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Introduction 

The analysis of proximity data by means of multidimensional scaling (MDS) 
is playing an increasingly important role in severa1 fields of psychology. Never- 
theless, as pointed out by Ramsay (1978), there are two factors which still appear 
to counteract a more extensive use of this technique. One factor is the lack of 
easily available software packages which can be implemented as computer pro- 
grams. Another factor is that only a limited number of psychologists so far have 
been exposed to the basic concepts of MDS. The purpose of this paper is to pro- 
vide such an exposition. 

MDS is for some purposes an important alternative to other multivariate 
techniques such as factor analysis and cluster analysis. Sometimes MDS should 
definitely be preferred for reasons related to procedures, mathematical underpin- 
nings, and interpretations of the results (cf. Ramsay, 1978; Schiffman, Reynolds 
& Young, 1981). In other cases it may be used in conjunction with other techniques. 

MDS is basically a method for analyzing proximity data. It can be thought 
of as a procedure for converting proximity data into multivariate data (Kurskal, 
1977, p. 21). Although a proximity refers to any variable for measuring closeness 
or distance between stimuli (similarities, dissimilarities, correlations, overlap mea- 
sures, and so forth), we will for simplicity only refer to dissimilarities in the fo- 
llowing pages. 

In the simplest kind of MDS, an analogy between the psychological con- 
cept of dissimilarity and the geometrical concept of distance is assumed. A sti- 
mulus is represented by a point xi in space, and a dissimilarity dij by the distan- 
ce between the points xi and x,. Formally, 

dij = d(xi, xj) + error (1). 

Thus, the central thing about MDS is that it takes a matrix of dissimilari- 
ties as input and yields a configuration of points as output (Kruskal, 1977, p. 
28) so that large dissimilarities between stimuli will be represented by large dis- 
tances between points and small dissimilarities between stimuli by small distan- 
ces between points. 

When a researcher decides to apply MDS he should consider four main 
aspects: 
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(1) What kind of dissimilarity data to collect? 
(2) What model to choose? 
(3) What computer program to run? 
(4) How to interpret the final configuration? 

Below we try to aid a researcher not already familiar with MDS to make deci- 
sions in these respects. Some final comments are made on the relationship bet- 
ween MDS and factor analysis and between MDS and cluster analysis. 

Theory of data 

In order to provide a basis for deciding on which kind of dissimilarity data 
to collect, we expose in this section some aspects of the theory of data under- 
lying MDS (Coombs, 1964; Carroll & Arabie, 1980). Five major aspects should 
be considered relative to dissimilarity data: 

(1) Shape of the input matrix; 
(2) Number of ways; 
(3) Number of modes; 
(4) Scale of measurement; 
( 5 )  Measurement conditionality. 
As regard shape, the input matrix can be square or rectangular. In a square 

matrix both the rows and the columns are stimuli. A cell represents the dissimila- 
rity 6 ,  between stimuli i and j. In addition, a square matrix can be symetric 
(6, = d,,) or asymetric (6, # d,,). In a rectangular matrix most often the rows are 
stimuli and the columns attributes. Each cell represents the measure v,, obtained 
for the stimulus i on the attribute j. The attributes may be rating scales and the 
distances between rows are computed so that they can be interpreted as dissimila- 
rities between stimuli. In Figure 1 both a square and a rectangular matrix are shown. 
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Regarding number of ways, the input data are usually two-way or three- 
way, although higher-order ways may also be used. If only one matrix is input, 
data are referred to as two-way (the ways correspond to the arrangement of the 
matrix, rows X columns). If more than one matrix is input (for example, one ma- 
trix per subject), the data are referred to as three-way, where the third way is sub- 
jects. A graphical example is shown in Figure 2, where each one of the dissimila- 
rity matrices of h subjects are input. The data source is subjects but it could be 
any other (experimental conditions, occasions, and so forth). 

1 2  . . .  j . . .  m 

STIMULI 

FIGURE 2 TRIDIMENSIONAL REPRESENTATION OF DATA 

The data can also be one-mode, two-mode, three-mode, or higher-order. 
A mode is defined as a particular class of entities (Carroll & Arabie, 1980, p. 
610). In MDS, entities could be stimuli, attributes, subjects, or experimental con- 
ditions. A one-mode input data is shown in (a) in Figure 3. Only a class of entity 
(stimuli) is input. In the same figure, (b) is two-mode because two different clas- 
ses of entities are input, stimuli and attributes. Finally, a three-mode input data 
is displayed in (c). The three classes of entities are stimuli, attributes, and subjects. 
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FIGURE 3. DATA INPUT FOR DIFFERENT MODES. 

Antoher important question is what scale of measurement is assumed. The 
four scales which usually are identified are nominal, ordinal, interval, and ratio. 
If one of the first two is assumed, it is the nonmetric case, whereas if is assumed 
one of the last two, it is the metric case. The metric case is in general more desira- 



MuNidimensional Scaling 69 

ble because the solution is more precise and the computer time is usually less. 
However the empirical data do not always meet the necessary conditions. 

Finally, another measurement aspect is called the conditionality. One can 
assume that two different subjects use different subjective scales when they judge 
the dissimilarity within a set of stimuli. If this assumption is made for all sub- 
jects, the responses between subjects cannot be compared with each other and 
the data are referred to as matrix conditional. On the other hand, one could as- 
sume the subjective measures can be compared. Under this assumption, data are 
referred to as unconditional. In addition, it is also possible with asymetric or rec- 
tangular matrices to assume that only the elements within a row can be compa- 
red. These data would then be referred to as row conditional. 

Multidimensional scaling models 

Even though the history of MDS is not long, the number of models deve- 
loped is extensive. Only four basic models of MDS can be chosen to be dealt with 
here, namely. 

(1) Classical metric model (Torgerson, 1958); 
(2) Classical nonmetric model (Shepard, 1962; Kruskal, 1964a, 1964b); 
(3) INDSCAL model (Carroll & Chang, 1970); 
(4) Power metric model (Ramsey, 1977). 
All of this models will throughout be evaluated from an application point 

of view according to six different characteristics: the input, the model itself, the 
algorithm, the output, the main advantages, and the main limitations. A more 
extensive treatment of these models is provided by Arce, Seoane, and Varela (1988). 

Classical metric model 

Input 
The input matrix is square and symmetric. The data are one-mode two- 

way, and the scale of measurement required is interval. 

Model 
The relationship between dissimilarities and distances is assumed to be li- 

near. Formally, 

where f is a linear function with positive slope; dij and dij are the dissimilarities 
and the distances between stimuli i and j, respectively; xik and xjk are the coor- 
dinates of the stimuli i and j on dimension k, respectively, and n is the total num- 
ber of dimensions. 
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Algorithm 
First, the additive constant is estimated, that is, the dissimilarities (assu- 

med to be at an interval scale) are converted into absolute distances (ratio scale). 
Secondly, the absolute distances are converted into scalar products. Finally, the 
coordinates of the stimuli are estimated by principal component analysis (or other 
factoring techniques). 

Output 
The output is a rectangular matrix of stimuli coordinates. The rows are 

stimuli, the columns are dimensions. Each cell x, is the coordinate of the sti- 
mulus i on dimension k (Figure 4). Therefore, from this matrix one can plot a 
(Euclidean) spatial representation of the data in n dimensions. The dimensions 
are rotatable, that is, they can be rotated in any arbitrary orientation. 

1 2  . . .  . k  . . .  n 
DIMENSIONS 

FIGURE 4. TIPICAL OUTPUT OF MULTIDIMENSIONAL SCALING. 

Advantages 
The main advantages are the relatively precise solution and the very little 

computer time consumed by the algorithm. 

Limitations 
The main limitations are (1) that only one symetric matrix is allowed as 

input, and (2) that the interval scale condition may not always be met in the data. 

Classical nonmetric model 

Input 
The input matrix is square and symmetric. The data are one-mode two- 

way, and the scale of measurement required is ordinal. 
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Model , 
The relationship between dissimilarities and distances is assumed to be mo- 

notonic. Formally, I 

where f is a monotonic function such that 1 
dij<divj, => f(dij)<f(di3,) for all i,j,i7,j' (4). ~ 

Algorithm 
First, stimuli are randomly represented in a plane or in space. The distan- 

ces between points are computed and monotonically transformed into disparities 
(distances which preserve the raw data order). A stress function for measuring 
the fit between distances and disparities is defined. Then, an iterative process is 
run unti1 the stress function has been minimized by the method of steepest descent. 

Output 
The form of the output is the same as in the classical metric model (Figure 

4). The dimensions are again rotatable. 

Advan tages 
The main advantages of this model are (1) the high applicability due to the 

ordinal scale assumption, and (2) that it allows Minkowski-p metric where in equa- 
tion 3 p=2 (ordinary Euclidean space) and p= 1 (Manhattan or city-block me- 
tric) are special cases. 

Limitations 
The main limitations are (1) that only one symmetric matrix is allowed as 

input, and (2) that there is a risk of suboptimal solutions, that is, local minima. 
A local minimun is defined as a minimum of the stress function from which no 
small movement is an improvement (Kruskal, 1964b, p. 118). But a local minu- 
mum may or may not be an overall minimum. If it is not, a suboptimal solution 
is obtained. 

INDSCAL model I 
Input 

The input matrix is square and symmetric. The data are two-mode three- 
way, matrix conditional, and the scale of measurement is interval. 

Model 
The relationship between dissimilarities and distances is assumed to be li- 
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near, with a different linear function allowed for each subject (or other data sour- 
ces). Formally, 

n 
dijs = f(dijJ = f [[I wSk(qk - yk)2]fi] 0 1 1  

k = l  

where f is a linear function with positive slope; d,, and dij, are the dissimilari- 
ties and the distances between stimuli i and j for subject s, respectively, and w,, 
is the weight of the dimension k for subject s. Thus, this model can be thought 
of as a generalization of the classical metric model by substituting a weighted 
Euclidean metric. 

Algorithm 
First, dissimilarities are converted into scalar products in a three-way man- 

ner (i.e. by applying the additive constant and the transformation for each sub- 
ject). Then, the INDSCAL model is written in scalar products form and it is con- 
sidered as a special case of the three-way CANDECOMP (CANonical 
DECOMPosition) model by imposing some constraints. Finally, a least-squares 
procedure called NILES (Nonlinear Iterative Least Squares) is iteratively used to 
arrive at the optima1 set of stimulus coordinates and subject space. 

Output 
The output consists of two rectangular matrices (Figure 5). The first one 

is called the group stimulus space. The rows are stimuli and the columns are di- 
mensions. Each cell x, represents the coordinate k for the stimuli i. This space 
is assumed to be common for all the subjects. The second matrix is called the 
subject space. The rows are subjects, columns are dimensions. Each cell repre- 
sents the coordinate k for the subject s. 

Advantages 
The main advantages of this model could be summarized as follows. First, 

the model allows systematic differences between subjects and secondly, this mo- 
del has the dimensional uniqueness property, that is, the solution is unique, un- 
rotatable. As a consequence, the dimensions or coordinate axes play a strong role 
for the interpretation of the results. They may often be directly interpretable. 

Limitations 
The main limitations are (1) the symmetry of the input matrices, (2) the 

interval scale assumption, and (3) the possibility to use only a Euclidean space. 

Power metric model 

Input 
The input matrix is square (symmetric or asymmetric). The data are two- 
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mode three-way (although the model also works as two-way), matrix conditio- 
nal, and the scale of measurement assumed for the data is ratio (following the 
terminology suggested by Carro1 & Arabie, 1980). 

(a) Stimuli space* (b) Subjects space 

1 . . .  k . . .  n 
DIMENSIONS 

DIMENSIONS 

FIGURE 5. INDSCAL MODEL OUTPUT 

Model 
The relationship between dissimilarities and distances is assumed to be a 

power function, with different paramenters for each subject. Formally, 

where v, and ps are the regression coefficient (or scaling factor) and the expo- 
nerit for subject s, respectively. 
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Algorithm 
Severa1 assumptions about the data distribution are made. Then, a log li- 

kelihood function is formulated and maximized via an alternating maximun li- 
kelihood procedure. 

Output 
The form of the output is the same as in the INDSCAL model (Figure 5). 

Advan tages 
First, as the main advantage, this model allows confirmatory analysis, in 

addition to the exploratory analysis allowed by other models. If some asump- 
tions are satisfied, then (a) a test can be applied for comparing different models, 
groups or dimensionalities, and (b) confidence regions for gauging the relative 
precision of stimulus coordinates in the spatial representation can be obtained. 
Secondly, the power function seem to be the most appropiate relationship in cer- 
tain empirical fields (cf. Garling, Book, Lindberg & Arce, 1988). 

Limitations 
The strong assumptions made such as the independence of the judgments, 

and the ratio scale dissimilarities are the main limitations of the model. 

Some available computer programs for multidimensional scaling 

Comparisons between MDS computer programs are provided by Kruskal 
& Wish (1978), Schiffman et al. (1981) and Arabie, Carrol, & DeSarbo (1987). 
The name, author and source of some of them is shown in Table 1. All of them 
have three routines: the initialization routine, the iterative routine, and the termi- 
nation routine. The main one is the iterative routine, that is, the process of trying 
over and over again to obtain the best possible solution. The initialization routi- 
ne provides the way to get the iterations started and the termination routine pro- 
vides the way to stop the iterations (Schiffman et al., 1981). 

TABLE I. SOME AVAILABLE COMPUTER PROGRAMS FOR MULTIDIMENSIONAL SCALING 

Name Author Source 

MINISSA Lingoes & Roskam Michigan, Nijmegen 
KYST Kruskal, Young & Seery Bell Laboratories 
POLYCON Young Psychometric Laboratory 
INDSCAL Chang & Carroll Bell Laboratories 
SINDSCAL Pruzansky Bell Laboratories 
MULTISCALE Ramsey International Educational Services 
ALSCAL 'Ihkane, Young & De Leeuw Psychometric Laboratories 
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MINISSA can be considered as the simplest program. The first version was 
created by Roskam & Lingoes, 1970. Later, Lingoes in Michigan and Roskam in 
Nijmegen developed two different versions of it. It is capable of carrying out mul- 
tidimensional scaling by the Shepard-Kruskal nonrnetric procedure, although the 
Guttman's Smallest Space Analysis (SSA) is typically carried out. The major li- 
mitation is that it only allows one symmetric matrix as input. 

KYST, due to Kruskal, Young, & Seery, and POLYCON, due to Young, are 
very close to each other. Both of them are capable of carrying out either metric 
or nonmetric procedures. They allow the Minkowski-p metric and more than one 
(symmetric or asymmetric) matrix as input. However, the matrices are treated 
as replications, that is, the differences between them are considered as due to ran- 
dom errors. Unlike KYST, POLYCON additionally allows the user: (a) to carry 
out the power metric model (Ramsey, 1977), (b) to input a target configuration 
for rotating the final configuration, and (c) to input nominal data. 

INDSCAL (Chang & Carroll, 1969), SINDSCAL (Pruzansky, 1975), MUL 
TISCALE (Ramsey, 1977, 1978) and ALSCAL (Takane, Young, & De Leeuw, 1977) 
are all of them capable of carrying out weighted MDS procedures, that is, proce- 
dures where systematic differences between subjects (or other data source) are 
allowed. INDSCAL, SINDSCAL and MULTISCALE are totally metric. IN- 
DSCAL and SINDSCAL were both created for carrying out the INDSCAL mo- 
del (Carroll & Chang, 1970). SINDSCAL can be thought of as a streamlined ver- 
sion of the INDSCAL program, that is, it was created for reducing the long 
computer time consumed by INDSCAL. MULTISCALE was created for carr- 
ying out the power metric model developed by Ramsay (1977). Unlike INDSCAL 
and SINDSCAL, it additionaly allows two-way data. A new version called 
MULTISCALE-I1 (Ramsey, 1981, 1982, 1983) is now available with new facilities 
such as the possibility to choose from among severa1 alternatives and distribu- 
tions (e.g. lognormal, normal and others). Unlike INDSCAL, SINDSCAL, and 
MULTISCALE, ALSCAL is capable of carrying out both metric and nonmetric 
procedures. As a major new feature, it provides a nonmetric implementation of 
the INDSCAL model even with asymmetric matrices as input. Finally, it is im- 
portant to note that the four programs have a common limitation: they only can 
yield a Euclidean spatial representation of the data. 

Interpretation of the configuration 

We will discuss here some ways for interpreting either the final stimulus 
space or the final subject space. 

Without additional information 

Sometimes the researcher is not provided with more information than disi- 
milarities. What he or she then could do is mainly as follows. 
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Stimulus space 
First, visual inspection of the configuration looking either for orders of 

the stimuli along the axes or for meaningful groupings of them. But to elevate 
subjective groupings to the status of clusters, it is absolutely necessary to apply 
some clustering technique (Arabie et al., 1987, p. 54). Secondly, if the visual ins- 
pection does not lead to a successful interpretation, the researcher still has the 
possibility to rotate the dimensions. The rotation can be made by hand or by sta- 
tistical methods (Varimax, Equimax, and so forth). It is known that rotation by 
hand usually leads to more interpretable axes. 

Subject space 
Whereas the stimulus space is composed of points, the subject space is com- 

posed of vectors. Each subject (or other data source) is represented by a vector. 
%o different aspects of the vectors should be considered: the length and the di- 
rection, the latter being the most important. 

The lenght is usually related to the fit of the model. The larger the length 
the better is the fit for a given subjecte. 

The direction is related to the relative salience of the dimensions for a par- 
ticular subject. The closer the vector is to a given dimension, the more salient it is. 

With additional infirmation 

Another way of approaching the interpretation problem is to collect addi- 
tional information about the stimuli and the subjects and then trying to relate 
it to the solution via some statistical technique. 

Stimulus space 
Schiffman et al. (1981) summarized three main alternatives: 
- Preference analysis (at individual level); 
- Property fitting (at group level); 
- Canonical correlation analysis (multidimensional properties). 
To perform preference analysis it is necessary to have obtained preference 

ratings of the stimuli from the subjects, in addition to the judged dissimilarities. 
Then the analysis fits the preference ratings to the stimulus space. As preferences 
vary widely between individuals, the analysis is mainly interesting at the indivi- 
dual level. 

To perform property analysis it is necessary to have measured either objec- 
tive physical characteristics of the stimuli or subjective judgments of the stimu- 
lus characteristics. As it is often reasonable to assume that homogeneous sub- 
jects use the same properties, property analysis is usually performed at group 
level, that is, on ratings averaged over all subjects. 

Two different models can also be used to perform both preference and pro- 
perty analysis: (a) the vector model, and (b) the ideal point model. What the vec- 
tor model does is to find a direction through the stimulus space which corres- 
ponds to increasing amounts of the attribute in question (Schiffman et al., 1981). 
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The statistical tecnique used is multiple regression, thus the multiple correlation 
coefficient is used to asses how strongly the attribute is related to the stimulus 
space. On the other hand, the ideal point model finds a point in the stimulus 
space corresponding to the attribute. In this case, the procedure used to locate 
the ideal point in the stimulus space is a special kind of multiple regression ca- 
lled optima1 multiple regression developed by Carroll (1972), which may be inter- 
preted in the ordinary way with the exception that one should be more conserva- 
tive in using significance tests. 

In addition, both the vector model and the ideal point model can be used 
in the nonmetric case, that is, when either preferences or properties are measured 
at ordinal scale (cf. Young, 1984, for references). 

There is now available a highly complete program for this purpose, PREF- 
MAP, distributed by Bell Laboratories. The last version is PREFMAP3 and it 
includes both preference and property analysis, vector and ideal point models, 
and metric and nonmetric cases. 

The statistical techniques already mentioned only fit a single set of prefe- 
rence or property ratings to the stimulus space. However it is not unusual to have 
many sets. Under such conditions, we could, of course, perform a preference or 
property analysis separetly for each set but canonical correlation analysis may 
be a better alternative. Canonical vector analysis is treated in any multivariate 
statistcs book. A nononmetric version of this type of analysis is also available 
(cf. Young, 1984, for references). In addition, a first approach to canonical ideal 
point analysis is made by Schiffman et al. (1981). 

Subject space 
We assume the researcher has obtained some additional information about 

the subjects such as, for example, age, sex, and group membership. Then we sup- 
pose the resarcher is interesting in knowing if subjects differing in these respects 
weigh the stimulus space dimensions in a significantly different way. Shiffman 
et al. (1981) ponted out two main possibilities to investigate the question, ANA- 
VA (Analysis of Angular Variation); and scaling subjects. 

ANAVA is a metod for analyzing angular variation and it is part of a new 
branch of statistics called directional statistics developed mainly by Mardia (1972). 
As in ANOVA, it is possible to decompose the angular variance into two additive 
components (within-group and between-group) and under certain conditions the 
distribution of the ratio of the between to the within mean squares approximates 
the F distribution. 

Scaling subjects is another helpful method for interpreting a subject space. 
It consists simply of running a classical MDS on a matrix with the distances com- 
puted between subject weight vectors, where the intersubject distance dij is defi- 
ned as the angle, in radians, between the two vectors. Formally, 

where dij is the distance between subjects i and j, and w, and wjk are the weights 
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of the dimension k for subject i and j, respectively. The output is a configuration 
of points, but now each point represents a subject. Thus it could be interpreted 
with using the same methods mentioned for interpreting the stimulus space. 

Final comments 

The elementary concepts of MDS have been selectively reviewed in the ca- 
tegories (a) the theory of data, (b) basic models, (c) computer programs, and (d) 
ways of interpreting the results. We hope to have provided some help for investi- 
gators to decide on how to apply MDS. Another decision which needs to be made 
is whether to use MDS instead of some other multivariate technique. Although 
we cannot cover this issue, in this final section we make some brief comments 
about the relationship between MDS and factor analysis and between MDS and 
cluster analysis. 

Even though this has not been mentioned above, both MDS and factor analy- 
sis can be used to analyze either ((direct)) dissimilarity data, for instance, dissimi- 
larity ratings (Waern, 1971), or ctindirect)) dissimilarity data, that is, dissimilarity 
defined in some way on the basis of attribute measures of the stimuli (Ward & 
Russell, 1981). In both these applications, the relationship between MDS and factor 
analysis appears to be competitive. Both techniques uncover an underlying struc- 
ture in the data and provide a spatial representation, although in different ways. 
Factor analysis is based on a vector model (i.e. each stimulus is represented by 
a vector), whereas MDS is based on a distance model (i.e. each stimulus is repre- 
sented by a point). This may make MDS preferred because it is easier to interpret 
distances between points than angles between vectors. Severa1 other reasons for 
preferring MDS over factor analysis have been pointed out. For instance, Schiff- 
man et al. (1981) noted that in MDS, but not in factor analysis, the assumption 
of linear relationships between the variables needs not be made. The interesting 
consequence is a solution in fewer dimensions which may be easier to interpret. 
On the other hand, statistically sounder methods for deciding on number of di- 
mensions have been developed for factor analysis (Joreskog, 1967, 1981). It should, 
however, be noted that, under certain circumstances, as Sjoberg (1975) points out, 
factor analysis has the undesirable property that the number of dimensions may 
depend on the number of variables included in the analysis. This is not the case 
with MDS. 

Whereas the relationship between MDS and factor analysis has bem thought 
of as competitive, the relationship between MDS and cluster analysis may be com- 
plementar~. Holman (1972) has shown the existence of some mathematical in- 
compatibilities between the techniques, but they have nevertheless been empiri- 
cally employed jointly to uncover complementary aspects of the underlying 
structure in the data (e.g. Garling, 1976; Sabucedo & Arce, 1988). This practice 
was endorsed by Shepard (1972a, 1972b) and Kruskal (1977). Recently, Arabie 
et al. (1987, p. 53-54) have strongly recommended the conjoint use of MDS and 
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cluster analysis whenever the data perrnit. Likewise, they strongly advise never ~ to elevate visually detected stimuli groupings to the status of clusters. They feel 
it is absolutely necessary to apply a clustering technique, taking as input the same 
dissimilarity matrices as used in MDS. The INDCLUS model and program (Ca- 
rroll & Arabie, 1983), which can be thought of as the INDSCAL counterpart for 
cluster analysis, may play an important role for this purpose. It allows more than 
one matrix as input (e.g. one matrix per subject, one matrix per experimental 
condition and, so forth), just what three-way MDS models do. 

En la presente investigación se comparan sistematicarnente, y desde un punto 
de vista aplicado, cuatro modelos centrales para la teoria del escalamiento multi- 
dimensional. Ademas, se consideran algunos aspectos relativos a la teoria de da- 
tos, a 10s programas de ordenador disponibles y a la interpretación formal y no- 
formal de 10s resultados. Por ultimo, se discute la relación existente entre escala- 
miento multidimensional y analisis factorial, y entre escalamiento multidimen- 
sional y cluster analysis. 

Four models of multidimensional scaling are compared from an applied 
point of view. In addition, the underlying theory of data, available computer pro- 
grams, and formal and informal ways of interpreting the results are discussed. 
Finally, the relationship between multidimensional scaling and factor analysis and 
between multidimensional scaling and cluster analysis are examined. 
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