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El autor analiza 10s principales modelos de inteligencia arttjicial 
que dan cuenta del paso de la transición de un estudio a otro, problema 
central de2 desarrollo. Describe y señala las aportaciones de 10s sistemas 
basados en reglas usí como de 10s sistemas conexionistas para explicar di- 
cha transición. Considera que 10s modelos de inteligencia art$icial, a pe- 
sar de sus limitaciones, permiten establecer puntos de contacto muy fruc- 
tljeeros con la posición constructivista. 
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basadsos en reglas, conexionisrno. 

Over the past severa1 decades, enormous progress has been made in the 
domain of computer acquisition of new knowledge. The extent of this progress 
risks to make one loose sight of the true magnitude of the task (see Leiser, 1995), 
but there is no question that our grasp of knowledge construction is being enri- 
ched by the concepts developed in the various branches of Machine Learning 
and Neural Networks. It is of course impossible to sumrnarize here the vast 
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amount of work pouring forth from those disciplines (see e.g., Carbonell, 1990, 
Dresher, 1991), in the course of a brief survey. I will limit myself to presenting 
some important ideas, especially those may be less familiar to the average reader 
in psychology. 

An account of development supposes two components, that may be more 
or less closely linked: a good description of the lower and higher stages of deve- 
lopment, and an account of the transition. Unti1 about fifteen years ago, while 
psychologists had collected good descriptions of key stages of development, it 
was not at all clear how to describe the actual passage from one to another. One 
could not say much about intermediate stages, beyond unhelpfully indicating that 
they share some properties of both the lower and the higher stage. Extensive pro- 
gress in the representation of intermediate levels was made since. This progress 
was mainly carried by two currents. The one is modular, cclocalist>>. It analyzes a 
complete and complex skill as the interplay of a large number of rules that jointly 
generate the required behavior. The emergence of a better adapted behavior may 
then be described as the gradual assembling and refining of a set of elementary ru- 
les, each one of which may, up to a point, be understood in isolation (Anzai and 
Simon, 1979; Young, 1976). Progress was also made in the study of transition 
mechanisms, of which a variety have been implemented (e.g., Holland, Holyoak, 
Nisbett and Thagard, 1986), though it remains unclear how well they can really 
account for the range of cognitive structures believed to exist (Leiser, 1990). The 
second current is formed by the varieties of connectionist models (PDP, auto-as- 
sociators, self-organizing maps, etc.). These distributed systems have already pro- 
vided convincing examples of the acquisition of a very diverse array of know- 
ledge. In the following pages, we will try to provide some introduction to both, 
discussing as we go the epistemological relevance of these mechanisms. 

I. RULES-BASED SYSTEMS 

Skillful behavior consists in doing a variety of actions under the correct 
conditions. The basic components of rules are therefore actions, and conditions, 
and their form, that bears a significant resemblance to the stimulus-reaction pairs 
of the behaviorist past, is as follows cci~ condition, THEN action.>> Condition-action 
rules (sometimes called ccproduction rules>> or ccclassifiers>>) underlie much work 
in AI, from the classic work of Newell and Sirnon (1972), to the large array of 
work in Expert System, and other, related approaches (e.g., Klahr, Langley, and 
Neeches, 1987; Holland, Holyoak, Nisbett and Thagard, 1986; Holland, 1986). 

Those systems are based on a set of facts (both about the environment and 
their interna1 states). The rules (or some subset of them) are compared against 
the set of facts (or some subset of these). If the condition encoded in the rule is 
fulfilled, the action will be carried out by the system. 

The activity of a production-based system may be decomposed in cycles. 
The first part of the cycle consists in identifying a set of rules that have their con- 
ditions satisfied. Next, a subset of these rules are selected, by some principle that 
varies from one system to the next. Finally, the selected rules are ccfired,,, i.e. the 
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action part in them is effected. Some of the actions are overt, others consist in 
writing an interna1 message. The following cycle then begins, and takes into ac- 
count changes in the facts at the system's disposal, both changes in the environ- 
ment and interna1 changes brought about by the previous cycle. 

Such rules system present two major advantages. First, the cclanguage,, of 
production rules is a universal programming language, that is, it is in principle 
possible to program with it any procedure that can be programmed at all (Laird, 
Newell and Rosenbloom, 1987). Second, it is <<modular>>: its elements are rules 
that can be identified, described, and their specific contribution to the overall ef- 
ficacy of the system can be understood in relative isolation. 

Expert systems 

Probably the best-known rule-based systems are those called <<Expert sys- 
tems>> or eknowledge-based systems>> (David, Krivine, and Simmons, 1993). 
Expert systems are computerized system predicated on the notion that expertise 
consists largely in specialized knowledge, whereas the skill of combining exis- 
ting knowledge with the specifics of the case at hand does not change much with 
increased expertise. <<Knowledge is power,>> at the slogan goes. It makes there- 
fore sense to device so-called ccinference engines,,, pure reasoning mechanisms. 
These are then given provided with the experts' knowledge, under the form of a 
set of rules, and specific information on which the expertise is to be brought to 
bear. There is therefore a separation of knowledge and treatment. 

Knowledge is represented by production rules, as for example, in a medi- 
cal expert system: 

There exist a small set of control systems that may be used to combine 
such rules and the specific facts. The control systems are data-driven or hypo- 
thesis-driven in varying proportions. The system collects more information, in- 
tegrates it into probabilistic arguments unti1 an overall diagnosis or conclusion is 
reached. Expert systems have been built for a wide array of purposes, and spe- 
cialized tools for constructing them rapidly are commercially available. Produc- 
tion systems, then, constitute a class of effective representational systems. While 
such rules can describe states of understanding, this by itself does not specify 
how a system might, on its own, develop a set of suitable rules to represent the 
structure of a knowledge domain. Can the process of constructing a model of ex- 
pertise be supported by machine learning techniques? 

The Traveler model (Leiser, 1987; Leiser and Zilbershatz, 1989) constitu- 
tes a simple example. This program is based on simple rules, telling it how pro- 
ceed along its route. All rules are of the form: IF (you are ut location x) AND (your 
goa1 is location Y),  THEN (pegorm action A) .  The system <<travels>> along routes, 
progressively discovering, in its own database, links between an increasing num- 



ber of places. At first, the Traveler only links nearby routes. As its experience in- 
creases, there grows a complex, integrated system of main and subsidiary routes 
that carry the mark of the systems' specific developmental history. From a small 
set of local links, emerges progressively a large system of interrelated routes. 

In a similar vein, models such as ACT (Anderson,1983,1986) and som 
(Laird, Newell and Rosenbloom, 1987) are based on the refinement of produc- 
tion rules, and links between existing concepts. The method is homogeneous: 
concepts and production rules belong to different substantive domains are not 
formally defined by the system such. Yet, this homogeneous system may end up 
with several domains, in the sense that activation of individual concepts in one 
domain lead consistently to the activation of the other concepts in the same do- 
main, if past experience was such that it linked certain concepts and production 
rules together in an associative web. Semantic fields are emergent with respect 
to this representation, as were main routes in the previous exarnple. The cons- 
truction and structuring of domains does not result from the application of some 
powerful generalization mechanism to a large data-base, but rather is the cumu- 
lative outcome of many specific past experiences. 

Not all rules whose conditions are satisfied can actually perform the asso- 
ciated actions. Rules compete, and different systems designers have suggested a 
range of such <cconflict resolution>> principies. Existing rules can be modified in 
various ways to improve the effíciency of the system. Anderson and his collabo- 
rators (Lewis, 1987; Anderson, 1990; Klahr, Langley and Neeches, 1987) des- 
cribe severa1 mechanisms to effect this. Some of these really do not make any 
principle difference, since the outcome is merely to render knowledge more ef- 
ficient, but without changing its nature or organization. Others change the rules 
themselves, and serve to make the system more in tune with its environment. Se- 
veral improvement processes were described: 
- Compilation takes several pieces of information, some of which are not rules 

at all, and combines them into a single, smooth, automatic rule. In particular, 
it includes composition, that combines severa1 productions into one, and pro- 
ceduralization, that collapses the actions of information retrieval from decla- 
rative memory and production matching, a feat into which we cannot go here. 

- Generalization: this inductive mechanism takes severa1 productions and crea- 
tes a new one, trying to achieve a maximal common generalization of the ini- 
tia1 rules. In so doing, constants are replaced by variables, while restrictive 
conditions that are not shared by the procedures are removed. The resulting 
production must then prove its worth in competition with others. 

- Discrimination: this is the contrary of generalization: a successful general rule 
may have conditions added, on the basis of other rules that worked well: res- 
trictive conditions existing in other productions are copied. 

Genetic Algorithm 

The improvement processes we just saw are all reasonable enough, but 
one would feel unhappy at the wise guiding hand that takes rules and delibera- 
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tely tries to improve them, rather like an engineer might try to combine two good 
design principles. The processes of discovering and improving rules have also 
been studied by an entirely different form of system, called the Genetic Algo- 
rithm.' In its best-know form, the Genetic Algorithm works on classifier sys- 
tems, which are parallel, message-passing, rule-based systems wherein all rules 
have the same simple form. The condition part specifies what kind of messages 
satisfy the rule, and the action part specifies what message is to be sent when the 
rule is satisfied. 

Classifier system consists of four basic parts: The input interface, that 
translates the current state of the environment into messages; the <<classifier ru- 
les>>, the rules used by the system, define the actions done by the system in pro- 
cessing every kind of message; the message list, that contains all the current 
messages; and the output interface, that translates some messages into effector 
actions. 

A classifier system basic cycle consists of the same steps outlined above 
for rule-based systems in general: add all messages from the interface to the 
message list, compare all messages on the list to all conditions of all rules, and 
record all satisfied conditions. For each of them, post the message specified by 
its action part; replace all messages on the list by the list of new messages; trans- 
late messages to requirements on the interface, producing the system's current 
output. In that sense, the classifier system is a parallel system, since many rules 
are applied simultaneously, before the next cycle. 

The genetic algorithm (GA) works on such <<populations>> of rules. The al- 
gorithm is explicitly modeled upon Darwin's theory of evolution, and population 
genetics' analysis of the point of sexual reproduction. This parentage is very na- 
tural, since it is the same effect is being sought: the improved adaptation of small 
elements, without any central omniscient agency responsible for making intelli- 
gent progress. Neither Darwin species nor the classifier populations know which 
way it is best to evolve, and both try to improve the population's adaptive suc- 
cess in an environment. To recall, Darwin's theory is based on the notion that dif- 
ferent individuals in a population will be individually more or less fit. By asexual 
reproduction, the fitter individuals will have a larger number of offspring, since 
they are by definition those who survive better than others. The next generation 
will therefore have a better proportion of fit individuals. Sexual reproduction 
goes one important step further: offspring recombine properties of parents. As a 
consequence, some of those recombinations, the luckier ones, may be better 
adapted than parents individually. 

GA simiiarly works on populations. It selects good classifier rules as pa- 
rents, forming offspring by recombining components from the parent classifiers. 
The offspring displaces weak classifiers and enter into competition, being acti- 
vated and tested when their conditions are satisfied. More specifically, the GA 
operator selects good rules, then recombines them. It keeps therefore the same 
number of rules, but increases the proportion of those which have strong, <<fit>> 

1. The agenetic algorithma may also be used for entirely different functions, see below for an example. 
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building blocks. The cycle consists simply in selecting pairs of classifiers, with 
a probability proportional to the strength of the rules, then applying the cross- 
over operation, modeled on the chromosomal crossover: it exchange random 
continuous corresponding segments of the condition or of the message parts, and 
so creates a new pair of classifiers. This pair then replaces another pair of classi- 
fiers, selected for their low strength. 

Credit Assignment 

Of course, this scheme supposes that rules are attributed some measure of 
fitness, of <<strength>>. Severa1 schemes have been devised, based on various pos- 
sible measures of past effectiveness. One of the better known is called the Buc- 
ket brigade algorithm. We will briefly discuss it here because it tackles an im- 
portant difficulty of rule-based system, narnely the problem of credit 
assignment. The problem is the following: rules should be somehow reinforced 
for being successful. But most rules do not have any overt action, and reinforce- 
ment is rare. The system's behavior is mostly stage setting, that makes later suc- 
cesses possible. The problem is especially difficult for parallel systems, where 
only some of the rules active at a given time may be instrumental in attaining 
success, and credit assignment should nevertheless reinforce, on balance, those 
rules that were effective. 

Finally, the effectiveness of rules is not a property of the individual rules 
taken singly. While rules, as we described earlier, are modular in the sense that it 
is usually possible to describe the contribution of each rule to the system, it is ne- 
vertheless true that the effectiveness of a given rules depends wholly on the pre- 
sence and activity of other rules. Reinforcement should therefore be dependent 
on the strength of other rules. 

Young (1976), for instance, studied the acquisition of seriation procedures 
by children, and analyzed it as the construction of production systems to effect 
the task. He identified aseriation kitsn, sets of possible rules from which the pro- 
duction rules are to be selected. Effective procedures, for his task, must exhibit a 
good balance between evaluation, correction and selection. If one of the dimen- 
sions is weak, it can be compensated by the other two. If a proposed procedure 
is weak in all three dimensions, it just won't work. According to Young, children 
will generate just about any combination of rules, and some combination will 
work out right. Development is seen by him as locally meaningful: the cohe- 
rence of the procedure as a whole does not require particular consideration. For 
him, production systems have no psychological existence as such. Procedures 
are seen as nothing more than a transient collaboration of individual rules. AC- 
tually, the subject does not only choose individual helpings (rules) to form a din- 
ner out of a single menu, to use Young's metaphor. He also selects the menu it- 
self. Children possess severa1 menus, and the various seriation kits out of which 
procedures may be constructed correspond to basic strategies. It can be shown 
that the individual child knows severa1 such basic strategies (Leiser and Gillib- 
ron, 1990). Indeed, Young himself lead children to switch strategies in accor- 
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dance with the particular task used (successive presentation of the sticks by the 
Experimenter, screen, etc.). Since procedures are combined out of rules in a sin- 
gle set, the kits form consistent wholes, whose unity is psychologically real. I 
subrnit that the claimed independence of the rules is an illusion. Their evolutio- 
nary history was communal, and their success a joint result. The rules evolve as 
coherent systems of co-adapted elements. True, the child need not be aware of 
the overall coherence. He must merely replace a rule when the result is unsatis- 
factory. But the solidarity of the set of rules is nonetheless an evolutionary result, 
and Young's findings and analyzes may be seen as founding a taxonomy of via- 
ble combinations of rules. 

It is these problems that the Bucket Brigade Algorithm (BBA) is designed 
to solve. To implement the algorithm, each classifier is assigned a quantity called 
its strength. The BBA adjusts the strength to reflect the classifier's overall con- 
tribution to the system effectiveness. The strength is then used as the basis of a 
competition. Each step, every classifier whose conditions are fulfilled makes a 
c<bid>> based on this strength. The higher bidders have their messages written on 
the message list for the next ~ t e p . ~  

The height of the bid depends on the strength of the rule (that reflects past 
usefulness) and on other aspects that we will ignore here. Following a success- 
ful bid, i.e., if the rule is actually selected to have its message written on the mes- 
sage list, the strength of the rule is dirninished by the size of its bid, and the bid 
itself is distributed arnong those rules that contributed in the previous step to this 
rule being selected. The operation of the BBA can be understood by an economic 
analogy: each rule is a kind of middleman in the economy. Each middleman 
deals only with its suppliers, the rules posting messages satisfying its condi- 
tions, and which its customers, the rules with conditions satisfied by the mes- 
sage sent by the middleman. Whenever a rule wins a bidding competition, it 
pays out part of its strength to its suppliers. If it did not with the competition, it 
pays nothing. As one of the winners of the competition, the rule becomes active, 
serving as supplier to its customers, and receiving payment from them in turn, if 
it is at all useful. The rule's strength measure its ability to turn, on average, a pro- 
fit. If a rule receives more from its customers than it paid out, it has made a pro- 
fit, and its strength is increased. 

If the customers are on average profitable, i.e., effective, they will have 
high strength, and accordingly pay out to their supplier, who will become stron- 
ger. The profitability of a mle depends upon their being integrated into sequen- 
ces leading to ultimately profitable consumers, that is, that eventually receive 
payment, reinforcement from the environment for success in it. In this way, the 
bucket brigade algorithm ensures that part of the ultimate payment, eventually, 
finds its way also to the early stage setting activity. This algorithm reinforces co- 
operation, hierarchical planning, and indeed, any form of organization suscepti- 
ble to increase ultimate success. In addition to the GA described above, mutations 
may be used as well. This is important since the GA only combines existing seg- 

2. Actually, the size of the bid only determines the probabilify that the message will be written, so that lower bidder also 
have the occasional chance to prove their value. 



ments of existing rules, and this means that any radically different component 
cannot enter into the competition and prove its values. Mutation, i.e., the random 
exchange of a segment by another, comes to fill this need. 

Overall, then, the regular functioning cycle of the classifier system, the 
bucket brigade algorithm that updates strengths advisedly, and the genetic algo- 
rithm that searches for better combinations creates all three types of rules modi- 
fications: generalization, specialization, and novelty. 

Evaluating the Approach 

There are serious doubts as to the true effectiveness of this approach. Sig- 
nificantly, these are coming even from that most pragmatic of Artificial Intelli- 
gence research domains, knowledge engineering (Schreiber, Wieling and Breu- 
ker, 1993), the branch of applied AI concerned with creating effective expert 
system. The basic approach to develop expert system has traditionally been via 
a process called eknowledge acquisition>>, in the course of which a -human- ex- 
pert attempts to define the rules he or she uses in coming to a decision. These ru- 
les are painstakingly elicited by someone familiar with the programming lan- 
guage to be used, encoded, and these form the basis of the rules. Knowledge 
acquired from the expert was immediately implemented using a knowledge re- 
presentation formalism. The underlying assumption was that frames or produc- 
tion rules represent knowledge identical to the cognitive foundation of human 
expertise. 

Knowledge acquisition is no longer viewed as a process which directly 
transfers knowledge from a human to an implemented computer program but ra- 
ther as a modeling process. The result of knowledge acquisition is no longer only 
a running program but a set of models. One of these models describes the task 
which should be solved by the knowledge-based system and the knowledge which 
is required to solve the task effectively and efficiently. Both are described in an 
implementation- independent manner. Both the human expert and the implemen- 
ted systems are specific instantiation of this general model. Two requirements are 
now recognized by the knowledge acquisition experts. First, the separation of the 
symbol level and the knowledge level: At the knowledge level, the expertise is 
described in an implementation-independent manner. It is described in tems of 
goals, operations, and knowledge about the relationships of goals and operations. 
At the symbol level, a specific computational agent is implemented which carries 
out the problem-solving process by means of a computer program. A symbol le- 
vel description corresponds to an implementation or design specification. 

Second, different modeling primitives are required for epistemologically 
different types of knowledge: A model of expertise contains different types of 
knowledge. Most approaches distinguish between domain knowledge, inference 
knowledge, and task-specific control knowledge. A further type of knowledge 
concerns the use of domain knowledge by the inference and control knowledge. 
Therefore, a model of expertise must explicitly distinguish between different ty- 
pes of knowledge and severa1 modeling primitives must be defined for every 
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type as each type includes different knowledge entities. It follows that it is a mis- 
take to limit learning to rules only. Construction of knowledge must take place at 
several epistemologically and functionally different levels, if it is to be effective 
(Dietterich, 1986). A simple example of this approach is <<Explanation-based 
learning>> (Minton et al., 1990). EBL works by explaining why a particular exarn- 
ple is an instance of a concept. The explanations are then converted into opera- 
tional recognition rules. Specifically, EBL acquires search control d e s .  These 
are domain-specific, based on successful problem solving decision, major failu- 
res and unforeseen goal interactions. There are other exarnples, but none that 
does justice to the rich variety of higher-order structures (see Leiser, 1995, for a 
review of these questions). 

We studied elsewhere (Leiser and Gillikron, 1990) at some length the 
close relations there are between the knowledge level, the various strata alluded 
to in the previous paragraph, and the acquisition of cognitive and epistemologi- 
cal structure. This requires identifying the loci where knowledge is found or sha- 
ped, more often than not in implicit form, and where it can evolve progressively, 
even if the underlying representation takes the form of explicit symbolic rules. 
Putative cognitive structures have very different scopes, and the way to conceive 
of them, and hence to model them is correspondingly different. Let us arbitrarily 
separate them into small- and large scope structures. 

For the smaller scope, knowledge is implicit in data and associated proce- 
dures, in the representational formats, and in the system's architecture. One im- 
portant part of development could be the transfer of knowledge between these le- 
vels (Leiser, 1987; Moshman, 1990; Clark, 1992; Karmiloff Smith, 1993). For 
the larger scope, knowledge consists in the adequation and organization of cate- 
gories of thought (Kant, Piaget), ontogenies (Keil 1979), inborn naive theories 
(Carey, 1975) and the ways and conditions for differentiating or extending exis- 
ting ones. 

In a case study of seriation procedures (Leiser and Gillikron, 1990) we 
showed that the loci of logic are multiple and heterogeneous. Logic is found in 
rules for symbolic transformations, in the overall coherence of the procedure, in 
the ability to assimilate a given problem to an appropriate approach, and in the 
accommodatory potential of the procedure. In more detail: 

Symbolic representation: Some simple inferences are readily described in 
tems  of aspects of mental manipulation of symbolic representations. Thus, ele- 
mentary reasoning steps may be directly based on basic logical rules. This is the 
oldest approach to the simulation of reasoning, going back to the notion of uni- 
form resolution algorithms. The elementary rules accounting for the transforma- 
tional steps may also be more specific to the domain at hand: <<General methods 
are weak methods>>. 

Overall coherence: The overall coherence of a procedure embodies ano- 
ther aspect of operative knowledge. While it is true that elementary production 
rules, say, may have their own, modular function, they co-evolved jointly under 
adaptive pressure, and their adaptation to a given task is a joint property. More- 
over, the entire adaptive package may be transferred to an isomorphic domain, 
showing that its coherence may properly be ascribed to the system. 
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This is very clear in Genetic Algorithms (Holland et al., 1986; Koza, 
1991; Belew et al., 1991 ; Boers et al., 1993), by far the most successful model 
for the unguided development of production systems. Reinforcement of success- 
ful rules is calculated to reinforce successful cooperation between existing rules, 
rather than merely successful individual ones (as in Anderson, 1986; Klahr, Lan- 
gley and Neeches, 1987). 

Assimilation: Assimilation is a basic form of understanding. The use of a 
given representational format, procedure or architecture betrays or manifest an 
implicit belief in its appropriateness. The contents of this belief can be made ex- 
plicit, and this is routinely done in software engineering, whenever an orderly at- 
tempt is made to define generic problem-solving methods, with an eye on reu- 
sing them on a wider range of problems (David, Krivine and Simmons, 1993). 
An essential aspect of development may be the exploitation of regularities in the 
data encoded at the symbolic level, to identify existing patterns, or even to cons- 
truct representational formats that will embody those regularities in their very ar- 
chitecture. Such a passage could involve the extraction of the regularities as the 
basis for building a new representational architecture, by some identifiable pro- 
cess of reflective abstraction or rely on a distributed representation, where the 
distinction between the representation of rules and that of exemplars becomes 
moot (Shultz, Schmidt, Buckingharn, and Mareshal, 1993). 

Potential for Accommodation: The last and most subtle of the loci is the 
accommodation potential of the assimilatory schema, representational format, or 
architecture. The use of any of these structures betrays an implicit belief in its 
appropriateness, hence a specification of the range of application of the struc- 
ture. However, an assimilatory structure may evolve, under influence of the oc- 
casions on which it was used. There is no telling which way it will drift, since 
this will depend on the history of its encounters with related problems. But it will 
not drift without restraint, and its evolution must accord with more abstract 
structural constraints. 

Summarizing, higher order entities are an important component of a well- 
balanced account of cognitive development, whether in the machine or in hu- 
mans.The relations between regularity patterns in the structure of already enco- 
ded data, and the subsequent ease of encoding of additional data obeying the 
same structural relationships, form a conceptually identifiable locus of know- 
ledge construction. 

In discussing rules-based system, we sketched how rules may evolve pro- 
gressively, even without a wise guiding hand, merely from interacting with the 
environment, by virtue of a suitable system architecture. However, rules-based 
system start with a strong ontological a priori: the set of properties and relations 
used to define the conditions and actions themselves. 

The second class of learning systems we will discuss are variously called 
Parallel Distributed Processing, Neural Networks, and Connectionist systems. 
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These are associative systems, and go even further in circumventing the use ex- 
plicit theories, since they make do without rules altogether. Even such concepts 
as they use are progressively constructed, the cumulative outcome of many 
interactions with the environment. It is this property that makes them such exci- 
ting architecture for studying the emergence of adaptive cognitive systems. 

The least sophisticated of AI algorithms simulates the function of a collec- 
tion of biological neuron. First proposed decades ago, the outline of the basic 
model is as follows. Input and output cells are interlinked, either directly or via 
a series of intermediate, <<hiddenx nodes. The links can vary over time. To repre- 
sent these variable connections in our computer model we assign a multiplicative 
weight to each input pathway. A high weight term denotes a favorable connec- 
tion. An output signa1 will be produced as a function of the sum of inputs to the 
neuron. The mechanism that allows us the simulate learning in our computer 
model consists in making adjustments to the weights to reinforce correct deci- 
sions and discourage incorrect decisions. 

Notation 

In analyzing learning by computational means, it is customary to simplify 
the treatment, without loss of generality, by using a mathematical convention. I 
will present it here before embarking on the substantive presentation. All the in- 
formation to be learned is represented by simple vectors, composed exclusively of 
O and 1. It is important to realize that nothing much is lost by doing so, at least in 
principle. As is of cowse well known, modern digital computers all use a binary 
language internally. That approach is used in surveys, or any database or statisti- 
cal computer program. A given position in an array may represent the property: 
<<is male>>, or <<agrees to the statement expressed in line 44 in the questionnaire>>. 
Inasmuch as we are interested, not in the qualia, the properties themselves, but 
in learning, displaying, analyzing relations between such properties, nothing is 
lost by transformation. If more precision is required, several positions in the vec- 
tor may be used. It is generally accepted that any information that can be repre- 
sented at all can be so represented, to an arbitrary degree of precision using this 
approach. For instance, assurning we want to represent colors, using that binary 
language, we can represent 2 colors, using only one slot, or four colors, if we use 
two, and in general 2n colors if we devote n slots to represent the specific color. 

Supervised learning 

The variety of approaches in this domain is extremely large (Chauvin and 
Rumelhart, 1995) and it is impossible to even give a feeling for the range. The 
general approach is as follows. Certain nodes of the network are defined expli- 
citly as input, others as output. These comunicate to the outside the system's res- 
ponse. That output is evaluated, and the result of that evaluation is fed back to the 



system to improve its behavior, so that next time its chances of producing a be- 
havior with better evaluation will be improved. The nature of the evaluation va- 
ries from one system to the other. It can be specific, and based on comparisons 
between the actual output and the desired output. The feedback system can be 
qualitative only, informing the system on whether there is improvement or dete- 
rioration of performance. 

This approach has been shown to be remarkably effective on a variety of 
tasks. The simplest of the algorithm links directly the input and the output ele- 
ments, and searches for the best set of weights to enable the system to associate a 
set of inputs with a set of outputs. Other algorithm include one, or severa1 inter- 
mediate layers (the Backprop Algorithm), that enable the linkage to be more com- 
plex, and indeed to develop some level of representation to mediate between in- 
put and outputs. Error messages from the environment is propagated back orderly 
via severa1 layers, and the information obtained is used throughout the system. 

Yet additional algorithms can recruit new elements to the intermediate la- 
yer, in order to construct a better representation. This notion is used by several 
otherwise diverse approaches. One approach, for instance, is to introduce hidden 
units one by one; each unit comes to account for the main remaining source of 
variance. Only when there is no further progress is the next hidden unit introdu- 
ced (the Cascade Correlation algorithm, Fahlman and Lebiere, 1990; Fahlman, 
1991; Hoefeld and Fahlman, 1992). Is this way, an optima1 number of hidden 
units is used. The point is that if the network has too few units, it will not behave 
the way required. But if it has too many, its effectiveness will be spread poin- 
tlessly across too many units, and the system will be overñtted: generalization 
will not be easy. Shultz et al. (1994) applied successfully this approach to va- 
rious learning task, for example that of weight balancing. 

Unsupervised learning: Self-organizing systems 

In this class of systems, there is no externa1 evaluation of the output. 
Learning can nevertheless proceed, thanks to an organizing principle, of which 
we shall see two. The Self-Organizing Maps, developed by Kohonen (1995, for 
a recent overview), are based on the formation of regular representations under 
localization constraint. And the Auto-Associators, that structure themselves ac- 
cording to a principle of ccenergy minimization.>> We shall consider these ap- 
proaches in turn. 

Selj-Organizing Maps 

We just described the goa1 of the self-organizing maps (SOM) as the for- 
mation of regular representations under localization constraint. The system is 
composed of an input layer and a treatment layer. By regularity, we mean that si- 
milar information, similar input patterns, should be treated in a similar way. As 
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usual with connectionist models, two phases are distinguished in the functioning 
of the system. A learning phase, adaptation of the weight system. And an ex- 
ploitation phase, during which the system displays what is has learned. The goa1 
then is that during the exploitation phase, following presentation of an input vec- 
tor, the set of activated units in the treatment layer is small, and restricted to only 
some of the treatment units. Localization here is to be understood in the wide 
sense. In the narrow sense, every input would leads to a single activated neuron, 
and this would simply be a classification. The Kohonen net are localized in the 
wide sense: the localization is a the level of a group of neighbors; the activation 
pattern is that of a single node with maximum activation, and decreasing levels 
of activation in its the neighborhood. 

The learning principle involve two components: competition: forcing se- 
veral response nodes to compete, and giving the advantage to the best one; and 
specialization: a learning law that biases competition towards those nodes that 
won on earlier occasions. More specifically, Kohonen compared the weights of 
all output nodes and picked the set of nodes having weights that closely matched 
the magnitude of the input signal. These two principles together forrn a feedback 
loop, that eventually lead to localization in the wide sense just described. 

The self-organizing network consists of a matrix of output nodes j all of 
which are connected to every input node i. The algorithm determines the <<win- 
ning>> node j* that most closely matches the expected output as determined by 
the set of input nodes i. Modifying the weights of j* and its neighbors will pro- 
duce a set of desired outcomes. More explicitly, the steps are as follows: 

1. Presentation of the input vector. X=x, . . . x,. 
2. Competition between the treatment units. The one whose weight vector 

best matches the. unit vector is selected. This involves two subsets: (A) Compute 
distance: compute distance dJ between input node i and each output node j. (B) 
Identify best match: Select minimum distance and denote output node j with mi- 
nimum d, to be j*. Neighboring nodes will also be identified, according to their 
proximity to j *. 

3. Learning: update weights for node j* and its neighbors: w ,  = w ,  + e 
(x, - w,,)Y,. The e term is used to control the rate of weight adjustment, Y, is the 
neighborhood distance to j*. Observe that two distinct distance functions are 
used: dJ, the distance between input vector and weight vector, and Y, for speci- 
fying proximity of nodes in the treatment layer. 

In the course of learning, stabilization of learning is achieved by modula- 
ting the neighborhood function Y (neighborhoods are large at first, then decre- 
ase) and decreasing e at the same time. 

Input vectors are presented successively, and each presentation leaves a 
trace, a residue that reflects their structure. The net result of the activity is that 
regions come to be defined in the treatment layer, and their topological organi- 
zation reflects the regularity patterns in the input vectors. The Self Organizing 
Map is a ccnonlinear projection>> of the probability density function of the high- 
dimensional input data onto the treatment space. A typical application such SOM 
is in the analysis of complex vectorial data. But such maps, that enable one to vi- 
sualize metric ordering relations of input samples and to find clusters in the in- 
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put data, are not only useful when they are examined by say humans. This orga- 
nization can then be exploited by other modules, to form the basis of effective 
behavior, or indeed, for extracting their structure. We describe elsewhere (Leiser, 
1994) a way to extract the very structure of inclusion relation from discovery of 
the relations entertained by different categories. In this way, Piaget's pseudo- 
operational abstraction may be implemented, and the following seeming para- 
dox may be resolved: how can a scheme structure incoming data at the same 
time it is itself in the process of formation. SOM and other unsupervised learning 
methods show that progressive structuring can take place without overall un- 
derstanding, as the residue of numerous encounters with data. But later, the pat- 
tern of information implicit in the data can be extracted, and form the basis of a 
better representation (Leiser, 1987; Karmiloff Smith, 1992; 1993). 

The Auto-Associator 

Auto-associators are another species of unsupervised learning. We saw 
earlier that in supervised learning, the algorithm links the input and the output 
elements, and searches for the best set of weights to enable the system to asso- 
ciate a set of inputs with a set of outputs, either directly or severa1 intermediate 
layers. An interesting variant is when the input and output spaces are the same, 
and the output is looped back to the input. Under suitable conditions, the system 
will reverberated for a while, and eventually settle down in one ccequilibrated>> 
state. Intuitively, we may think of a surface, with certain dips -these are the at- 
tractor states, which may be numerous or not, close or far from one another. De- 
posit the system in the vicinity of one of them, with some friction, and it will 
slowly inch its way to one of the dips. 

The goal of the learning mechanism is to transform certain states, defined 
on the basis of external reality, into such attractor states. Under certain condi- 
tions it is possible to define an ccenergy,, function, and let the system converge to 
the closest local minimum of the function. By presenting many members of the 
same category, it can then be arranged that a state that correspond to the pro- 
totypical member of the category becomes an attractor. Present any member of 
the category to the system, and it will eventually reach the state corresponding to 
the prototypical member of the closest category, and this will be the case even if 
the prototype itself was never presented. Summarizing, there are two phases. 
The first involves <<molding>> the landscape, so that goals we want to achieve, 
e.g., existing categories with their labels, correspond to local minima. The se- 
cond phase exploits the first one, for classification for instance: one presents a 
pattern, and watch it settle to the closest goal. 

Another possibility is to search for the absolute minimum. This requires 
getting out of local minima. A method called <csimulated annealing,, controls 
the probabilities of going from one step to another, in the course of search: at 
first, local minima are no barrier to transition, and later they become so. This 
approach increases the chance of ending in the global minima of the function. 
An application of this mode of functioning is to use the network as a pattern 
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completion device: present part of the pattern, and it will settle into the com- 
plete one, making by the same token available all the information that corres- 
pond to it. 

Epistemology and Architecture 

In all those examples of connectionist learning, knowledge states are pat- 
terns of activation, rather than sets of propositions. Long-tem knowledge is dis- 
tributed amongst the weights connecting a large numbers of nodes. Retrieval is 
the reinstatement of a prior pattern of activation. Memory traces are simulated 
by changes in the weights connecting the nodes. 

Can one separate a distinct knowledge level in the case of a neural net- 
work that performs a task successfully? In some cases, this is fairly straightfor- 
ward. The Fonvard Modeling model of Jordan and Rumelhart (1992), for ins- 
tance, is based on the construction of an interna1 model of the environment, that 
is used to devise the mapping between intentions and actions. But in other cases, 
things are far less clear: the overt organization of a neural network may not be- 
tray at all its functional organization. For example, the behavior of the dual-route 
model of Coltheart was recently reproduced by a system that has only a single 
route of processing. Coltheart (1994) argues that this exemplary conflict bet- 
ween his own psychological research and successes in modeling the same phe- 
nomenon by means of neural networks, is to be resolved by contrasting network 
architecture and functional architecture, and not letting the former distract one 
from studying the latter : <<The network architecture is determined by the mode- 
lers, and is obvious. The functional architecture (...) can be very difficult to dis- 
cover in realistically large networks. What are cognitive psychologists interested 
in? Well, obviously, functional architecture (p.21)>>. 

Others view the two architectures as complementary (Bates and Elman, 
1992; Plunkett and Sinha, 1992; Clark, 1992). To ground the attribution of a 
structure to a subject, one must show how development necessarily causes the 
structure to emerge, and conversely, why the structure is an attractor for the de- 
velopmental process, as expressed in Piaget's dictum Pas de structure sans 
gendse, pas de genbse sans structure (no structure without development, no de- 
velopment without structure). A complete explanation would therefore involve 
all three tems : the emergent structure, the architecture of the learning mecha- 
nism, and a chronicle of the development. The structure sets the goal, with re- 
ference to the system's interna1 or externa1 adaptation. The architecture ac- 
counts for how the system comes to construct the structure, and thereby 
explains the chronicle. A very similar view was put forward by Seidenberg and 
McClelland (1992; see also Plaut, McClelland, Seidenberg and Patterson, 
1994) who describe their approach as follows : they postulate a specific way of 
representing the stimulus world, a learning rule, and an architecture, then ob- 
serve that under those conditions, a certain type of knowledge representation 
necessarily results. It is not built in, but arises from interactions among inde- 
pendent factors and this, to the extent it succeeds, provides the explanation for 
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development. The study of emergent developmental properties and of the 
course of this emergence precedes the modeling work, whose task is to show 
why certain structures are acquired. 

On Hybrid Systems 

The models we have described are general principles, and in their imple- 
mentations several principles may be combined. There are by now very many 
algorithms, whose properties are being studied analytically and by computer si- 
mulation. Inevitably, the question arises of how to combine the advantages of 
two or more mechanisms. Schyns (1991) advocates modularity, that is, the as- 
signment of the primitives of a functional architecture onto different structural 
modules. The modules may be assembled hierarchically so that, as in his sys- 
tem, unsupervised learning achieves most of the preprocessing of the input pat- 
tems, whereas supervised learning then takes the output of that preprocessing to 
fulfill other tasks. Specifically, his system uses a SOM model to categorize the 
input, and a supervised auto-associator to learn labels for those categories. It 
can then be shown that the existence of a narning module, suitably connected, 
facilitates in various ways the establishment of an effective classification of the 
input. This analysis had been previously proposed for children learning of lan- 
guage: their conceptual repertoire must be advanced enough before they can le- 
arn language, but language in turn affects the organization of the conceptual ca- 
tegories. 

Extensive work is currently taking place, trying to link the product of the 
massive, parallel based information processing of connectionist systems, with 
the more traditional and well-grounded symbolic based systems. We choose to 
present here a recent way of linking the two called Evolutionary programming 
(Kinnear, 1994, Koza, 1994). It is not widely known, nor is it likely to be used 
by individuals, but it shows in striking manner the room there remains for novel 
ideas in this domain. 

Many seerningly different problems in artificial intelligence, symbolic 
processing, and machine learning can be viewed as requiring discovery of a 
computer program that produces some desired output for particular inputs. 
When viewed in this way, the process of solving these problems becomes equi- 
valent to searching a space of possible computer programs for a most fit indivi- 
dual computer program. c<Genetic programming>> provides a way to search for 
this most fit individual computer program. In this paradigm, populations of com- 
puter prograrns are genetically bred using the Darwinian principle of survival of 
the fittest and using a genetic crossover (recombination) operator appropriate for 
genetically mating computer programs. 

Exarnples come from the areas of planning, sequence induction, empirical 
discovery, solving equations, concept formation; automatic prograrnming; pat- 
tem recognition. Since the Genetic Algorithm, with the cross-over function, 
combines and identifies useful components that form part of the evolved pro- 
grams, it can be said to extract useful subroutines, i.e., functional modules that 
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are relatively independent. This has great importance for problem-solving. It is 
often argued that the process of solving complex problems can be automated by 
first decomposing the problem into subproblems, then solving the presumably 
simpler subproblems, and then assembling the solutions to the subproblems into 
an overall solution to the original problem. The overall effort required to solve a 
problem can potentially be reduced to the extent that the decomposition process 
uncovers subproblems that are easier to solve and to the extent that regularities 
in the problem environment permit multiple use of the solutions to the subpro- 
blems. Conventional techniques of machine learning and artificial intelligence 
provide no effective means for automatically executing this three-step problem- 
solving process on a computer. 

This process is automatically implemented by means of the technique of 
automatically defined functions in the context of genetic programrning. Auto- 
matically defined functions enable genetic programming to define useful and 
reusable subroutines dynamically during a run. This new technique was applied 
to solving, or approximately solving, example problems from the fields of Boo- 
lean function learning, symbolic regression, control, pattern recognition, robo- 
tics, classification, and molecular biology. In each case, the problem is automa- 
tically decomposed into subproblems; the subproblems are automatically 
solved; and the solutions to the subproblems are automatically assembled into a 
solution to the original problem. Leverage accrues because genetic program- 
ming with automatically defined functions repeatedly uses the solutions to the 
subproblems in the assembly of the solution to the overall problem. Moreover, 
genetic programming with automatically d e h e d  functions produces solutions 
that are simpler and smaller than the solutions obtained without automatically 
defined functions. 

Final Comments 

In this survey, I strove to suggest the nature of the impressive work taking 
place in Artificial Intelligence, especially those involving ideas that are less 
well-known to psychologists. Starting from the simple conceptual description of 
the lower and higher stages of development, we showed those stages may be des- 
cribed as collection of rules, each a modular entity that may be independently 
acquired or modified. We then sketched some mechanisms that allow this pro- 
gress to take place on its own. First, we indicated how this occurs with the gui- 
ding hand of a central mechanism responsible for making appropriate generali- 
zations, compilations and so on. We then saw some mechanism that are 
unguided, and nevertheless show prornise of achieving the same goal. 

The other class of learning systems we discuss are even more autono- 
mous, in that the conceptual building blocks themselves are constructed by the 
system, the cumulative outcome of many interactions with the environment. 
Here too, we saw two types of systems. In our exposition, we made use of the 
classic distinction between supervised and non-supervised learning. One would 
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be tempted say that the former are non-constructive, and the latter are. But this 
is really misleading: all cases of learning are adaptation under constraints, the 
real difference being that constraints may be more or less specific. The proper 
distinction relates therefore to the nature of the constraints. These may be case- 
based, i.e., concern specific cases, or more global: the network architecture, le- 
arning function, activation functions, etc. The supervised systems, while indeed 
constructing an interna1 representation on their own, are guided by a tutor that 
indicates to them, after each trial, how successful their behavior is. The diffe- 
rence between actual and required behavior serves to guide the system to the 
construction of a good representation. Finally, the unsupervised systems cons- 
truct a representation under general architectural constraints, but without being 
guided by specific, case by case information. 

The automatic creation of complex cognitive structure, by the interplay of 
diverse architectures and substantive domains, promises to give substance to Pia- 
get's description of equilibration (Piaget, 1975, pp. 180-181). Piaget's account 
was explicitly at the level of his <<functional invariants>> as opposed to that of spe- 
cific mechanism. The distinction is indeed valid, and the possibility that a variety 
of mechanisms may fulfill the same function is well know. But as long as no me- 
chanism is forthcoming, the account lacks a key component. Today, do we have 
some understanding of what emerging, incomplete knowledge might look like, 
and we are in a much better posture than in the past to discuss mechanisms of 
emergence. At the same time, the proposed systems are yet to demonstrate that 
they are capable of generating the range of psychological structures that are 
found to emerge. This will be especially difficult to the extent that the grain of 
the elements relied on by the mechanisms is small, the scope of what those sys- 
tems are trying to learn is large, and there are fewer inbuilt assumptions about 
the domain to be acquired. 

Perhaps the aspect in which the least work has been done to date in AI, 
whether in the symbolic or subsymbolic approach, concerns the interaction 
between knowledge domains. Domains do not evolve in isolation. Learning a 
n+l th  domain is different from learning the first n. And knowing severa1 do- 
mains has its impact on the individual domain. A universal novice is a novice 
in a way a domain-specific novice is not, for learning previous domains may 
have had its effect. 

Known domains can serve as the source of analogies, as templates in the 
construction of the new domain, once both are sufficiently structured to detect 
the relevance of an analogy (Goswami, 1991; Holyoak, Novick and Meltz, 1994; 
Gentner and Toupin, 1986; Gentner, Ratterman, and Forbus,1993; Brown, 
1989). A domain or scheme can be more or less profoundly affected by a suc- 
cessful analogy that it supported. There is a continuum of influence, ranging 
from the transient and superficial to the long-lasting and profound. Transfer is 
the weakest link type. The original scheme remains as it was, and the cognitive 
structure, the scheme, is not lastingly modified by the encounter. There are but 
very few ideas about mechanisms that might effect this, but there are some be- 
ginnings, even when the structure is as diffuse as in a back-propagation network 
(e.g., Pratt, 1993). c<Schema abstraction>> is different. In principle, transfer is 
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only within a zone of mental elasticity, the assimilatory region of the scheme. 
That zone has fuzzy boundaries: increased effort manages to effect the transfer 
to more distant items. The implicit definition of what the scheme does evolves as 
that zone extends. The original paradigmatic case need not remain central or re- 
tain a special status, as it becomes subsumed under the more abstract scheme 
that evolves. When this process has proceeded far enough, one talks more natu- 
rally of abstraction. The ultimate end-result is when structurally equivalent pro- 
blems are solved with equal ease. 

Another possibility concerns coordination of domains, where the two do- 
mains evolved and became structured independently The same empirical situa- 
tion may give rise to contradictions, to incoherence, if assimilated to different 
domains simultaneously. Conflict resolutions go from demarcation to complete 
merging with attendant conceptual change. The former leaves the two domains 
as they were, merely adding the ability to discriminate when either of them is ap- 
propriate. The latter may involve a complete reworking of the two domains in- 
volved. Piaget (1975) viewed the need to coordinate one's mental structures as 
one of the two great sources of development, the other being the need to adapt to 
the externa1 environment. While nothing precludes in principle the development 
of AI techniques to perform such coordination, only the very first steps have 
been taken (e.g. Holyoak and Thagard, 1989, Sloman, 1993). 

This survey has not examined the philosophical arguments for or against 
the posssibility of realizing a constructionist programme within one of the varie- 
ties of AI. Such arguments are best handled by professional philosophers. Ins- 
tead, it presented some of the current accomplishment of the field, and an inkling 
of what may reasonably be expected in the future. Perhaps this approach is just 
as well. Some years ago, Minsky and Papert (1967) published seemingly defini- 
tive mathematical arguments, that were taken to demonstrate the necessary ba- 
rrenness of the connectionist approach. Researchers duly eschewed that appro- 
ach during the following decades, until, some twenty years later, an apparently 
minor modification of the connectionism mechanism enabled the approach to si- 
destep those discouraging conclusions. Without denying the usefulness of con- 
ceptual clarification philosophical analysis brings to a problem, I suspect a simi- 
lar fate will befall the a priori arguments over how far AI is compatible with 
constructivism. 

The general orientation towards constructivism has changed over the last 
few years, both in the symbolic and the sub-symbolic approach. The over-simple 
equation of cognitive structure and data structure (Leiser, 1987) has given way to 
a realization that there are layers of cognitive stucture that, while depending on 
data structures, cannot be represented explicitly while evolving. This assessment 
is of course devoid of theoretical significance -it could just as well be a mista- 
ken conclusion- but it does reflect the cumulative experience of earnest practi- 
tioners engaged in modeling knowledge acquisition. To be sure, this awareness 
is only slowly being translated into effective programs, as is only natural: the en- 
terprise is irnrnensely difficult. But the AI field demonstrated impressive vitality 
and creativity, and the question is at last able to make fruitful contact with a 
constructivist position. 
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