Characterization of wind-blown sediment transport with height in a highly mobile dune (SW Spain)

Authors

  • M. NAVARRO Applied Physics Dept., Sea Sciences Faculty. University of Cadiz, CASEM, Campus Universitario Puerto Real, 11510- Puerto Real, Cádiz, Spain.
  • J.J. MUÑOZ-PEREZ Applied Physics Dept., Sea Sciences Faculty. University of Cadiz, CASEM, Campus Universitario Puerto Real, 11510- Puerto Real, Cádiz, Spain.
  • J. ROMÁN-SIERRA Applied Physics Dept., Sea Sciences Faculty. University of Cadiz, CASEM, Campus Universitario Puerto Real, 11510- Puerto Real, Cádiz, Spain.
  • A. RUIZ-CAÑAVATE Applied Physics Dept., Sea Sciences Faculty. University of Cadiz, CASEM, Campus Universitario Puerto Real, 11510- Puerto Real, Cádiz, Spain.
  • G. GÓMEZ-PINA Demarcación de Costas Andalucía-AtlánticoCádiz, Spain.

DOI:

https://doi.org/10.1344/GeologicaActa2015.13.2.6

Keywords:

Dune mobility, Aeolian sand transport, Sand trap, Anemometer, Average grain size

Abstract

The Valdevaqueros dune is located at one of the windiest points of Europe, where the frequent occurrence ofstrong easterly winds has generated a highly mobile dune. Several rotating cup anemometers in vertical array anda self-designed vertical sand trap, were placed to retain the drift sands at different heights over the surface in orderto determine theoretical and actual sand transport rates in the Valdevaqueros dune system. General results showthat 90% of the wind-blown sand is transported within the first 20cm above the dune crest surface. Theoretical transport rates based on different empirical formulae were 0.33 to 0.78 times the in-situ sand transport rate detected,which was 2.08·10-2kgm-1s-1 under moderate wind power (mean speed ranging from 8.4 to 17.9ms-1). Analysis ofdifferent statistical grain-size parameters helped to understand sand transport distribution at different heights.

References

Alcántara-Carrió, J., Alonso, I., 2001. Aeolian sediment availability in coastal areas defined from sedimentary parameters. Application to a case study in Fuerteventura. Scientia Marina, 65(Suppl. 1), 7-20.

Alcántara-Carrió, J., Fernández-Bastero, S., Alonso, I., 2010. Source area determination of aeolian sediments at Jandia Isthmus (Fuerteventura, Canary Islands). Journal of Marine Systems, 80, 219-234.

Arens, S.M., van der Lee, G.E.M., 1995. Saltation sand traps for the measurement of aeolian transport into the foredunes. Soil Technology, 8, 61-74.

Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. London, Chapman Hall, 265pp.

Bauer, B.O., Dadvison-Arnott, R.G.D., 2003. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology, 49(1-2), 89-108.

Bauer, B.O., Davidson-Arnott, R.G.D., Nordstrom, K.F., Ollerhead, J., Jackson, N.J., 1996. Indeterminacy in aeolian sediment transport across beaches. Journal of Coastal Research, 12, 641-653.

Bauer, B.O., Davidson-Arnott, R.G.D., Hesp, P.A., Namikas, S.L., Ollerhead, J., Walker, I.J., 2009. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology, 105(1-2), 106-116.

Belly, P.Y., 1964. Sand Movement by Wind. US Army Corps of Engineers, Coastal Engineering Research Center. Technical Memorandum, 1.

Cabrera, L.L., Alonso, I., 2010. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers. Journal of Marine Systems, 80(3-4), 235-242.

Davidson-Arnott, R.G.D., MacQuarrie, K., Aagaard, T., 2005. The effect of wind gusts, moisture content and fetch length on sand transport on a beach. Geomorphology, 68, 115-129.

Davidson-Arnott, R.G.D., Yang, Y., Ollerhead, J., Hesp, P.A., Walker, I.J., 2008. The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surface Processes and Landforms, 33, 55-74.

Folk, R.L., Ward, W.C., 1957. Brazos River Bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3-26.

Fryberger, S.G., 1979. Dune forms and wind regime. In: McKee, E.D. (ed.). A study of global sand seas. Washington, United States Geological Survey Professional Paper, 1052, 137-169.

Gómez-Pina, G., Fages, L., Román-Sierra, J., Navarro, M., Giménez-Cuenca, M., Ruiz, J.A., Muñoz-Pérez, J.J., 2007. An example of Integrated Coastal Management in Punta Candor (Rota, Spain). I International Conference on Management and Restoration of Coastal Dunes. Santander, 2007, 71-76.

Goossens, D., Offer, Z., London, G., 2000. Wind tunnel and field calibration of five aeolian sand traps. Geomorphology, 35, 233-252.

Gutiérrez-Mas, J.M., Juan, C., Morales, J.A., 2009. Evidence of high-energy events in shelly layers interbedded in coastal Holocene sands in Cadiz Bay (south-west Spain). Earth Surface Processes and Landforms, 34(6), 810-823.

Hesp, P.A., Davidson-Arnott, R.G.D., Walker, I.J., Ollerhead, J., 2009. Flow dynamics over a foredune at Prince Edward Island, Canada. Geomorphology, 65, 71-84.

Horikawa, K., Shen, H.W., 1960. Sand Movement by Wind Action. US Army, Corps of Engineers, Beach Erosion Board. Technical Memorandum, 119, 51pp.

Illenberg, W.K., Rust, I.C., 1986. Venturi-compensated aeolian sandtrap for field use. Journal of Sediment Research, 56, 541-543.

Iversen, J.D., Pollack, J.B., Greeley, R., White, B.R., 1976. Saltation threshold on Mars: the effect of intraparticle force, surface

roughness and low atmospheric density. Icarus, 29, 381-393.

Jackson, N.L., Nordstrom, K.F., 2011. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Research, 3, 181-196.

Jackson, N.L., Nordstrom, K.F., 2013. Aeolian sediment transport and morphologic change on a managed and an unmanaged foredune. Earth Surface Processes and Landforms, 38, 413-420.

Kawamura, R., 1964. Study of sand movement by wind. Hydraulic Engineer Laboratory. Berkeley, University of California, Technical Report, HEL-2-8, 99-108.

Knott, P., Warren, A., 1981. Aeolian processes. In: Goudie, A.S. (ed.). Geomorphological Techniques. London, Allen and Unwin, 226-246.

Lancaster, N., Nickling, W.G., McKenna Neuman, C.K., Wyatt, V.E., 1996. Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology, 17(1-3 SI), 55-62.

Leatherman, S.P., 1978. A new aeolian sand trap design. Sedimentology, 25, 303-306.

Lettau, K., Lettau, H.H., 1978. Experimental and micrometeorological field studies of dune migration. In: Lettau, H.H, Lettau, K. (eds.). Exploring the World’s Driest Climate. University of Wisconsin-Madison, IES report, 101, 110-147.

Levin, N., Kidron, G.J., Ben-dor, E., 2007. A field quantification of coastal dune perennial plants as indicators of surface stability, erosion or deposition. Sedimentology, 55(4), 751-772.

Li, Z.S., Ni, J.R., 2003. Sampling efficiency of vertical array aeolian sand traps. Geomorphology, 52, 243-252

Livingstone, I., Wiggs, G.F.S., Weaver, C.M., 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth-Science Reviews, 80, 239-257.

Mckenna Neuman, C., Lancaster, N., Nickling, W.G., 1997. Relations between dune morphology, air flow, and sediment flux on reversing dunes, Silver Peak, Nevada. Sedimentology, 44(6), 1103-1113.

Mckenna Neuman, C., Lancaster, N., Nickling, W.G., 2000. The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, NV, USA. Sedimentology, 47(1), 211-226.

Morales, J.A., Borrego, J., San Miguel, E.G., López-González, N., Carro, B., 2008. Sedimentary record of recent tsunamis in the Huelva Estuary (south-western Spain). Quaternary Science Reviews, 27(7-8), 734-746.

Muñoz-Pérez, J.J., Navarro, M., Román-Sierra, J., Tejedor, B., Rodríguez, I., Gómez-Pina, G., 2009. Long-term evolution of a transgressive migrating dune using reconstruction of the EOF method. Geomorphology, 112, 167-177.

Navarro, M., Muñoz-Pérez, J.J., Román-Sierra, J., Tejedor, B, Rodríguez, I., Gómez Pina, G., 2007. Morphological evolution in the migrating dune of Valdevaqueros (SW Spain) during an eleven-year period. Proceedings of the 1st International Conference on Management and Restoration of Coastal Dunes, 80-85. ISBN: 978-84-8102-497-5.

Navarro, M., Muñoz-Pérez, J.J., Román-Sierra, J., Tsoar, H., Rodríguez, I., Gómez-Pina, G., 2011. Assessment of highly active dune mobility in the medium, short and very short term. Geomorphology, 129(1-2), 14-28.

O’Brien, M.P., Rindlaub, B.D., 1936. The transportation of sand by wind. Civil Engineering, 6, 325-327.

Owens, J.S., 1927. The movement of sand by wind. Engineer, 143, 377pp.

Pye, K., Tsoar, H., 1990. Aeolian sand and sand dunes. Germany, Springer, 465pp.

Rasmussen, K.R., Mikkelsen, H.E., 1998. On the efficiency of vertical array aeolian field traps. Sedimentology, 45, 789-800.

Rodríguez Santalla, I., Sánchez García, M.J., Montoya Montes, I., Gómez Ortiz, D., Martín Crespo, T., Serra Raventós, J., 2009. Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta (Tarragona, Spain). Geomorphology, 104(3-4), 238-252.

Román-Sierra, J., Muñoz-Pérez, J.J., Navarro, M., 2013. Influence of sieving time on the efficiency and accuracy of grain-size analysis of beach and dune sands. Sedimentology, 60, 1484-1497.

Román-Sierra, J., Muñoz-Pérez, J.J., Navarro-Pons, M., 2014. Beach nourishment effects on sand porosity variability. Coastal Engineering, 83, 221-232.

Serra, J., Riera, G., Argullós, J., Parente-Maia, L., 1997. El transporte eólico en el Delta del Ebro. Evaluación y contribución al modelado litoral. Boletín Geológico y Minero (IGME), 108(4-5), 477-485.

Shao, Y., Mikami, M., 2005. Heterogeneous saltation: Theory, observation and comparison. Boundary-Layer Meteorology, 115(3), 359-379.

Sherman, D.J., Swann, C., Barron, J.D., 2014. A high-efficiency, low-cost aeolian sand trap. Aeolian Research, 13, 31-34.

Sherman, D.J., Jackson, D.W.T., Namikas, S.L., Wang, J., 1998. Wind-blown sand on beaches: An evaluation of models. Geomorphology, 22(2), 113-133.

Syvitski, J.P.M., 1991. Principles, Methods, and Application of Particle Size Analysis. New York, Cambridge University Press, 368pp.

Tsoar, H., Levin, N., Porat, N., Maia, L.P., Herrmann, H.J., Tatumi, S.H., Claudino-Sales, V., 2009. The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil). Quaternary Research, 71(2), 217-226.

USACE 2008. Coastal sediment properties. US Army Corps of Engineers. Coastal Engineering Manual – Part III. EM 1110-2-1100.

Walker, I.J., Nickling, W.G., 2002. Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes. Progress in Physical Geography, 26(1), 47-75.

Walker, I.J., Davidson-Arnott, R.G.D., Hesp, P.A., Bauer, B.O., Ollerhead, J., 2009. Mean flow and turbulence responses in airflow over foredunes: new insights from recent research. Journal of Coastal Research, 56(SI), 366-370.

Weaver, C.M., Wiggs, G.F.S., 2011. Field measurements of mean and turbulent airflow over a barchan sand dune. Geomorphology, 128(1-2), 32-41.

Wiggs, G.F.S., Livingstone, I., Warren, A., 1996. The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements. Geomorphology, 17(1-3 SI), 29-46.

Wiggs, G.F.S., Baird, A.J., Atherton, R.J., 2004. The dynamics of moisture on the entrainment and transport of sand by wind. Geomorphology, 59, 13-30.

Zingg, A., 1953. Wind tunnel studies of the movement of sedimentary material. Iowa City: Institute of Hydraulics. Proceedings of the 5th Hydraulics Conference Bulletin, 34, 111-135.

Downloads

Published

2015-06-22