Long term recovery rates obtained using RFID technology at a mixed beach

Authors

  • M. CASAMAYOR Instituto de Oceanografía y Cambio Global. Universidad de Las Palmas de Gran Canaria. Campus Universitario Tafira, 35017 Las Palmas de Gran Canaria.
  • I. ALONSO Instituto de Oceanografía y Cambio Global. Universidad de Las Palmas de Gran Canaria. Campus Universitario Tafira, 35017 Las Palmas de Gran Canaria.
  • J. CABRERA Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería, Universidad de Las Palmas de Gran Canaria
  • S. RODRÍGUEZ Instituto de Oceanografía y Cambio Global. Universidad de Las Palmas de Gran Canaria. Campus Universitario Tafira, 35017 Las Palmas de Gran Canaria.
  • M.J. SÁNCHEZ-GARCÍA Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería. Universidad de Las Palmas de Gran Canaria. Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria.

DOI:

https://doi.org/10.1344/GeologicaActa2015.13.2.1

Keywords:

Tracer recovery, Pebbles, Detection, Sediment transport, Gran Canaria

Abstract

Recovery rates were obtained by radio frequency identification (RFID) technology in pebbles and cobbles at San Felipe beach, Gran Canaria. The aim of this work was to define which factors affected the recovery of tagged gravels. Several tests were performed to determine the detection depth threshold, and 16 field experiments were carried out over seventeen months after tracer deployment on the beach. Recovery rates are highly variable with time, ranging from 72.2% in the first recovery session to 25.8% in the last one. Nevertheless, a nearly stable situation was found for the final eight months. Apart from the effect of time, there were several factors that affected the recovery rate. Some of these were related to the particle, such as the position of the tag within the particle, as well as its weight, size and shape. Two environmental factors were considered. First, the elevation of the tracer on the beach showed that the recovery rate was higher with particles located above the storm berm. Second, wave height, which showed no relation with recovery rates even though during the experiment significant storms and periods of calm took place.

References

Allan, J.C., Komar, P.D., 2004. Environmentally compatible cobble berm and artificial dune for shore protection. Shore and Beach, 72(1), 9-18.

Allan, J.C., Hart, R., Tranquili, J.V., 2006. The use of Passive Integrated Transponder (PIT) tags to trace cobble transport in a mixed sandand-gravel beach on the high-energy Oregon coast, USA. Marine Geology, 232, 63-86. DOI: 10.1016/j.margeo.2006.07.005

Balcells, R., Barrera, J.L., 1990. Mapa Geológico de España 1:25.000, hoja 1101-III-IV (Arucas). Instituto Tecnológico GeoMinero de España, Madrid.

Benelli, G., Pozzebon, A., Bertoni, D., Sarti, G., 2012. An RFIDbased toolbox for the study of under- and outside-water movement of pebbles on coarse-grained beaches. IEEE Journal of selected topic in applied earth observations and remote sensing, 5(5), 1474-1482. DOI: 10.1109/JSTARS.2012.2196499

Bertoni, D., Sarti, G., Benelli, G., Pozzebon, A., Raguseo, G., 2010. Radio Frequency Identification (RFID) technology applied to the definition of underwater and subaerial coarse sediment movement. Sedimentary Geology, 228, 140-150.

DOI: 10.1016/j.sedgeo.2010.04.007

Bertoni, D., Sarti, G., Benelli, G., Pozzebon, A., Raguseo, G., 2012. Transport trajectories of “smart” pebbles on an artificial coarse-grained beach at Marina di Pisa (Italy): Implications for beach morphodynamics. Marine Geology, 291-294, 227-235. DOI: 10.1016/j.margeo.2011.08.004

Blair, T.C., McPherson J.C., 1999. Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research, 1, 6-19. DOI: 10.2110/jsr.69.6

Bray, M.J., Workman, M., Smith, J., Pope, D., 1996. Field measurements of shingle transport using “electronic” tracers. Proceedings 31st Ministry of Agriculture, Fisheries and Food Conference of River and Coastal Engineers. Keele University, United Kingdom, 10.4.1-10.4.13.

Carter, R.W.G., Orford, J.D., 1984. Coarse clastic barrier beaches: a discussion of the distinctive dynamic and morphosedimentary characteristics. Marine Geology, 60, 377-389. DOI: 10.1016/0025-3227(84)90158-0

Chapuis, M., Bright, C.J., Hufnagel, J., MacVicar, B., 2014. Detection ranges and uncertainty of passive Radio Frequency Identification (RFID) transponders for sediment tracking in gravel rivers and coastal environments. Earth Surface Processes

and Landforms, 39, 2109-2120. DOI: 10.1002/esp.3620

Ciavola, P., Castiglione, E., 2009. Sediment dynamics of mixed sand and gravel beaches at short time-scales. Journal of Coastal Research, Special Issue 56, 1751-1755.

Curtiss, G.M., Osborne, P.D., Homer-Devine, A.R., 2009. Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents. Marine Geology, 259, 73-85. DOI: 10.1016/j.margeo.2008.12.009

Dickson, M.E., Kench, P.S., Kantor, M.S, 2011. Longshore transport of cobbles on a mixed sand and gravel beach, southern Hawke Bay, New Zealand. Marine Geology, 287, 31-42. DOI: 10.1016/j.margeo.2011.06.009

Dornbusch, U., Williams, R.B.G, Moses, C., Robinson, D.A., 2002. Life expectancy of shingle beaches: measuring in situ abrasion. Journal of Coastal Research, Special Issue 36, 249-255.

Graham, D.J., Midgley, N.G., 2000. Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method. Earth Surface Processes and Landforms, 25, 1473-1477. DOI: 10.1002/1096-9837(200012)25:133.0.CO;2-C

Jolliffe, I.P., 1964. An experiment designed to compare the relative rates of movement of different sizes of beach pebble. Proceedings of the Geologists Association, 75, 67-86. DOI: 10.1016/S0016-7878(64)80012-2

Krumbein, W.C., 1936. Application of logarithmic moments to size-frequency distributions of sediments. Journal of Sedimentary Research, 6(1), 35-47. DOI: 10.1306/d4268f59-2b26-11d7-8648000102c1865d

Menéndez, I., Silva, P.G., Martín-Betancor, M., Pérez-Torrado, F.J., Guillou, H., Scaillet, S., 2008. Fluvial dissection, iostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology, 102, 189-203. DOI: 10.1016/j.geomorph.2007.06.022

Miller, I.M., Warwick, J.A., 2012. Measuring sediment transport and bed disturbance with tracers on a mixed beach. Marine Geology, 299-302, 1-17. DOI: 10.1016/j.margeo.2012.01.002

Miller, I.M., Warwick, J.A., Morgan, C., 2011. Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington. Marine Geology, 282, 201-214. DOI: 10.1016/j.margeo.2011.02.012

Osborne, P.D., 2005. Transport of gravel and cobble on a mixed-sediment inner bank shoreline of a large inlet, Grays Harbor, Washington. Marine Geology, 224, 145-156. DOI: 10.1016/j.margeo.2005.08.004

Sear, D.A., Lee, M.W.E., Oakey, R.J., Carling, P.A., Collins, M.B., 2002. Coarse sediment tracing technology in littoral and fluvial environments a review. In: Foster, I. (ed.) Tracers in the environment. Chichester (UK), Earth Surface Processes and Landforms, Wiley and Sons, Special Issue, 21-55.

Sneed, D., Folk, R.L., 1958. Pebbles in the Lower Colorado River, Texas a study in particle morphogenesis. The Journal of Geology, 66(2), 114-150. DOI: 10.1086/626490

Voulgaris, G., Workman, M., Collins, M.B., 1999. Measurement techniques of shingle transport in the nearshore zone. Journal of Coastal Research, 15(4), 1030-1039.

Downloads

Published

2015-06-22

Most read articles by the same author(s)