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The present study discusses retention criteria for principal components 
analysis (PCA) applied to Likert scale items typical in psychological question-
naires. The main aim is to recommend applied researchers to restrain from re-
lying only on the eigenvalue-than-one criterion; alternative procedures are 
suggested for adjusting for sampling error. An additional objective is to add 
evidence on the consequences of applying this rule when PCA is used with 
discrete variables. The experimental conditions were studied by means of 
Monte Carlo sampling including several sample sizes, different number of var-
iables and answer alternatives, and four non-normal distributions. The results 
suggest that even when all the items and thus the underlying dimensions are 
independent, eigenvalues greater than one are frequent and they can explain 
up to 80% of the variance in data, meeting the empirical criterion. The conse-
quences of using Kaiser’s rule are illustrated with a clinical psychology ex-
ample. The size of the eigenvalues resulted to be a function of the sample size 
and the number of variables, which is also the case for parallel analysis as 
previous research shows. To enhance the application of alternative criteria, 
an R package was developed for deciding the number of principal components 
to retain by means of confidence intervals constructed about the eigenvalues 
corresponding to lack of relationship between discrete variables. 
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Retención de componentes principales para variables discretas 
 

El presente estudio trata sobre diferentes criterios para la retención de 
componentes en el análisis de componentes principales (PCA) aplicado a escalas 
tipo Likert, que son comunes en los cuestionarios psicológicos. El principal ob-
jetivo del estudio es recomendar a los investigadores no confiar en el criterio 
de extracción fundamentado en criterio del autovalor mayor que uno, sugiriendo 
procedimientos alternativos que se ajusten al error muestral. Un objetivo adicio-
nal consiste en añadir evidencia sobre las consecuencias de utilizar el criterio 
antes mencionado cuando el PCA se usa con variables discretas. Las condiciones 
experimentales se estudiaron por medio de remuestreo Monte Carlo, incluyendo 
distintos tamaños de muestra, diversas cantidades de reactivos y alternativas de 
respuesta y, finalmente, diferentes distribuciones de probabilidad para las opcio-
nes de respuesta. Los resultados sugieren que, incluso cuando todos los ítems y 
las dimensiones subyacentes son independientes, los autovalores mayores que uno 
son frecuentes y pueden dar cuenta de hasta el 80% de la varianza de los datos, 
alcanzándose el criterio empírico. Las consecuencias de utilizar el criterio de 
Kaiser se ilustran con un ejemplo propio de la Psicología clínica. Se halló que el 
tamaño de los autovalores es una función del tamaño de la muestra y del número 
de variables, que se corresponde con lo encontrado previamente para el parallel 
analysis. Para potenciar la aplicación de criterios alternativos, un paquete en R 
fue desarrollado para decidir el número de componentes principales que deben 
retenerse y recurriendo a intervalos de confianza fundamentados en los auto-
valores asociados a la inexistencia de asociación entre las variables discretas. 

Palabras clave: análisis de componentes principales, autovalores, para-
llel analysis, reactivos discretos. 

 
Introduction 
 
 Psychological research often deals with understanding the structure of corre-
lations among measured variables and even obtaining indirect measurements of 
underlying dimensions for applied and theoretical purposes. For instance, a psy-
chological test assesses anxiety as a construct (or latent variable) by means of 
observable variables such as the items of a questionnaire referring to physiological 
measurements, cognitive aspects, etc. Regarding the identification of constructs, it 
has been argued that exploratory factor analysis (EFA) is the proper statistical 
procedure for such an aim (Fabrigar, Wegener, MacCallum & Strahan, 1999), at 
least if there is not enough foundation to specify an a priori model. According to 
Preacher and MacCallum (2003), an often followed routine in applied and theoret-
ical research consists of using a variation of EFA wherein researchers carry out 
principal components analysis (PCA), retaining components with eigenvalues 
greater than 1.0, and obtaining new orthogonal dimensions by varimax rotation, a 
bundle of procedures termed “Little Jiffy”. However, although PCA has been 
applied in many psychological studies, it is not a reasonable substitute of EFA 
(Fabrigar et al., 1999; Preacher & MacCallum, 2003). In fact, PCA does not seem 
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to be a suitable statistical method to identify latent structures since principal compo-
nents are linear composites of the measured variables and, thus, include common 
and unique variance. That is, PCA and EFA have different mathematical models 
and conceptual meanings and the choice among the two should be based on re-
searcher’s aims and on the characteristics of the techniques. The present study 
focuses on the use of PCA due to the wide use of this statistical technique in ap-
plied and theoretical research, although it is not an appropriate substitute of EFA.  
 PCA is a statistical technique applied to a set of measured variables when 
researchers are concerned with identifying which variables in the set form coher-
ent subsets that are independent among them. Hence, if the number of measured 
variables equals p, the specific goal of PCA is to summarise patterns of covari-
ances or correlations among variables to a usually smaller number q of underlying 
dimensions. One of the most difficult decisions that analysts have to make is to 
choose the number of principal components to retain. In general, researchers us-
ing PCA decide on the basis of the absolute and relative size of eigenvalues, alt-
hough there are other rules such as including enough principal components to 
account for, say, 80 percent of the total variance (i.e., the “empirical criterion”) or 
basing the decision on the graph called “scree plot” (Cattell, 1966). Accordingly, 
and as a rule-of-thumb, many statistical packages specify a default option in 
which the number of retained principal components is equal to the quantity of 
eigenvalues greater than one. This rule, suggested by Kaiser (1960), states that the 
number of reliable principal components is as large as the number of the existing 
eigenvalues greater than one. That is, an eigenvalue less than one implies that the 
scores on the principal component would have negative reliability, although Kai-
ser’s reasoning has been shown to be unsuitable (Cliff, 1988). Additionally, the 
eigenvalues-greater-than-one rule also means that only principal components that 
account for a greater variance than measured variables do have some summariz-
ing power. These rules can be used and specifically adapted when either correla-
tion or covariance matrices are used to obtain the eigenvalues. 
 The eigenvalues-greater-than-one rule may, however, be unsuitable since sam-
pling effects may often lead to increasing the number of eigenvalues greater than one. 
That is, measured variables that are independent among themselves frequently lead 
to retaining a principal component, although it may not be useful to understand the 
meaning of the global phenomenon. Zwick and Velicer (1982) studied 48 population 
correlation matrices and systematically varied the number of measured continuous 
variables, number of components, sample size, and component saturation. The study 
showed that the eigenvalues-greater-than-one rule consistently overestimates the 
number of principal components retained. Interestingly, the number of principal com-
ponents retained often fell between one-third and one-fifth of the number of measured 
variables included in the correlation matrix for low saturation and it increased as 
the number of measured variables became larger. Hence, it can be argued that in 
general, the use of the eigenvalues-greater-than-one rule cannot be recommended. 
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 As a potential solution to the overestimation of the number of principal com-
ponents, Horn (1965) proposed a statistical procedure, called parallel analysis, for 
determining the number of principal components to retain. According to this crite-
rion, the eigenvalues of a population correlation matrix of independent measured 
variables are all equal to 1.0. However, if random samples are obtained from such 
a population correlation matrix, most initial eigenvalues will probably exceed 1.0 
whereas the last eigenvalues will be lower than 1.0. Hence, eigenvalues of empirical 
correlation matrices of p observed variables and n participants should be compared 
with those obtained from correlation matrices on uncorrelated random data, given 
that the population matrix corresponds to the identity matrix. Thus, principal com-
ponents of empirical correlation matrices for which eigenvalues are significantly 
greater than those of random correlation matrices would be retained. It should be 
noted that applying this rule means that researchers are not interested in principal 
components that do not account for more variance than the corresponding compo-
sites from distributions of random and independent numbers. Also note that the 
rationale can be extended to covariance matrices. It should be mentioned that spe-
cific and free software for carrying out parallel analysis in PCA and even EFA is 
easily available on internet (Patil, Singh, Mishra & Donavan, 2008) and it can be 
also obtained by well-known computer programs (Ledesma & Valero-Mora, 2007). 
 It has been found that parallel analysis commonly leads to accurate decisions 
when applied to PCA (Zwick & Velicer, 1986). Parallel analysis has been studied 
assuming multinormal distributions or other continuous distribution functions 
(Dinno, 2009), but Likert scales need to be considered due to their frequent use in 
applied psychology. Accordingly, recent research has focused on both studying 
the performance of parallel analysis for binary data (Weng & Cheng, 2005) and 
adapting it to deal with items with categorical responses (Liu & Rijmen, 2008). 
Hence, although parallel analysis has also been used for analysing Likert scales 
(Hayton, Allen & Scarpello, 2004), systematic research on the parallel analysis 
technique with PCA has to be conducted for this kind of scales, as it is a common 
procedure in analysing questionnaires. 
 Statistical descriptive analysis is not sufficient for making inferences to pop-
ulations when psychological scales are developed and inferential procedures are 
needed to obtain statistical significance for eigenvalues. However, in studies 
where psychological questionnaires require participants to answer items choosing 
one alternative among the k available and ordered options, the discrete nature of 
these Likert scales does not allow assuming the observed variables follow a p-
variate normal distribution and probably leads to floor and ceiling effects (Nanna 
& Sawilowsky, 1998). Hence, the asymptotic confidence intervals for eigenvalues 
and hypothesis testing methods proposed for making statistical decisions are not 
suitable for most psychological research involving psychometric data analysis. 
Moreover, asymptotic probability distributions have been mainly derived for the 
eigenvalues and eigenvectors of a sample covariance matrix (Flury, 1988; Jollife, 
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1986). Regarding correlation matrices, asymptotic distribution theory of the char-
acteristic roots and vectors is more complicated than that of covariance matrices 
(Morrison, 1976). Due to the reasons mentioned above, it seems that specific sta-
tistical tests should be developed to assign statistical significance to eigenvalues 
and, thus, make decisions regarding eigenvalues for discrete random variables. 
 The present investigation focuses on studying the eigenvalues-greater-than-
one rule, as we expected that this rule may improperly lead to extract a number of 
irrelevant principal components for spherical population matrices. This effect can 
be explained by sampling error if sample correlation matrices are analysed. In 
addition, the research was also intended to study how that rule may lead to flawed 
statistical conclusions since its use may suggest retaining an only and artificial 
principal component for independent observable variables. This fact becomes 
problematic in those studies in which researchers try to develop one-dimensional 
scales and are interested in obtaining some empirical support. As applied psy-
chometric data are often ordinal level Likert scale data, the simulation study fo-
cuses on this sort of measured variables since we were interested in finding some 
useful results for applied psychological research. Several multivariate techniques, 
including dimensionality reduction procedures, have already been investigated in 
relation to non-quantitative variables (Bernaards & Sijtsma, 1999; Ferrando & 
Lorenzo-Seva, 2001; Jöreskog & Moustaki, 2000; Lee, Song & Lu, 2007; Linting, 
Meulman, Groenen & van der Kooij, 2007; Meara, Robin & Sireci, 2000; Millsap 
& Yun-Tein, 2004) and thus the research on such variables is relevant.  
 
 
Method 
 
Data generation 
 
 Given that the objective of the present study was to examine the functioning 
of PCA applied to psychological measurements, the simulated data consisted of 
participants by items matrices. Several characteristics of empirical studies were 
investigated, including the common values available in applied studies. In order to 
select matrix size simulation values, we carried out a non-systematic review of 
applied studies1 and also considered the findings of previous and more extensive 
studies (Fabrigar et al., 1999; Henson & Roberts, 2006; Weng & Cheng, 2005). 
Thus, the sample sizes included in the simulation study were 100, 300, 500, 700, 
and 1000. Our review allowed us to set the number of items to be explored (i.e., 
10, 30, 50, 70, and 100 items). Items were supposed to be answered according to 
k-point ordinal scales, whose values ranged from 1 to k. Several values were inves-

                                                   
1 The articles consulted for the non-systematic review are marked with an asterisk in the References section. 
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tigated for k (3, 4, 5, 6, and 7), representing different intensities of disagreement/ 
agreement to the items’ statements, as it could have an effect on the decision rules. 
 For all experimental conditions, data were generated from a population in which 
the correlation matrix among observed variables was set equal to the identity matrix. 
That is, the observed variables, which represent items of psychological scales, were 
supposed to be orthogonal. For each experimental condition defined by the combina-
tions of the abovementioned conditions, data were generated to represent four patterns 
of items’ mass probability distributions: discrete uniform, discrete triangular, discrete 
skewed, and mixed. A total of 500 experimental conditions were specified, generating 
100,000 data matrices for each of them. A mathematical model was developed to es-
tablish the specific probabilities for the discrete distribution functions in order to 
guarantee some objective criterion. Previous studies were also taken into considera-
tion to determine the mass probability functions to be included in the simulation 
study (Micceri, 1989; Nanna & Sawilowsky, 1998; Sawilowsky & Blair, 1992). 
 A discrete uniform distribution of answers represents the case where all alter-
natives are equally attractive to the participants and the mass probability value of 
each alternative is equal to 1/k, where k denotes the number of answer options. The 
mass probability distribution for skewed conditions (figure 1) represents those cases 
in which alternatives of one extreme are more attractive to the participants. An exam-
ple of such a distribution is the case in which each mass probability is equal to twice 
the previous one when moving towards the heavier tail. For instance, considering 
the black bars of figure 1, the mass probability of rating 6 is .0159, for rating 5 is 
twice .0159 and so on until rating 1 where the mass probability is 32 times .0159. 
For the white bars representing a negatively skewed distribution, the probabilities 
are the mirror image of the ones for the positively skewed distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Two mass probability functions illustrating  

positively and negatively skewed distributions. 
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 For discrete triangular distributions, which correspond to symmetric distribu-
tions, all items’ mass probability values linearly increased from the extremes to 
the centre rates (as the white bars show on figure 2). This condition was studied 
since individuals may avoid extreme answers in favour of more moderate ones. 
An example of such a distribution is the case in which each mass probability is 
equal to twice the previous one when moving towards the centre. For instance, 
considering the white bars of Figure 2, the mass probability of ratings 1 and 6 is 
approximately .0714285, for rating 2 and 5 it doubles that value and for ratings 3 
and 4 it is four times the same value. It is also possible to consider a distribution 
which is bimodal at the extremes (see the black bars of figure 2). For this distribu-
tion, the mass probabilities for rating 1 and 6, on one hand, and for ratings 3 and 
4, on the other hand, are inverted with respect to the ones mentioned above.  
 The mixed condition was defined as a combination of discrete uniform, dis-
crete triangular, and discrete skewed items’ mass probability functions, different 
types of items being represented as far as possible by a third of each sort of distri-
bution. For questionnaires consisting of 10, 70, and 100 items, the number of 
them following a discrete uniform distribution was set equal to int(p/3) + 1, 
where p denotes the number of items. In the case of 50 items, the amount of them 
which are uniformly and triangularly distributed equalled int(p/3) + 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two mass probability functions showing 
bimodal at extremes and triangular distributions. 

 
Data analysis 
 
 Given that the eigenvalues of population matrices were equal to 1 and the 
eigenvalues obtained in simulated samples were expected to be close to 1, the 
empirical eigenvalues were compared to the expected ones. In fact, departures 
from sphericity were expected due to sampling error. 
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 The fact the items are independent means that the percentage of variance ac-
counted for by each principal component should theoretically be equal to 100 divided 
by the number of items. Hence, the expected variance accounted for by each prin-
cipal component was compared to the values obtained in the simulation study. 
 R and C codes were developed for generating data matrices according to the 
mass probability functions abovementioned (using the runif R function), to speci-
fy correlation matrices, and to obtain eigenvalues (by means of the dsyev Lapack 
routine). All computations were verified comparing the results to the output pro-
vided by common statistical software.  
 
 
Results 
 
Data features’ influence on eigenvalues 
 
 Out of the four factors studied (n, p, k, and type of distribution) only sample 
size and the number of variables proved to affect eigenvalues. The estimates cor-
responding to different number of alternatives only diverge at third decimal, 
which was also observed in the four distributions studied. Accordingly, the results 
presented are applicable to all values of k and to all the discrete distribution func-
tions studied. As shown on figure 3, a greater number of items are associated with 
larger first principal component (PC#1) eigenvalues. In contrast, for larger n the 
eigenvalues corresponding to PC#1 are smaller. The average eigenvalues obtained 
for each combination of n and p studied are presented in table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Mean eigenvalues for the first principal component (PC#1) for different sample sizes (n) 
and questionnaire sizes (p). The case of k = 3 alternatives and a uniform distribution is represented.  
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TABLE 1. AVERAGE EIGENVALUE AND PERCENTAGE OF VARIANCE ACCOUNTED 
FOR BY THE FIRST PRINCIPAL COMPONENT FOR EACH COMBINATION OF N 

(NUMBER OF PARTICIPANTS) AND P (NUMBER OF VARIABLES). 
 

 
 Complementarily, the results show that even when the variables are inde-
pendent, as much as 50% of the principal components have eigenvalues greater 
than one (see table 2). In general, it can be seen that an eigenvalue greater than 
one does not necessarily imply that there is a relationship between the variables 
and that they can be reasonably summarised by principal components. 
 

TABLE 2. PROPORTION OF PRINCIPAL COMPONENTS HAVING AN EIGENVALUE GREATER 
THAN ONE (Λ > 1) AND VARIANCE ACCOUNTED FOR BY THOSE COMPONENTS FOR EACH 

COMBINATION OF N (NUMBER OF PARTICIPANTS) AND P (NUMBER OF VARIABLES). 
 

n p = 10 p = 30 p = 50 p = 70 p = 100 cell content 

100 1.530 2.199 2.716 3.172 3.79 eigenvalue

15.30% 7.33% 5.43% 4.53% 3.79% variance accounted for 

300 1.295 1.640 1.893 2.111 2.399 eigenvalue

12.95% 5.47% 3.79% 3.02% 2.40% variance accounted for 

500 1.226 1.483 1.669 1.827 2.034 eigenvalue

12.26% 4.94% 3.33% 2.61% 2.03% variance accounted for 

700 1.190 1.403 1.555 1.683 1.850 eigenvalue

11.19% 4.67% 3.11% 2.40% 1.85% variance accounted for 

1000 1.158 1.333 1.457 1.560 1.695 eigenvalue

11.58% 4.44% 2.91% 2.22% 1.69% variance accounted for 

n p = 10 p = 30 p = 50 p = 70 p = 100 cell content 

100 .5000 .4333 .4200 .4143 .3900 proportion λ > 1 

62.60% 66.09% 71.48% 76.26% 80.40% variance accounted for 

300 .5000 .4667 .4600 .4429 .4400 proportion λ > 1 

57.27% 59.82% 63.09% 64.54% 68.22% variance accounted for 

500 .5000 .4667 .4600 .4571 .4500 proportion λ > 1 

55.62% 56.85% 59.25% 61.43% 63.80% variance accounted for 

700 .5000 .4667 .4800 .4714 .4600 proportion λ > 1 

54.75% 55.27% 59.20% 60.43% 61.91% variance accounted for 

1000 .5000 .4667 .4800 .4714 .4700 proportion λ > 1 
53.98% 53.86% 57.37% 58.27% 60.32% variance accounted for 
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Data features’ influence on the amount of variance accounted for 
 
 Since the amount of variance accounted for is related to eigenvalues, it varies 
only as a function of n and p. The amount of variance accounted for by the princi-
pal components decreases both for larger samples and for questionnaires with 
more items, as illustrated on figure 4. For instance, in the case of PC#1 as much 
as 15% of the information contained in the data can be accounted for when the 
questionnaire is short (see Table 1). Therefore, the fact that a principal component 
explains more than 100/p % of the variance should not be taken as an indicator 
that it has to be retained, since such values can be obtained in presence of random 
fluctuation. In addition, the amount of variability accounted for by the principal 
components with λ > 1 ranges from 53% to 80% (table 2), values that can be 
found frequently in applied studies justifying the principal components retained. 
In summary, the percentage of variance accounted for may also indicate relevant 
principal components in presence of independent items.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Variance accounted for by the first principal component (PC#1) for 
different sample sizes (n) and questionnaire sizes (p). The case of k = 6 

alternatives and a triangular distribution is represented. 

 
R code for making decisions on the number of principal components to retain 
 
 In order to offer applied psychologists a user-friendly procedure that yields 
both critical values and confidence intervals, an R package was constructed (dis-
crete_pca, available upon request). Efforts have been made to develop specific 
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software incorporating the findings of recent research on multivariate techniques 
(e.g., Kaufman & Dunlap, 2000; Lorenzo-Seva & Ferrando, 2006; O’Connor, 
2000). The procedure developed consists of the following steps: 
 
 1. Compute the proportions of answers given to each alternative. 
 2. Generate data matrices of the same size as the original one using the pro-
portions obtained in the previous step as mass probability. 
 3. Compute eigenvalues in the original and the simulated data matrices. 
 4. Compute the mean and standard deviation of the sampling distribution 
obtained in the previous step. 
 5. Print the critical eigenvalue and its corresponding confidence intervals at a 
specified confidence level. 
 
 Therefore, the output of the program helps applied researchers to decide 
whether to retain a principal component or not, considering the eigenvalues that 
could have been obtained solely by chance. Regarding the use of the package, 
once it is installed and loaded in the R working session, it can be used following 
the steps presented in the Appendix. 
 
 
An illustrative example of the effects of sampling error  

 
 In order to illustrate the inappropriateness of the eigenvalue-greater-than-one 
rule, the previously presented evidence gathered via simulation will be summa-
rised in a contextualised example. Suppose that the psychological inventory of 
interest is the World Health Organization Disability Assessment Schedule II 
(WHO-DAS II; World Health Organization, 2000), specifically the shorter 12-
item version, which has not been tested as extensively as the original 36-item 
instrument. The 12 questions that participants need to answer using a five-point 
scale (from 1 = none disability during the previous 30 days to 5 = extreme disabil-
ity) are: 1. Standing for long periods such as 30 minutes? 2. Taking care of your 
household responsibilities? 3. Learning a new task, for example, learning how to 
get to a new place? 4. How much of a problem did you have in joining in com-
munity activities (for example, festivities, religious or other activities) in the same 
way as anyone else can? 5. How much have you been emotionally affected by 
your health condition? 6. Concentrating on doing something for ten minutes? 7. 
Walking a long distance such as a kilometre or equivalent? 8. Washing your 
whole body? 9. Getting dressed? 10. Dealing with people you do not know? 11. 
Maintaining a friendship? 12. Your day to day work/school? 
 Although the items have been chosen to represent evenly six different do-
mains, it is possible to study how the items group in an exploratory manner until 
further evidence is available. In fact, there is a recent study (Luciano et al., 2010) 
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in which exploratory Principal Components Analysis (PCA) followed with an 
improper oblique rotation is applied to the instrument. Suppose that the results 
obtained from a sample of 100 participants were the following: 5 eigenvalues 
greater than one (2.15, 1.53, 1.22, 1.17, and 1.03) with 17.92%, 12.75%, 10.17%, 
9.71% and 8.66% variance accounted for, respectively (adding up to a total of 
59.21%). Now, suppose that researchers may wish to follow Kaiser’s rule and to 
additionally retain a sixth component (whose eigenvalue is .93) given the expecta-
tion of the items belonging to 6 subscales (i.e., Understanding and communi-
cating, Getting around, Self-care, Getting along with people, Life activities, and 
Participation in society). In that case, the amounted of variance account for is 
almost 67%, which could be used as another justification for retaining as many 
factors.  
 At that moment, the reader should assess the previous decision on the number 
of components to retain and their interpretation from the perspective that the 12 
variables were actually simulated to be unrelated to each other and, thus, the eigen-
values greater than one are only due to sampling error. In the study previously 
referenced, among the retaining criteria used, Luciano et al. (2010) mention the 
interpretability of the components, Kaiser’s criterion, and the scree plot. In their 
study, the PCA yielded two factors with eigenvalues greater than 1.0 (5.54 and 
1.22), that accounted for 46.15% and 10.20% of the total variance, respectively. 
Note that the combined variance accounted for is lower than the one of the five 
components to be retained (due to sampling error) in the example. The scree plot, 
however, suggested retaining a single factor, which, in this case, apparently 
served as a filter for any possible overestimation of the initial eigenvalues, espe-
cially for the second principal component (whose eigenvalue in this case coinci-
dentally is equal to the one of the third component in the simulated example).  
 Relying solely on the frequently used eigenvalue-greater-than-one criterion 
would have led to retaining a second component whose contribution is not un-
doubtedly beyond chance levels. In the present simulated example a scree plot can 
be consulted on figure 5. The original eigenvalues are the unadjusted ones and, in 
this case, there is no evidence of such drastic difference between the components’ 
eigenvalues as in the study by Luciano et al. (2010) and so the scree plot would 
not be as useful.  
 However, parallel analysis can be used, assessing whether the original eigen-
values are greater than the ones expected only by chance. An analyst can proceed 
in two equivalent ways: a) to retain the components whose unadjusted eigenvalue 
is greater than the random eigenvalue for the corresponding rank; or b) to retain 
the components whose adjusted eigenvalue is greater than 1.0. Such decisions can 
be made via the scree plot on figure 5. In this case, parallel analysis would indi-
cate that two components are to be retained instead of five, as the original PCA 
suggested. The fact that not all the overestimation of the eigenvalues is corrected 
may be due to the example being an extreme case.  
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INSERT FIGURE 5 ABOUT HERE 
 
 
 
 
 
 
 

Figure 5. Results obtained via principal components analysis (unadjusted eigenvalues) 
and parallel analysis (random and adjusted eigenvalues) as applied on a data matrix 

with 100 participants and 12 items with 5 alternatives each. The R package paran 
(Dinno, 2009) was used to produce the results and the graph. 

 
 Another alternative is to base the decision on confidence intervals instead of 
the mean of the random eigenvalues. The limits for the confidence interval for a 
nominal significance of .05 are represented on figure 6, along with the observed 
unadjusted eigenvalues. As it can be seen, only the first component’s eigenvalue 
is clearly beyond what is expected by chance, but the remaining ones are filtered 
as not significantly different from what is expected for unrelated items. That is, 
the effects of sampling error are reduced, with the exception of the first eigenval-
ue, which is apparently an extreme result. To summarize, it is preferable to use 
the alternative adjusting for sampling error (i.e., comparing the obtained eigen-
values to the expected ones at random or to confidence intervals) rather than the 
original eigenvalue-greater-than-one rule.  
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Figure 6. Results obtained via principal components analysis (unadjusted eigenvalues) 
and confidence interval upper and lower limits obtained through the proposed method 

based on Monte Carlo sampling generating 99,999 samples for data matrices with 
100 participants and 12 independent items with 5 alternatives each. 

The R package discrete_pca was used to produce the results. 
 
Conclusions 
 
 The present study focused on the eigenvalue-greater-than-one rule for retaining 
principal components, as the most frequently used criterion (Henson & Roberts, 
2006). A related indicator, the percentage of variance accounted for by the princi-
pal components, was also assessed. Both criteria are applied to discrete data rep-
resenting participants’ answers to Likert scale psychological questionnaires. The 
results show that even unrelated variables may lead to eigenvalues and variance 
accounted for percentages suggestive of retainable principal components. There-
fore, alternatives should be considered for retaining components, for instance, 
comparing the observed eigenvalues with the ones expected by chance and with 
confidence intervals about these chance values.  
 The procedure based on confidence intervals that is proposed can be applied 
through the discrete_pca R package to decide the number of principal compo-
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nents to retain which is available upon request from the authors. Confidence in-
tervals, as an interval estimator, ensure to a greater extent than point estimators 
(i.e., the eigenvalues themselves) that the summary variables reflect something 
more than random fluctuations. Concurringly, for parallel analysis it has been 
found that the 95th- and 99th-percentile eigenvalues lead to better solutions than 
mean eigenvalues (Weng & Cheng, 2005). Nevertheless, the eigenvalue criterion 
can and should be complemented by other decision rules (Thompson & Daniel, 
1996), taking into consideration especially the interpretability of the principal 
components. It is important not to use solely the default options of common statis-
tical packages (e.g., the matrix of association used for extraction, the rule for 
components retention) without a reasonable justification. 
 Most studies regarding the number of principal components to be retained are 
concerned with continuous random variables for representing observed measure-
ments, as normal and exponential distributions (e.g., Bernstein & Teng, 1998; Peres-
Neto, Jackson & Somers, 2005), although psychologists often apply PCA for analy-
sing ordinal data. Hence, the present simulation study focussed on questionnaires in 
which items are answered by Likert scales. The main result obtained shows that using 
the eigenvalue-greater-than-one rule may often lead to retain trivial axes, that is, un-
derlying dimensions from a set of uncorrelated items. The most important explana-
tion stems from the fact that principal components are also subjected to sampling 
error (Larsen & Warne, 2010). Therefore, as it has been previously suggested (Horn, 
1965), parallel analysis should be used to prevent from retaining a number of trivial 
principal components. As regards, applied research can attain some benefit from 
applying parallel analysis to guarantee that psychological dimensions obtained are 
not statistical artefacts. However, it must be highlighted that PCA is not an ade-
quate statistical technique if psychological researchers are concerned with extract-
ing underlying psychological dimensions, as EFA is the proper statistical method. 
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APPENDIX 
 

 The first required step is to specify the input matrix according a predefined format. If this 
matrix is in a text file (<filename>), it can be loaded in the working session as follows: 

 
 X <- matrix(<filename>,nrow=<number>,ncol=<number>) 
 
where nrow is the number of individuals and ncol is the number of items. 

 
 Users have to specify the number of alternatives of the items of the questionnaire (maxinterv) 
and the number of iterations for the Monte Carlo sampling (rep) as follows: 

 
 maxinterv = <number of alternatives> 
 rep = <number between 1 and 10000000> 

 
 Researchers can decide whether the program show results for the eigenvectors: 

 
 eigenvectors = <TRUE or FALSE>  

 
 Finally, the probability of the confidence interval (1 – α) for the eigenvalues has to be choosen (q):  

 
q = < proportion greater than .0 and smaller than 1.> 
 

 The function mcpca carries out a Monte Carlo sampling in order to estimate mean and vari-
ance for all eigenvalues and the variance accounted for by them. The function calls a C routine 
included in discrete_pca that generates rep matrices according to the estimates of probability masses 
computed by means of the original matrix X: 
 
 mcpca(X,maxinterv,rep,eigenvectors,q) 
 




