation. Washington D.C, American Chemical Society, Symposium Series, 550, 446-480.

Verma, S.P., 2001. Silica solubility geothermometers for hydrothermal systems. In: Cidu, R. (ed.). Proceedings of the 10th International Symposium on Water–Rock Interaction. Lisse, Villasimius, Italy, June 10-15, A.A. Balkema, 1, 349-352.

Wolery, T.W., Jarek, R.L., 2003. EQ3/6, version 8.0 – Software User’s Manual. Civilian Radioactive Waste Management System, Management & Operating Contractor. Albuquerque (New Mexico), Sandia National Laboratories, 376pp.

Zeebe, R.E., 2010. A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochimica et Cosmochimica Acta, 74, 818-828.

Zheng, Y.F., 1999. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochemical Journal, 33, 109-126.

Downloads

Published

2011-07-14

Issue

Section

Articles

Most read articles by the same author(s)