Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): Evidences from field observations, microscopic studies and isotopic analysis

Authors

  • S. Khan Department of Earth Sciences, Quaid-i-Azam University 45320 Islamabad, Pakistan Geosciences Advanced Research Laboratory (GARL), Geological Survey of Pakistan Shahzad Town, 1461 Islamabad, Pakistan
  • M.M. Shah Department of Earth Sciences, Quaid-i-Azam University 45320 Islamabad, Pakistan

DOI:

https://doi.org/10.1344/GeologicaActa2019.17.2

Keywords:

Cambrian dolomite, Salt Range, Diagenetic phases, O/C isotopes, Mg-isotopes.

Abstract

Excellent dolomite exposures are observed in the eastern Salt Range (Pakistan), where the Cambrian Jutana Formation consists of two distinct units (i.e. oolitic – pisolitic unit and massive dolomite unit). Field observations revealed that the lower, oolitic-pisolitic unit mostly comprises medium to thick bedded, interlayered brown yellowish dolostone containing ooids/pisoids and faunal assemblages, and grey whitish sandstone with distinct depositional sedimentary features (i.e. trough-, herringbone- and hhummocky crossbedding). The upper massive dolostone unit consists of thick bedded to massive dolostone. These two units are separated by shale. Petrographic studies identified three dolomite types, which include: fine crystalline dolomite (Dol. I), medium-coarse crystalline dolomite (Dol. II) and fracture associated, coarse crystalline dolomite (Dol. III). Stable isotope studies indicate less depleted δ18O values for Dol. I (-6.44 to -3.76‰V-PDB), slightly depleted δ18O values for Dol. II (-7.73 to -5.24‰V-PDB) and more depleted δ18O values for Dol. III (-7.29 to -7.20‰V-PDB). The δ13C values of the three dolomite phases are well within the range of Cambrian sea-water signatures. Furthermore, δ26Mg-δ25Mg signatures (Dol. I; δ26Mg=-1.19 to -1.67, δ25Mg=-0.61 to -0.86 and Dol. II; δ26Mg=-1.34 to -1.59, δ25Mg=-0.70 to -0.83) indicate three phases of dolomitization in different diagenetic settings. First, an initial stage of dolomitization during the early Cambrian resulted from altered marine, Mg-rich fluids associated with the mixing zone mechanism. Second, a late stage of dolomitization was associated with burial during late Permian. A third dolomitization phase was related to post-Eocene times.

Author Biographies

S. Khan, Department of Earth Sciences, Quaid-i-Azam University 45320 Islamabad, Pakistan Geosciences Advanced Research Laboratory (GARL), Geological Survey of Pakistan Shahzad Town, 1461 Islamabad, Pakistan

PhD student

M.M. Shah, Department of Earth Sciences, Quaid-i-Azam University 45320 Islamabad, Pakistan

Assistant Professor, Department of Earth Sciences

References

Ahmad, N., Ahsan, N., Sameeni, S.J., Mirag, M.A.F., Khan, B., 2013. Sedimentology of the Early-Middle Cambrian Jutana Formation of Khewra Gorge area, Eastern Salt Range, District Chakwal, Pakistan. Science Inational Lahore, 25(3), 551-558.

Al-Aasm, I.S., 2000. Chemical and isotopic constraints for recrystallization of sedimentary dolomites from the Western Canada Sedimentary Basin. Aquatic geochemistry, 6, 227-248.

Allègre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Göpel, C., Li, T., Xiao, X., Chang, C., Li, G., Lin, B., Teng, J., Wang, N., Chen, G., Han, T., Wang, X., Den, W., Sheng, H., Cao, Y., Zhou, J., Qiu, H., Bao, P., Wang, S., Wang, B., Zhou, Y., Ronghua, X., 1984. Structure and evolution of the Himalaya–Tibet orogenic belt. Nature, 307, 17-19.

Amorosi, A., 1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology, 109, 135-153.

Bontognali, T.R.R., Vasconceles, C., Warthmann, R.J., Bernasconi, S.M., Durpraz, C., Stromenger, C.J., Mckanze, J.A., 2010. Dolomite formation with microbial mats in the coastal subkha of Abu Dhabi (UAE). Sedimentology, 57, 824-844.

Bowen, G.J., Daniels, A.L., Bowen, B.B., 2008. Paleoenvironmental isotope geochemistry and paragenesis of lacustrine and palustrine carbonates, Flagstaff Formation, Central Utah, U.S.A. Journal of Sedimentary Research, 78, 162-174.

Budd, D.A., 1997. Cenozoic dolomite of carbonate islands: their attributes and origin. Earth Science Reviewes, 42, 1-47.

Cantrell, D., Swart, P., Hagerty, R., 2004. Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia. Geo Arabia, 9(2), 1-26.

Chatterjee, S., Goswami, A., Christopher, R., 2013. The Longest Voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward flight from Gondwana to Asia. Gondwana Research, 23, 238-267.

Dewit, J., Foubert, A., El Desouky, H.A., Muchez, P., Hunt, D., Vanhaecke, F., Swennen, R., 2014. Characteristics, genesis and parameters controlling the development of a large stratabound HTD body at Matienzo (Ramales Platform, Basque-Cantabrian Basin, Northern Spain). Marine and Petroleum Geology, 55, 6-25.

Dewit, J., Huysmans, M., Muchez, P., Hunt, D.W., Thurmond, J.B., Vergés, J., Saura, E., Fernandez, N., Romaire, I., Esestime, P., Swennen, R., 2012. Reservoir characteristics of fault-controlled hydrothermal dolomite bodies: Ramales Platform case study. In: Garland, J., Neilson, J.E., Laubach, S.E., Whidden, K.J. (eds.). Advances in Carbonate Exploration and Reservoir Analysis. Geological Society of London, 370 (Special Publications), 83-109.

Fleming, A., 1853. On the Salt Range in the Punjab. London, The Geological Society, 9, 189-200.

Fu, Q., Qing, H., Bergman, K.M., 2006. Dolomitization of Middle Devonian Winnipegosis carbonates in South-central Saskatchewan, Canada. Sedimentology, 53, 825-848.

Gansser, A., 1964. Geology of Himalaya. New York, Interscience publishers, 289pp.

Gansser, A., 1981. The geodynamic history of the Himalaya. In: Gupta, H.K., Delany, F.M. (eds.). Zagros, Hindu Kush, Himalaya: geodynamic evolution. Washington, American Geophysical Union (AGU), 111-121.

Gasparrini, M., Bechstadt, T., Boni, M., 2006. Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the late Variscan evolution. Journal of Marine and Petroleum Geology, 10, 1-26.

Geske, A., 2014. zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für

Geowissenschaften der Ruhr-Universität Bochum. PhD Thesis. Ruhr-University Bochum, 241pp.

Geske, A., Zorlu, J., Richter, D.K., Buhl. D., Niedermayr, A., Immenhauser, A., 2012. Impact of diagenesis and low-grade metamorphosis on isotopes (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomite. Chemical Geology, 332(333), 45-64.

Geske, A., Goldstein, R.H., Mavromatis, V., Richter, D.K., Buhl, D., Kluge, T., John, C.M., Immenhauser, A., 2015. Magnesium isotope (δ26) signatures of dolomites. Geochemica et Cosmochemica Acta, 149, 131-151.

Gee, E.R., 1945. The age of the saline series of the Punjab and of Kohat: India. National Academy of Sciences, Proceeding,

Section B, 14(6), 269-310.

Ghauri, A.A.K., 1979. Sedimentary structures of the Jutana and baghanwala Formation Salt Range Pakistan. Geological Bulletin Universty of Peshawar, 12(13), 1-10.

Honarmand, J., Amini, A., 2012. Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran. Journal of Petroleum Science and Engineering, 81, 70-79.

Immenhauser, A., Buhl, D., Richter, D., Nieldermayr, A., Riechelmann, D., Dietzel, M., Schulte, U., 2010. Magnesium isotopes fractionation during low-Mg calcite precipitation in a limestone cave-Field study and experiments. Geochemica et Cosmochemica Acta, 74, 4346-4364.

Irwin, H., Curtis, C., Coleman, M., 1997. Isotope evidence of source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, 209-213.

Jaffres, J.B.D, Shields, G.A., Wallmen, K., 2007. The Oxygen isotope evolution of sea water: A critical review of a longstanding controversy and an improved geological water cycle model for the last 3.4 billion years. Earth-Science Reviews, 83, 83-122.

Jones, G.D., Whitaker, F.F., Smart, P.L., Sanford, W.E., 2002. Fate of reflux brines in carbonate platforms. Geology, 30, 371-374.

Kadri, I.B., 1995. Petroleum Geology of Pakistan. In: Kadri, I.B. (ed.) Petroleum Geology of Pakistan. Karachi, Pakistan Petroleum Ltd., 1-300.

Kazmi, A.H., Jan, M.Q., 1997. Geology and tectonics of Pakistan. Karachi (Pakistan), Graphic Publishers, 545pp.

Keith, B.D., 1989. Reservoirs resulting from facies-independent dolomitization: Case histories from the Trenton and Black River carbonate rocks of the Great Lakes Area. In: Keith, B.D. (ed.). The Trenton Group (Upper Ordovician Series) of Eastern North America. American Association of Petroleum Geologists, Studies in Geology, 29, 267-276.

Khan, M.A., Khan, M.J., 1977. Stratigraphy and petrography of the Jutana Dolomite, Khewra Gorge Khewra, Jehlum District;

Punjab: Pakistan. Geological Bulletin University of Peshawar, 9(10), 43-66.

Last, L.S., 1990. Lacustrine dolomite-An overview of modern, Holocene and Pleistocene occurrences. Earth-Science Reviews, 27, 221-263.

Lillie, R.J., Johnson, G.D., Yousuf, M.H., Zamin, A.S, Yeats, R.S., 1987. Structural development within the Himalayan foreland

fold and thrust belt of Pakistan. In: Beaumont, C., Tankard, A.J. (eds.). Sedimentary basins and basin forming mechanisms.

Canadian Society of Petroleum Geologists, 379-392.

Machel, H.G., 2004. Concepts and models of dolomitisation: a critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G., Darke, G.

(eds.). The geometry and petrogenesis of dolomite hydrocarbon reservoir. The Geological Society of London, 235 (Special Publications), 7-63.

Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373-389.

Machel, H.G., Lonnee, C.J., 2002. Hydrothermal dolomite-A product of poor definition and imagination. Sedimentary Geology, 152, 163-171.

Malinconico, L.L., 1989. Crustal thickness estimates for the western Himalaya. In: Malinconico, L.L., Lillie, R.J. (eds.). Tectonics of the Western Himalayas. Geological Society of America, 232 (Special paper), 237-242.

Martín-Martín, J.D., Gomez-Rivas, E., Bover-Arnal, T., Travé, A., Salas, R., Moreno-Bedmar, J.A., Tomás, S., Corbella, M., Teixell, A., Vergés, J., Stafford, S.L., 2013. The upper Aptianlower Albian syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled strata-bound dolostones. Cretaceous Research, 41, 217-236.

Mazullo, S.J., 1977. Shrunken (geopetal) ooids: Evidence of origin unrelated to evaporite diagenesis. Sedimentary petrology, 47(1), 392-397.

McRae, S.G., 1972. Glauconite. Earth-Science Reviews, 8(4), 397-440.

Melim, L.A., Scholle, P.A., 2002. Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): seepage reflux revisited. Sedimentology, 49, 1207-1227.

Molnar, P., Tapponnier, P., 1977. The collision between India and Asia. Scientific American, 236(4), 30-41.

Müller, D.W., McKenzie, J.A., Mueller, P.A., 1990. Abu Dhabi sabkha, Persian Gulf, revisited: Application of strontium isotopes

to test an early dolomitization model. Geology, 18, 618-621.

Nader, F.H., Swennen, R., 2004. The hydrocarbon potential of Lebanon: New insights from regional correlations and studies

of Jurassic dolomitization. Journal of Petroleum Geology, 27, 253-275.

Nader, F.H., Swennen, R., Ellam, R., 2004. Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: a two-stage dolomitization model (Jurassic, Lebanon). Sedimentology, 51, 339-360.

Nader, F.H., Swennen, R., Ellam, R., 2007. Field geometry, petrography and geochemistry of a dolomitisation front (Late Jurassic, central Lebanon). Sedimentology, 54, 1093-1119.

Noetling, P., 1901. Beitragezur Geologieder Salt Range, insbesondereder permichenund triasuchen Ablagerungen: Ueues Jahrb. Miner Beilage Band, 14, 369-471.

Odin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology, 28, 611-641.

Patterson, R.J., Kinsman, D.J.J., 1981. Hydrologic framework of a sabkhas along the Arabian Gulf. American Association of Petroleum Geologists (AAPG), 65, 1457-1475.

Prokoph, A., Shields, G.A., Veizer, J., 2008. Compilation and time series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S data base through earth history. EarthScience Reviews, 87, 113-133.

Qing, H., Bosence, D.W.J., Rose, E.P.F., 2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48, 153-163.

Quadri, V.N., Quadri, S.M.G.J., 1996. Anatomy of success in oil and gas exploration in Pakistan. Oil and Gas Journal (OGJ), 13, 92-97.

Radke, B.M., Mathis, R.L., 1980. On the formation and occurrence of saddle dolomites. Journal of Sedimentary Research, 50(4), 1149-1168.

Seeber, L., Armbruster, J.G., 1979. Seismicity in the Hazara arc in northern Pakistan: décollement versus basement faulting.

In: Farah, A., De Jong, K. (eds.). Geodynamics of Pakistan. Quetta, Geological Survey of Pakistan (GSP), 131-142.

Sellwood, B.W., Beckett, D., 1991. Ooid microfabrics: the origin and distribution of high intra-ooid porosity; Mid-Jurassic reservoirs, S. England. Sedimentary Geology, 71, 189-193.

Shah, S.M.I., 2009. Stratigraphy of Pakistan, Geological Survey of Pakistan, Memoir 22, 381pp.

Shah, M.M., Nader, F.H., Dewit, J., Swennen, R., Garcia, D., 2010. Fault-related hydrothermal dolomites in Cretaceous carbonates (Cantabria, northern Spain): Results of petrographic, geochemical and petrophysical studies. Bulletin de la Société Géologique de France, 181(49), 391-407.

Shah, M.M., Nader, F. H., Garcia, D., Swennen, R., Ellam, R., 2012. Hydrothermal Dolomites in the Early Albian (Cretaceous) Platform Carbonates (NW Spain): Nature and Origin of Dolomites and Dolomitising Fluids. Oil & Gas Science and Technology, IFP Energies nouvelles, 67(1): 97-122.

Shah, M.M., Khan, S., Toqeer, M., Unpublished. Fluid flow evolution resulted in multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range and adjoining areas, NW Pakistan: Evidences from mineralogical analysis, geochemical studies and isotopic signatures. Sedimentary Geology. [Accepted] Sibley, D.F., Gregg, J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57, 967-975.

Swennen, R., Dewit, J., Fierens, E., Muchez, P., Shah, M., Nader, F.H., Hunt, D., 2012. Multiple dolomitisation events along the Pozalagua Fault (Pozalagua Quarry, Basque- Cantabrian Basin, Northern Spain). Sedimentology, 59, 1345-1374.

Teichert, C., 1964. Recent German work on the Cambrian and Saline Series of the Salt Range, west Pakistan. Geological Survey of Pakistan, Records, 11(1), 20pp.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic sea water. Journal of Chemical Geology, 161, 59-88.

Wandrey, C.J., Law, B.E., Shah, H.A., 2004. Patala-Nammal composite total petroleum system, Kohat-Potwar geological province, Pakistan. U.S. Geological Survey Bulletin 2208-B, 20pp.

Warren, J., 2000. Dolomite: occurrences, evolution and economically important associations. Earth-Science Reviews, 52, 1-81.

Yeats, R.S, Lawrence, R.D., 1984. Tectonics of the Himalayan thrust belt in northern Pakistan. In: Haq, B.U., Milliman, J.D.

(eds.). Marine geology and oceanography of Arabian Sea and Coastal Pakistan. New York, Von Nostrand Reinhold, 177-

Yeats, R.S, Khan, S.H., Akhtar, M., 1984. Late Quaternary deformation of the Salt Range of Pakistan. Geological Society of America, Bulletin, 95(8), 958-966.

Yeats, S.R., Hussain, A., 1987. Timing of structural events in the Himalayan foothills of north-western Pakistan. Geological

Society of America, Bulletin, 99, 161-175.

Zenger, D.H., Dunham, J.B., Ethington, R.L., 1980. Concepts and models of dolomitization. Society for Sedimentary Geology

(SEPM), 28 (Special Publication), 320pp.

Zhang, F., Xu, H., Kornishi, H., Shelobolina, E.S., Roden, E.E., 2012. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite. American Mineralogist, 97, 556-567.

Downloads

Published

2019-01-21

Issue

Section

Articles