ANUARI DE FILOLOGIA. ANTIQVA ET MEDIAEVALIA (Anu.Filol. Antiq.Mediaeualia)
8/2018, pp. 352—360. ISSN: 2014-1386

THE COMPUTER WILL DO IT: TESTING PYTHON AND
ARCMAP ON THE ITINERARIUM MARITIMUM

NURIA GARCIA I CASACUBERTA

Archaeology, University of Southampton
ngclgl4@soton.ac.uk

ABSTRACT

In this paper I would like to present some code to have the computer generate maps from texts.
My test-case is a passage in the Itinerarium Maritimum. First of all, place names in the text will be
identified. From there, some Python code will locate the coordinates by double-checking the place
names with a reference document downloaded from the Pleiades Gazeteer. The data extracted
will then be saved in a .txt file and inserted into mapping software, in this case ArcMap, in order
to generate the cartographical image.

KEY WORDs: Python, ArcMap, Itinerarium Maritimum, maps, Latin texts

QUE HO FACI L'ORDINADOR: APLICACANT PYTHON I ARCMAP A L'ITINERARIUM
MARITIMUM

RESUM

En aquest article voldria presentar un model de codificacio per tal que I’ordinador generi mapes
a partir de toponims en textos. El meu cas d’estudi sera un passatge de l'Itinerarium Maritimum.
Primer de tot, caldra identificar els toponims en el text. A partir d’aqui, un codi en llenguatge
Python els atribuira coordenades a base de contrastar aquests toponims amb un document de
referencia descarregat del Pleiades Gazeteer. Les dades es guardaran en un fitxer .txt i s'insertaran
en el software topografic, en aquest cas ArcMap, per tal de generar la imatge cartografica.
PARAULES CLAU: PYTHON, ARCMAP, ITINERARIUM MARITIMUM, MAPES, TEXTOS LLATINS

1. INTRODUCTION

Among the myriads of concepts and skills that Professor Mayer taught me,
the most persistent theme was an avidness for completeness and
interdisciplinarity. These teachings were most present in my recent work with
ancient geographical texts, as I became more and more familiar with
geomorphological notions and climatic events. Professor Mayer also
demonstrated in every lecture his masterful abilities in order to render the texts
(and quite often also the intertexts) intelligible to the wider public, something
that was truly inspiring and that I endeavour to put into practice every day. In
the case of my geographical research, a good starting point to present the content
to unfamiliar audiences are, of course, maps. In this paper, I would like to present
some basic Python code created by myself in order to have the computer generate
them in a few clicks. While I am aware of online repositories of maps or tools to

Data de recepcié: 30/12/2017
Data d’acceptacio: 15/02/2018

The computer will do it: testing Python and Arcmap 353

create them!, my aim in writing my own code was to be able to display sites
customised to my needs in an effective, quick, and easy-to-use way. As a
beginner in the Digital Humanities, I would like to stress particularly this last
point: the simpler the code, the more capable general public will be of using it.
First of all, though, a word of warning: the computer is no substitute at all for the
human mind, it is merely a tool to make some things, particularly repatitive tasks,
significantly faster. Scholars first have to collect the appropriate data, order it in
the correct manner, and present the results adequately for the audience to
understand. Otherwise, using a computer, or any other tool for that matter, risks
becoming superfluous and insignificant, if not straightforwardly erroneous.

2. SOME CAREFUL PLANNING

A computer will not be able to do anything that a human has not previously
programmed it to do. Moreover, if one gives to a computer a command that is in
the slightest sense imprecise or ambiguous, it will either return a bizarre error
message or an absolutely unexpected, unwanted, and useless bunch of results.
Owing to this, one needs to do some careful planning before one can actually run
any software whatsoever.
Obviously, the first question in the process should be: what is it that I need to do?
In this case, we need the computer to generate a map showing the locations
mentioned in our text. Next follows some thought of how we will communicate
with the computer so that it does generate the map. There exists mapping
software, both free and open-source, or professional. My software of preference
is ArcMap, but this is a personal choice. In order to generate a cartographic
image, ArcMap will need a background layer with coordinates embedded in it,
and a list of the coordinates that we want it to display. ArcMap does have
templates with coordinates, so we do not need to worry about those. Therefore,
all that is left for us to do is to feed the coordinates that we need into the mapping
software. If the user only has one or two sites, it is probably easier to introduce
the coordinates manually. However, when the user is working with a relatively
large corpus, copy-pasting coordinates can take large amounts of precious time,
as I discovered by experience. Because of this reason, I decided to create some
code that would generate the list of coordinates for me.

3. CREATING THE CODE AND THE MAP

3.1 Identifying and listing the place names in the text

I will concentrate on a specific text, namely a part of the Itinerarium
Maritimum, the Itinerarium portuum uel positionum from Rome to Arelate (pages
79-81 in the edition by Otto Cuntz). The sole reason for that is that this text is
interesting for my research, but any other text containing geographical names

! More significantly, there was some discussion about this issue recently in the Digital Classicist Mailing
List (messages on 30th August 2017). The best institution to suit this need is the Ancient World Mapping
Centre, as well as their Github page.

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

354 NURIA GARCIA I CASACUBERTA

could serve the same purpose. The text of the Itinerarium presents two crucial
challenges in order to process it in a computer:

1. The orthography does not follow rules, particularly not the standarisation
of names established nowadays.

2. Place names appear declined generally in ablative and accusative,
depending on the context. Instead, toponyms in the modern gazeteers are
found in the nominative.

A good example of that is Pirgos in the first line of the text: Ad portu Augusti Pirgos,
positio, m. p. XXVIII. This is an accusative indicating locus quo, but in the next
line, the text reads Pirgis in ablative, expressing locus unde (A Pirgis Panapione,
positio, m. p. III). However, that toponym comes from Greek mvgyot (‘towers’),
and the standard form accepted nowadays, and therefore the form that we can
find in the gazeteers, is Pyrgi.

To overcome these challenges, two methods are valid: either making the
toponym list manually or taking a few more steps with the computer. If the work
involves only a short passage or only a small number of items, my advice is to
make the list manually, as it is faster and easier. The computer method involves
marking up the text, which is enormously time-consuming. I would only
recommend the marking up if we are likely to need to retrieve the toponyms at a
later stage, or if we wished to mark up the rest of the text regardless of the map
making.

Due to the restricted space of this paper, I will proceed to write my toponym list
manually, so that I can focus on the code for mapping. If the text was written in
a modern language, and particularly English, there are natural language
processing tools already available in Python to detect such terms as place names.
However, I am not aware of any such tools focusing on Greek and Latin
toponymy. In addition, due to the issues pointed out above, even if those tools
existed, their application to the Itinerarium would be extremely complex, if not
impossible at the present stage of our technology.

Notwithstanding, the computer method can be summarised as follows: first of
all, an electronic version of the text is needed. While sites like the Packard
Humanities Institute and the Latin Library provide plenty of typed versions of
Latin texts, I have not been able to find any electronic version of the Itinerarium
online. Given that I am only interested in 3 pages, the easiest thing to do was to
create the electronic text myself: I scanned the book as a pdf, I enabled the text
recognition option, and I pasted the result into Notepad in order to obatin a .txt
file that is later machine-readable.

After that, we need XML processing software so that the text can be marked up
using the TEI guidelines. This would allow the computer to identify which words
are the toponyms and to associate them with their regularised nominative form.
The resulting file should be filtered by Python code based on Natural Language
Processing. That code should, firstly, pick up the parts of the text marked up as
toponyms, secondly select only those that are not repeated (i.e., if a toponym

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

The computer will do it: testing Python and Arcmap 355

appears twice or more, it is only considered once), and thirdly print the labels. If
we were only dealing with the two lines of text above, the final result should be
a list with the words Portus Augusti, Pyrgi, and Panapio.

However, as stated above, for the purposes of this paper it was faster to write the
toponym list manually. The full list of toponyms in the passage selected,
modified to their nominative forms in the orthography accepted nowadays, is the
following: Portus, Pyrgi, Panapio, Castrum Novum, Centum Cellae, Algae, Rapinium,
Graviscae, Maltanum, Quintiana, Regae, Amine, Portus Herculis, Incitaria, Domitiana,
Alminia, Portus Talamonis, Umbro, lacus Aprile, Alma, Scabris, Falesia, Populonium,
Volaterrae, Portus Pisanus, Pisae, Luna, Macra, Segesta, Portus Veneris, Portus
Delphini, Genua, Vada Sabatia, Albigaunum, Portus Maurici, Tavia, Vintimilia,
Hercules Monoecus, Avisio, Anao, Olivula, Nicaea, Antipolis, Lero, Forum Iulium,
Sambracitanus Sinus, Heraclia Caccabaria, Alconis, Pomponiana, Telo Martius,
Tauroention, Cariscae, Citarista portus, Aemines, Imandrae, Massilia, Incarus, Dilis,
Fossae Marianae, Gradus Massilitanorum, Rhodanus, Arelate.

3.2 Generating a list of coordinates

We have now identified the sites that we wish the map to show. We now
need to find coordinates for them. The first thing we need is a database of
coordinates from which we can select the elements that we wish. In the case of
the Classical world, the Pleiades Gazeteer very conveniently offers an option to
download their data in CSV UTFE-8 format. Their file, which we can open in Excel
or similar software, is extremely rich, but for the purposes of our code we only
need the columns listing site names, latitudes and longitudes. To simplify things
and avoid confusing error messages in the computer, I suggest deleting all the
columns except those three and saving the resulting file, always in CSV UTF-8
format. I will now proceed to the actual writing of the code.

The Python software that I am using is the Jupyter Notebook (version 5.0.0) in
the Anaconda Navigator. When we open a new file on the Notebook, first of all,
we will need to import the ‘re’ package, which is used for matching text patterns.
After that, we need to write some code to allow the Jupyter Notebook to import
our CSV file, which in my case I named pleiadesmaps3col.csv. We then need to use
Python to instruct the computer to read the file and to decode the UTF-8 format.
Finally, we need to use Python to have the computer separate the elements in our
CSV file and group them by lines in a new variable, which I have called
coords_list.

Once we have done that, we can either input in Jupyter the list of toponyms that
we need or read it in if we have it elsewhere. For the reasons expressed above, I
decided to type my list directly on the Jupyter Notebook. We have to make sure
though that the elements in our new variable are entered with the correct syntax
(e.g. sites=[“Roma”, “Pyrgi”, “Panapio”]).

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

356 NURIA GARCIA I CASACUBERTA

The next step is to create another variable in the form of an empty list, which I
have named found_list. We can now introduce a couple of for-loops with an if-
statement at the end, and instruct Python that:

1. for every item in our coords_list;

2. it should check every item in our sites list;

3. And if the sites are contained within the coords_list, it should add them to

our empty found_list, and print the results.

It is useful to add a comma between speechmarks after the site name in this if
statement to avoid random results where different locations contain part of the
spelling of one of the sites that we are actually looking for. In other words, if we
do not add the comma to the if-statement, when the computer searches for Macra,
it will return both Macra and Macrales in the results.
At the end of the process, the code will produce a list of sites names with their
coordinates: we should save that list as a .txt file, which is the format recognised
by our mapping software. The following figures show the successive commands
and the result that they produce when we run the code:

: J U pyte i Untitled Last Checkpoint: a few seconds ago (unsaved changes)

File Edit View Insert Cell Kernel Help
+ < A B A v N E C| cCode v @& CelToclbar & & ©O
In []: import re
pleiadesFile = open("H:\TEXT 2 TECH DHOxSS\pleiadesmaps3col.csv", "rb")
pleiades = pleiadesFile.read()
pPleiades = pleiades.decode('utf-8")
pleiades = re.sub('".*?, (.*2)"', r"\1", pleiades)

coords_list = []
for line in pleiades.split("\n") [:1]:
coords_list.append(line)

found list = []
for item in coords list:
for s in sites:
if s + , in item:
print (item)
found list.append(s

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

sites = ["Portus", "Pyrgi", "Panapio", "Castrum Novum", "Centum Cellae", "Algae",

The computer will do it: testing Python and Arcmap 357

Forum Tulium,37.968343,-3.88883
Aemines,43.211683,5.423189
Dilis,43.356777,5.826714

Fossae Marianae,43.437712,4.944532
Fossae Marianae,42.25,4.75

Gradus Massilitanorum,43.474313,4.745185
Incarus,43.338866,5.152226
Massilia,43.296854,5.382499

Rhodanus, 44.25,4.75

Col. Arelate,43.67766785,4.6385389
Col. Iulia Paterna Sextanorum Arelate,,
Alconis,43.1460974,6.325855
Anao,43.688824,7.2333009
Antipolis,43.588587,7.128982
Avisio,43.724847,7.381752

Heraclia Caccabaria,43.173852,5.53889
Lero,43.51948559,7.6845411
L"&lmanarre,,
0livula,43.784222,7.310126
Pomponiana,42.999934,6.2838345

Portus Maurici,43.873685,8.815133
Forum Tulium,41.89485555,12.48478393
Genua,44.4862315,8.93155

Portus Delphini,44.383972,9.287761
Segesta Tigulliorum,44.273159,9.396776
Segesta,44.273159,0,206776

Vada Sabatia,44.260935%,8.435757
vallis Domitiana,,
Alma,36.584087,%.538986

Pyrgilion,,

Leros,37.158837,26.854663

Leros,,

Castrum Nowum,42.25,11.75
Panapio,42.834335,11.854427
Pyrgi,42.8153455,11.963217

Macrales,,
Segesta,37.04832345,12.838141
Segesta,37.94@3345,12.838141

Portus Herculis,,

Aquae Segestanze,37.972583,12.8915876
Leros,,

Emporion Segestanon,38.828086,12.88672
Luna,,

Micia,41.85699,21.177049
Sambracitanus 5inus,43.25,6.75
Tauroention,43.874395,5.803273
Tavia,,

Telo Martius,43.1251,5.931@31
Almana, ,

Vvia Domitiana,,

Alma M.,,

alma, ,
Domitiana,42.444525,11.11594
Falesia,42.9284215,18.5414@95
Populonium,42.988587,18.4988855
Incitaria,42.436231,11.893768
Luna,44.06447535,108.824166
Macra,d44.25,9.75
Pisae,43.71928765,1@.39918445
Portus Herculis,42.394886,11.283981
Portus Pisanus,43.6798755,16.34585
Portus Veneris,44.848291,9.832829
Umbro,,

Scabris,,
Algae,42.128528,11.757764

Castrum Nowum,42.752305,13.962266
Centum Cellae,42.821179,11.79681
Graviscae,42.212778,11.718278
Rapinium,42.156%9,11.732615
Regae,42.368819,11.597172

Umbro,,

Portus Veneris,42.528631,3.187661
Ad Lunam,48.547197,9.8934

Fig. 1 a/b. Outline of the commands in the Python cell and their results

In spite of this success, it is easy to see that the results of the code above need
some more polishing before we can introduce them to ArcMap. For example,
there are sites like Umbro, which are not associated to any coordinates because
those are not known, and contrarily, there are sites like Segesta which appear
several times (twice with the exact same coordinates for no obvious reason).
Similarly, it is not the case in this text but sometimes there are sites like Portus
Veneris, that are repeated because they refer to two different locations with the
same name. At this stage the human skill is irreplaceable to sort all these things
out.

Repeated sites, or different sites with the same name, are not easy to spot when
they do not appear together, so a good first strategy here would be to put the
resulting list in alphabetical order. An easy way to exclude the “wrong” site in
the case of multiple locations with the same name would be to restrict the scope
of the acceptable coordinates with further if conditions before the print command,
in the lines of: “if position 1 (the latitude) is smaller than 40, do not print”, “if
position 2 (the longitude) is bigger than 15, do not print” etc. Alternatively, if we
are only dealing with a restricted number of coordinates, we can add our if
conditions to print only use the results containing coordinates starting with a
certain number.

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

358 NURIA GARCIA I CASACUBERTA

4. UNFOUND SITES

In fact, one has to be not only familiar with one’s data, but also with the data

from the external sources consulted, in this case Pleiades. For example, the code
is not going to detect Hercle Manico or Nicia (the spellings in the Itinerarium), but
Herakles Monoikos and Nicaea, which are the versions on Pleiades. Using the
wrong Latinised or Hellenised version (in this case respectively Hercules
Monoecus and Nikaia) will result in the same lack of results because the code will
not be able to find a match. Therefore, it is useful to write a second bit of code in
order to learn which locations have not been found, and thus be able to solve
potential problems of this kind? by finding the spelling version (either Latinised
or Hellenised) that the computer is able to match.
A similar issue is posed by the sites that have not been identified on land, and
therefore do not feature in the original database that we were searching from (the
Pleiades CSV and, consequently, coords_list). As one should expect, there are gaps
in our knowledge still nowadays and not all of the sites will have been identified
successfully in the physical territory or been entered already in a computer
system. We have instructed the code above to print only those sites that it has
found in the database, but if one is doing serious work, one would also wish to
know which sites are missing in order to point those out for the reader or to
undertake further research. Again, if we are working with a very small number
of sites, we should be able to see from ourselves which are the missing ones.
However, the list above is relatively long, and it would take time and a rather
sharp eye to identify if there are elements missing in our results. An easy solution
here is to add an extra for-loop iterating through sites and printing those that were
not included in our found_list:

for s in sites:
if not s in found_list:
print("did not find " + s

did not find Portus Augusti
did not find Maltanum

did not find Quintiana

did not find Arnine

did not find Alminia

did not find Portus Talamonis
did not find lacus Aprile

did not find Vada Volterrana
did not find Albigaunum

did not find Vvintimilia

did not find Hercules Monoecus
did not find Cariscae

did not find Citarista portus
did not find Imandrae

Figure 2. Sites not found

2 A similar problem is posed by the mention of a place called Vada in the Itinerarium. Due to the route
followed, that site probably refers to the port known as Vada Volterrana, but this toponym is not found in
Pleiades, which is the reason why | have chosen to identify the site as Volaterrae for the purposes of this
paper. More accurately, | should have taken the Vada from the “did not find”’ results and manually added
the coordinates to the .txt file from another source.

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

The computer will do it: testing Python and Arcmap 359

On the other hand, toponyms found with missing coordinates, like Umbro, are
easy to spot. The researcher can quickly locate them manually and delete them
from the list, transfer them to a footnote, or whichever operation they think is
suitable. However, a code similar to that above could be run on the found_list
asking to print those elements that contain two consecutive commas (and
therefore have the coordinates missing, like: Umbro,,). Again, running the code is
more useful when dealing with a large number of results.

5. INTRODUCING THE COORDINATES LIST TO THE MAPPING SOFTWARE

Once our .txt file is saved, we are ready to import it to our mapping software
of choice. For my convenience I usually employ ArcMap, but other options are
available, like QGIS or even tools based on Google Maps. No matter what
software we choose, the essential requirement is that the background map needs
to have coordinates embedded in it. Some of the templates in ArcMap, for
example, do not support coordinates, and consequently will produce no results.
Once this has been established, it is just a matter of importing the .txt file into the
software using the appropriate icons. In the case of ArcMap, and perhaps other
software as well, we will need to define which is the X and the Y axis for the
correct display of the points, but this is easily done in the pop-up menu. As a final
result, we obtain the following image:

THE LOCATIONS OF THE ITINERARIVM PORTVVM VEL POSITIONVM

Unknown locations or
locations with unknown coordinates: e

Albigaunum gl
Alminia Pt
Al
Gariscae
Citarista portus.

- -, Imandrae

S 4 lacus Aprile

~ altanum

Portus Talamonis
Quintiana
Vintimilia

1-600,000

Fig. 3. The resulting map

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

360 NURIA GARCIA I CASACUBERTA

6. CONCLUSION: SERVICE AND PURPOSE OF THIS SOFTWARE

The use of this software is obvious: to make maps. Maps are an essential
complement to help scholars read through each other’s research, particularly at
the more local sites. While every Classicist knows fully well the locations of
Rome, Athens or Tarraco, most of them will not be as familiar with Tortosa or
Vic, for example. In such cases, it is mandatory to include a small map so that
quality research can reach the wider public effectively.

Personally, I created this software in order to generate maps customised to my
needs. Generally speaking, I found that the maps available online in most cases
did not mark all of the places that I needed to discuss throughout my thesis, or
else they offered images that were not good quality — and this when I was indeed
able to find maps that came from reliable websites and were not excluded for use
due to copyright issues. In consequence, the necessity of generating my own
customised maps became evident.

While the formatting of the text in order to be able to run the code on it may look
laborious, I can confirm by experience that it does speed up the work
significantly, particularly when dealing with large corpuses or lists. Once the
main software has been planned, it can be used over and over very comfortably
with different sets of data, and the results are highly satisfactory. I, for my part,
would like to encourage vehemently interdisciplinarity between philology and
other sciences, as well as widespread scientific diffusion to both specialised and
amateur audiences, like Professor Mayer constantly advocates for. Finally, if I
may borrow Tacitus’s famous quote (Dialogus de oratoribus, 32), ipsa multarum
artium scientia etiam aliud agentis nos ornat.

BIBLIOGRAPHY

CUNTZ, O. (1929), Itineraria Romana, Leipzig, Teubner.
MCGILLIVRAY, B . (2014), Methods in Latin computational linguistics, Leiden, Brill.

References
Anaconda Navigator: <https://anaconda.org/anaconda/anaconda/navigator>

Ancient World Mapping Centre: <www.awmc.unc.edu>

Ancient World Mapping Centre (Github): <https://github.com/AWMC/geodata>
ArcMap: <desktop.arcgis.com/en/arcmap/>

Digital Classicist Mailing List: <www.digitalclassicist.org/list/>

Pleiades: <pleiades.stoa.org>

Python: <https://python.org>

QQGIS: <https://ggis.org>

The Text Encoding Initiative (TEI): <www.tei-c.org>

Note: all websites accessed regularly until December, 2017

ANU.FILOL.ANTIQ.MEDIAEVALIA, 8/2018, pp. 352-360. ISSN: 2014-1386

