SHORT COMMUNICATION

ENZYME REPLACEMENT PREVENTS ENAMEL DEFECTS IN HYPOPHOSPHATASIA MICE

Yadav MC1,*, Cardoso de Oliveira R1,2,*, Foster BL3, Fong H4, Burak EC, Narisawa S1, Sah RL5, Sommerman M3,#, Whyte MP6 and Millán JL1

1Sanford Children Health Research center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; 2University of São Paulo, Bauru Dental School, Department of Biological Sciences, Bauru-SP, Brazil; 3National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892; 4Department of Periodontics, University of Washington, Seattle, WA 98195; 5Department of Bioengineering, University of California, San Diego, La Jolla, CA 92037; 6Shriners Hospital for Children and Washington University, St. Louis, MO 63131 and 63110, USA.
Corresponding author’s E-mail: millan@sanfordburnham.org

Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl-/-; Akp2-/-) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl-/- mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl-/- mice, histological, μCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were corrected in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP (sALP-FcD10, a.k.a. ENB-0040) at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization, and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP.