Geochemical characterization of the hydrous pyrolysis products from a recent cyanobacteria-dominated microbial mat

Authors

  • N. FRANCO Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • J.G. MENDONÇA FILHO Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • T.F. SILVA Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • K. STOJANOVIC University of Belgrade, Faculty of Chemistry. Studentski trg 12-16, 11000 Belgrade, Serbia
  • L.F. FONTANA Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • S.B.V. CARVALHAL-GOMES Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • F.S. SILVA Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil
  • G.G. FURUKAWA Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil

DOI:

https://doi.org/10.1344/GeologicaActa2016.14.4.4

Keywords:

Microbial mat, Hydrous pyrolysis, Hydrocarbon potential, Biomarkers, Lagoa Vermelha

Abstract

Hydrous pyrolysis experiments were performed on a recent microbial mat sample from Lagoa Vermelha, Brazil, to determine whether crude oil can be generated and expelled during artificial maturation of the Organic Matter (OM). The experiments were conducted at 280ºC, 330ºC and 350ºC during 20h. Two types of liquid pyrolysis products, assigned as free oil and bitumen, were isolated and analyzed. Free oil represents free organic phase released by hydrous pyrolysis, whereas bitumen was obtained by extraction from the solid pyrolysis residue with dichloromethane. Changes in the OM maturity were determined using Rock-Eval parameters and biomarker maturity ratios of original sample and pyrolysis products. Biomarker compositions of original sample extract and liquid pyrolysates were used for determination of dominant bacterial source. The yields of free oil and bitumen showed that a microbial mat OM has a high liquid hydrocarbons generation potential. Rock-Eval maturity parameters, biopolymer and biomarker compositions indicate a significant increase of the OM maturity during hydrous pyrolysis. At 280ºC the release of free, adsorbed and occluded compounds was observed; however, without a cracking of the OM. At 330ºC the generation of bitumen and free oil is mostly related to the OM cracking. The highest yield of free oil was recorded at this temperature. Distribution of biomarkers in the extract of original sample and liquid pyrolysates confirms cyanobacteria-dominated microbial mats, whereas the identification of long chain n-alkane series, with maximum at C26, and prominent C30 hop-17(21)-ene additionally suggest the presence of sulfate reducing bacteria.

Author Biography

S.B.V. CARVALHAL-GOMES, Universidade Federal do Rio de Janeiro, Laboratório de Palinofácies e Facies Orgânica, IGEO. Ilha do Fundão, Av. Athos da Silveira, 274, 21941-909, Rio de Janeiro, Brazil

Laboratório de Palinofácies e Facies Orgânica (LAFO)

Geology department, IGEO

References

Abed, R.M.M., Al-Thukair, A., de Beer, D., 2006. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiology Ecology, 57(2), 290-301.

Al-Hasan, R.H., Al-Bader, D.A., Sorkhoh, N.A., Radwan, S.S., 1998. Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Marine Biology, 130(3), 521-527.

Allen, M.A., Neilan, B.A., Burns, B.P., Jahnke, L.L., Summons, R.E., 2010. Lipid biomarkers in Hamelin Pool microbial mats

and stromatolites. Organic Geochemistry, 41(11), 1207-1218.

Al-Thani, R.F., Potts, M., 2012. Cyanobacteria, oil - and cyanofuel? In: Whitton, B.A. (ed.). Ecology of cyanobacteria II: Their

diversity in space and time. Netherlands, Springer, 427-440.

Avramidis, P., Zelilidis, A., 2007. Potential source rocks, organic geochemistry and thermal maturation in the southern depocenter (Kipourio-Grevena) of the Mesohellenic Basin, central Greece. International Journal of Coal Geology, 71(4), 554-567.

Bechtel, A., Sachsenhofer, R.F., Zdravkov, A., Kostova, I., Gratzer, R., 2005. Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite

(Bulgaria). Organic Geochemistry, 36(11), 1498-1522.

Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III

lignite. Organic Geochemistry, 39(1), 1-22.

Behar, F., Roy, S., Jarvie, D., 2010. Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41(11), 1235-1247.

Bottari, F., Marsili, A., Morelli, I., Pacchiani, M., 1972. Aliphatic and triterpenoid hydrocarbons from ferns. Phytochemistry,

(8), 2519-2523.

Brassell, S.C., Comet, P.A., Eglinton, G., Isaacson, P.J., McEvoy, J., Maxwell, J.R., Thompson, I.D., Tibbetts, P.J.C., Volkman, J.K., 1980. The origin and fate of lipids in the Japan Trench. In: Douglas, A.G., Maxwell, J.R. (eds.). Advances in Organic Geochemistry 1979. Oxford, Pergamon Press, 375-392.

Braun, R.L., Rothman, A.J., 1975. Oil shale pyrolysis. Kinetics and mechanisms of oil production. Fuel, 54(2), 129-131.

Burhan, R.Y.P., Trendel, J.M., Adam, P., Wehrung, P., Albrecht, P., Nissenbaum, A., 2002. Fossil bacterial ecosystem at methane seeps: origin of organic matter from Be’eri sulfur deposit, Israel. Geochimica et Cosmochimica Acta, 66(23), 4085-4101.

Chappe, B., Michaelis, W., Albrecht, P., Ourisson, G., 1979. Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften, 66(10), 522-523.

Chappe, B., Albrecht, P., Michaelis, W., 1982. Polar lipids of archaebacteria in sediments and petroleums. Science, 217(4554), 65-66.

Cohen, Y., 2002. Bioremediation of oil by marine microbial mats. International Microbiology, 5(4), 189-193.

Danovaro, R., Dell’anno, A., Fabiano, M., 2001. Bioavailability of organic matter in the sediments of the Porcupine Abyssal

Plain, northeastern Atlantic. Marine Ecology Progress Series, 220, 25-32.

Davis, J.B., 1968. Paraffinic hydrocarbons in the sulfate reducing bacterium Desulfovibrio desulfuricans. Chemical Geology,

(2), 155-160.

De Rosa, M., Gambacorta, A. Minale, L., 1971. Bacterial triterpenes. Journal of the Chemical Society D: Chemical Communications, 12, 619-620.

Dell’Anno, A., Mei, M.L., Pusceddu, A., Danovaro, R., 2002. Assessing the trophic state and eutrophication of coastal biochemical composition of sediment organic matter. Marine Pollution Bulletin, 44(7), 611-622.

Douka, E., Koukkou, A., Drainas, C., Grosdemange-Billiard, C., Rohmer, M., 2001. Structural diversity of the triterpenic hydrocarbons from the bacterium Zymomonasmobilis: the signature of defective squalene cyclization by the squalene/hopene cyclase. FEMS Microbilogy Letters, 199(2), 247-257.

Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and

related substances. Analytical Chemistry, 28(3), 350-356.

Eglinton, T.I., Douglas, A.G., 1988. Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy & Fuels, 2(1), 81-88.

Elie, M., Mazurek, M., 2008. Biomarker transformations as constraints for the depositional environment and for maximum

temperatures during burial of Opalinus Clay and Posidonia Shale in northern Switzerland. Applied Geochemistry, 23(12), 3337-3354.

Erdmann, M., Horsfield, B., 2006. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea. Geochimica et Cosmochimica Acta, 70(15), 3943-3956.

Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J., Boutefeu, A., 1977. Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Revue de L’Institut Français du Pétrole, 32(1), 23-42.

Farrimond, P., Taylor, A., Telnæs, N., 1998. Biomarker maturity parameters: the role of generation and thermal degradation.

Organic Geochemistry, 29(5-7), 1181-1197.

Farrimond, P., Love, G.D., Bishop, A.N., Innes, H.E., Watson, D.F., Snape, C.E., 2003. Evidence for the rapid incorporation of hopanoids into kerogen. Geochimica et Cosmochimica Acta, 67(7), 1383-1394.

Gallego, J.R., González-Rojas, E., Peláez, A.I., Sánchez, J., García-Martínez, M.J., Ortiz, J.E., Torres, T., Llamas, J.F., 2006. Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Organic Geochemistry, 37(12), 1869-1884.

Gallego, J.R., Fernández, J.R., Díez-Sanz, F., Ordoñez, S., Sastre, H., González-Rojas, E., Peláez, A.I., Sánchez, J., 2007. Bioremediation for Shoreline Cleanup: In situ vs. on-site Treatments. Environmental Engineering Science, 24(4), 493-504.

Gerchacov, S.M., Hatcher, P.G., 1972. Improved technique for analysis of carbohydrates in sediment. Limnology and Oceanography, 17, 938-943.

Grimalt, J.O., de Wit, R., Teixidor, P., Albaigés, J., 1992. Lipid biogeochemistry of Phormidium and Microcoleus mats. Organic Geochemistry, 19(4-6), 509-530.

Grossi, V., Hirschler, A., Raphel, D., Rontani, J.F., De Leeuw, J.W., Bertrand, J.C., 1998. Biotransformation pathways of phytol in recent anoxic sediments. Organic Geochemistry, 29(4), 845-861.

Han, J., Calvin, M., 1969. Hydrocarbon distribution of algae and bacteria, and microbial activity in sediments. Proceedings of the National Academy of Sciences of the United States of America, 64(2), 436-443.

Hartree, E.F., 1972. Determination of proteins: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427.

Howard, D.L., Simoneit, B.R.T., Chapman, D.J., 1984. Triterpenoids from lipids of Rhodomicrobium vanniellii. Archives of Microbiology, 137(3), 200-204.

Huc, A.Y., Durand, B.M., 1977. Occurrence and significance of humic acids in ancient sediments. Fuel, 56(1), 73-80.

Hunt, J.M., 1995. Petroleum geochemistry and geology. New York, W.H. Freeman and Company, 2nd edition, 743pp.

Jaeschke, A., Lewan, M.D., Hopmans, E.C., Schouten, S., Sinninghe-Damsté, J.S., 2008. Thermal satability of ladderane lipids as determined by hydrous pyrolysis. Organic Geochemistry, 39(12), 1735-1741.

Jungblut, A.D., Allen, M.A., Burns, B.P., Neilan, B.A., 2009. Lipid biomarker analysis of cyanobacteria-dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Organic Geochemistry, 40(2), 258-269.

Kenig, F., Sinninghe-Damsté, J.S., Kock-Van Dalen, A.C., Rijpstra, I.W.C., Huc, A.Y., De Leeuw, J.W., 1995. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochimica et Cosmochimica Acta, 59(14), 2999-3015.

Killops, S.D., Killops, V.J., 2005. Introduction to Organic Geochemistry. Oxford, Blackwell Publishing, 2nd edition, 393pp.

Komárek, J., Anagnostidis, K., 1999. Cyanoprokaryota, Part 1: Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D. (eds.). Süßwasserflora von Mitteleuropa. Begründet von A. Pascher. Band 19/1. Heidelberg & Berlin, Spektrum, Akademischer Verlag, 548pp.

Komárek, J., Anagnostidis, K., 2005. Cyanoprokaryota, Part 1: Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G., Schagerl, M. (eds.). Süßwasserflora von Mitteleuropa. Band 19/2. Heidelberg, Elsevier/Spektrum, 759pp.

Koopmans, M.P., Schouten, S., Kohnen, M.E.L., SinningheDamsté, J.S., 1996. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochimica et Cosmochimica Acta, 60(23), 4873-4876.

Köster, J., van Kaam-Peters, H.M.E., Koopmans, M.P., de Leeuw, J.W., Sinninghe-Damsté, J.S., 1997. Sulphurisation of homohopanoids: Effects on carbon number distribution, speciation, and 22S/22R epimer ratios. Geochimica Cosmochimica Acta, 61(12), 2431-2452.

Kvenvolden, K.A., Rapp, J.B., Hostettler, F.D., King, J.D., Claypool, G.E., 1988. Organic geothermometry of petroleum from Escanaba Trough, off-shore northern California. In: Mattavelli, L., Novelli, L. (eds.). Advances in Organic Geochemistry 1987. Oxford, Pergamon Press, 351-355.

Lewan, M.D., 1983. Effect of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale. Geochimica et Cosmochimica Acta, 47(8), 1471-1479.

Lewan, M.D., 1993. Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: Engel, M.H., Macko, S.A. (eds.). Organic Geochemistry: Principles and Applications. New York, Plenum Press, 419-442.

Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61(17), 3691-3723.

Lewan, M.D., Winters, J.C., McDonald, J.H., 1979. Generation of oil-like pyrolysates from organic-rich shales. Science, 203(4383), 897-899.

Marsh, J.B., Wenstein, D.B., 1966. A simple charring method for determination of lipids. Journal of Lipid Research, 7, 574-576.

Moldowan, J.M., Fago, J.F., Carlson, R.M.K., Young, D.C., Van Duyne, G., Clardy, J., Schoell, M., Pillinger, C.T., Watt, D.S., 1991. Rearranged hopanes in sediments and petroleum. Geochimica et Cosmoschimica Acta, 55(11), 3333-3353.

Mycke, B., Narjes, F., Michaelis, W., 1987. Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature,

(6109), 179-181.

Neunlist, S., Rohmer, M., 1985. Novel hopanoids from the methylotrophic bacteria Methylococcuscapsulatus and Methylomonasmethanica. (22S)-35-aminobacteriohopane30,31,32,33,34-pentol and (22S)-35-amino-3βmethylbacteriohopane-30,31,32,33,34-pentol. Biochemical Journal, 231(3), 635-639.

Nytoft, H.P., 2011. Novel side chain methylated and hexacyclic hopanes: Identification by synthesis, distribution in a worldwide set of coals and crude oils and use as markers for oxic depositional environments. Organic Geochemistry, 42(5), 520-539.

Oehler, J.H., Aizenshtat, Z., Schopf, J.W., 1974. Thermal alteration of blue-green algae and blue-green algal chlorophyll. The

American Association of Petroleum Geologists Bulletin, 58(1), 124-132.

Paoletti, C., Pushparaj, B., Florenzano, G., Capella, P., Lercker, G., 1976. Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses: I. Total unsaponifiable and hydrocarbon fraction. Lipids, 11(4), 258-265.

Peters, K.E., Moldowan, J.M., 1991. Effects of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 17(1), 47-61.

Peters, K.E., Rohrback, B.G., Kaplan, I.R., 1981. Geochemistry of Artificially Heated Humic and Sapropelic Sediments – I: Protokerogen. The American Association of Petroleum Geologists Bulletin, 65(4), 688-705.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide (Volume 2): Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge, Cambridge University Press, 1135pp.

Pusceddu, A., Dell’anno, A., Danovaro, R., Manini, E., Sara, G., Fabiano, M., 2003. Enzymatically hydrolysable protein and

carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: A case study in a Mediterranean

Coastal Lagoon. Estuaries, 26(3), 641-650.

Radke, M., 1987. Organic geochemistry of aromatic hydrocarbons. In: Radke, M. (ed.). Advances in Petroleum Geochemistry. London, Academic Press, 141-205.

Rice, D.L., 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Marine Ecology Progress Series, 9, 153-162.

Risatti, J.B., Rowland, S.J., Yon, D.A., Maxwell, J.R., 1984. Stereochemical studies of acyclic isoprenoids – XII. Lipids of methanogenic bacteria and possible contributions to sediments. Organic Geochemistry, 6, 93-104.

Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General

Microbiology, 130, 1137-1150.

Rontani, J.-F.; Volkman, J.K., 2005. Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue

(France). Organic Geochemistry, 36(2), 251-272.

Rowland, S.J., 1990. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Organic Geochemistry, 15(1), 9-16.

Ruble, T.E., Lewan, M.D., Philp, R.P., 2001. New insights on the Green River petroleum system in the Uinta basin from hydrous pyrolysis experiments. American Association of Petroleum Geologists (AAPG) Bulletin, 85(8), 1333-1371.

Rullkötter, J., Marzi, R., 1988. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. In: Mattavelli, L., Novelli, L. (eds.). Advances in Organic Geochemistry 1987. Oxford, Pergamon Press, 639-645.

Sánchez, O., Ferrera, I., Vigués, N., de Oteyza, T.G., Grimalt, J., Mas, J., 2006. Role of cyanobacteria in oil biodegradation by microbial mats. International Biodeterioration & Biodegradation, 58(13-14), 186-195.

Shiea, J., Brassell, S.C., Ward, D.M., 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry, 15(3), 223-231.

Sinninghe-Damsté, J.S., van Duin, A.C.T., Hollander, D., Kohnen, M.E.L., de Leeuw, J.W., 1995. Early diagenesis of bacteriohopanepolyols derivatives: Formation of fossil homohopanoids. Geochimica et Cosmochimica Acta, 59(24), 5141-5157.

Sinninghe-Damsté, J.S., Schouten, S., Volkman, J.K., 2014. C27–C30 Neohop-13(18)-enes and their saturated and aromatic

derivatives in sediments: Indicators for diagenesis and water column stratification. Geochimica et Cosmochimica Acta, 133, 402-421.

Sugden, M.A., Talbot, H.M., Farrimond, P., 2005. Flash pyrolysis – a rapid method for screening bacterial species for the presence of bacteriohopanepolyols. Organic Geochemistry, 36(6), 975-979.

Summons, R.E., Hope, J.M., Swart, R., Walter, M.R., 2008. Origin of Nama Basin bitumen seeps: Petroleum derived from

a Permian lacustrine source rock traversing southwestern Gondwana. Organic Geochemistry, 39(5), 589-607.

Tang, Y.C., Stauffer, M., 1995. Formation of pristene, pristane and phytane: kinetic study by laboratory pyrolysis of Monterey

source rock. Organic Geochemistry, 23(5), 451-460.

Ten Haven, H.L., de Leeuw, J.W., Rullkötter, J., SinningheDamsté, J.S., 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330, 641-643.

Thiel, V., Merz-Preiβ, M., Reitnet, J., Michaelis, W., 1997. Biomarker Studies on Microbial Carbonates: Extractable Lipids of a Calcifying Cyanobacterial Mat (Everglades, USA). Facies, 36(1), 163-172.

Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Berlin, Springer, 2nd edition, 699pp.

Uemura, H., Ishiwatari, R., 1995. Identification of unusual 17β(H)-moret-22(29)-ene in lake sediments. Organic Geochemistry, 23(7), 675-680.

Ungerer, P., 1990. State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16(1-3), 1-25.

van Gemerden, H., 1993. Microbial mats: A joint venture. Marine Geology, 113(1-2), 3-25.

van Lith, Y., Warthmann, R., Vasconcelos, C., McKenzie, J.A., 2003. Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237-245.

Volkman, J.K., Allen, D.I., Stevenson, P.L., Burton, H.R., 1986. Bacterial and algal hydrocarbons from a saline Antarctic lake,

Ace Lake. Organic Geochemistry, 10(4-6), 671-681.

Vu, T.T.A., Zink, K.-G., Mangelsdorf, K., Sykes, R., Wilkes, H., Horsfield, B., 2009. Changes in bulk properties and molecular

compositions within New Zealand Coal Band solvent extracts from early diagenetic to catagenetic maturity levels. Organic

Geochemistry, 40(9), 963-977.

Wakeham, S.G., 1990. Algal and bacterial hydrocarbons in particulate material and interfacial sediment of the Cariaco Trench. Geochimica et Cosmochimica Acta, 54(5), 1325-1336.

Wolff, G.A., Rukin, N., Marshal, J.D., 1992. Geochemistry of an early diagenetic concretion from the Birchi Bed (L. Lias, W.

Dorset, U.K.). Organic Geochemistry, 19(4-6), 431-444.

Yamada, K., Ishiwatari, R., Matsumoto, K., Naraoka, H., 1997. δ13C Records of diploptene in the Japan Sea sediments over the past 25 kyr. Geochemical Journal, 31(5), 315-321.

Downloads

Published

2016-10-11

Issue

Section

Special Issues: Selected contributions from the XIV ALAGO Congress

Most read articles by the same author(s)