Structure of the Southern Patagonian Andes at 49ºS, Argentina



This paper describes Late Paleozoic Gondwanan and Late Cretaceous to Early Cenozoic Andean structures in the Southern Patagonian Andes and an associated Extra-Andean region between lakes San Martín and Viedma. The study area encompasses a 200-km-long W-E section between the Patagonian icefield and the 72ºW longitude meridian, in Argentine Patagonia. The oldest structures are of Late Paleozoic age and developed through at least two deformation phases during the Gondwanan Orogeny. The first deformation phase (Dg1) includes isoclinal and N-overturned WNW trending folds and associated thrusts, including duplexes. The second deformation phase includes NNE trending open folds (Dg2). Deformation occurred in non-metamorphic to very low-grade metamorphic conditions. A spaced rough cleavage is found near the first phase fold hinges. The Eocene and Miocene Andean structural compression resulted in a N-S oriented fold and thrust belt. This belt is comprised of three morphostructural zones from W to E, with distinctive topographic altitudes and structural styles: Andean; Sub-Andean; and Extra-Andean zones. The first corresponds to the inner fold and thrust belt, while the last two are part of the outer fold and thrust belt. The Andean zone (3400–2000m above sea level) is characterized by N-S to NNE trending, E-vergent, Cenozoic reverse faults and associated minor thrusts. The northern part of the Sub- Andean zone (2000–1500m above sea level) consists of W-vergent reverse faults and some NNE open folds. The southern part of the Andean zone includes tight folds with box and kink geometries, related to thrusts at deeper levels. In the Extra-Andean zone, with maximum heights of 1500m, the deformation is less intense, and gentle folds deform the Upper Cretaceous sediments. An inherited Jurassic N-S extensional fault system imposed a strong control on this morphostructural zonation. Also the variation of the Austral Basin sedimentary thickness in the N-S direction seems to have influenced the structural styles of the outer fold and thrust belt. Those differences in sedimentary thickness may be related to S-dipping transfer zones associated to W-E Jurassic extension. In turn, the transfer zones may have been controlled by the N-vergent WNW, Dg1, Gondwanan structural fabric.

Full Text:




  • There are currently no refbacks.

Geoscience e-Journals










Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike License.
Geologica Acta (ISSN-1695-6133)
Biblioteca de Geologia (UB-CSIC) | Facultat de Ciències de la Terra, Martí i Franquès s/n 08028 Barcelona | Spain
Phone: +34 93 403 19 89 | Fax: +34 93 402 14 21 | E-mail:
RCUB Avís Legal RCUB Universitat de Barcelona