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The Pobei mafic-ultramafic complex in northwestern China comprises magmatic Cu-Ni sulfide ore deposits 
coexisting with Fe-Ti oxide deposits. The Poshi, Poyi, and Podong ultramafic intrusions host the Cu-Ni ore. The 
ultramafic intrusions experienced four stages during its formation. The intrusion sequence was as follows: dunite, 
hornblende-peridotite, wehrlite and pyroxenite. The wall rock of the ultramafic intrusions is the gabbro intrusion 
in the southwestern of the Pobei complex. The Xiaochangshan magmatic deposit  outcrops  in the magnetite-
mineralized gabbro in the northeastern part of the Pobei complex. The main emplacement events related to the 
mineralization in the Pobei complex, are the magnetite-mineralized gabbro related to the Xiaochangshan Fe deposit, 
the gabbro intrusion associated to the Poyi, Poshi and Podong Cu-Ni deposits, and the ultramafic intrusions that 
host Cu-Ni deposits (Poyi and Poshi). The U-Pb age of the magnetite-mineralized gabbro is 276±1.7Ma, which 
is similar to that of the Pobei mafic intrusions. The εHf(t) value of zircon in the magnetite-mineralized gabbro 
is almost the same as that of the gabbro around the Poyi and Poshi Cu-Ni deposits, indicating that the rocks 
related to Cu-Ni and magnetite deposits probably originated from the same parental magma. There is a trend 
of crystallization differentiation evolution in the Harker diagram from the dunite in the Cu-Ni deposit to the 
magnetite-mineralized gabbro. The monosulfide solid solution fractional crystallization was weak in Pobei; thus, 
the Pd/Ir values were only influenced by the crystallization of silicate minerals. The more complete the magma 
evolution is, the greater is the Pd/Ir ratio. The Pd/Ir values of dunite, the lithofacies containing sulfide (including 
hornblende peridotite, wehrlite, and pyroxenite) in the Poyi Cu-Ni deposit, magnetite-mineralized gabbro, and 
massive magnetite, are 8.55, 12.18, 12.26, and 18.14, respectively. Thus, the massive magnetite was probably the 
latest product in the evolution of the Pobei mafic-ultramafic intrusions. We infer that the Cu-Ni sulfide and Fe-Ti 
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INTRODUCTION

The Pobei mafic-ultramafic complex is unique because 
of the coexistence of magmatic Cu-Ni sulfide ore and 
Fe-Ti oxide deposits. The symbiosis of magmatic sulfide 
deposits and magmatic titanium iron oxide ore (including 
magnetite, ilmenite, and titanomagnetite) is visible in some 
parts of the world (Wang et al., 2010). For example, not 
only chromium and Platinum Group Elements (PGE) but 
also magnetite oreoutcrops are found in the Busheveld 
complex (Cawthorn and Molyneux, 1986). The Xinjie 
layered intrusion in the Panxi area of China contains both 
vanadic-titanomagnetite and copper-nickel-platinum. The 
upper part has two layers of vanadium-titanium magnetite, 
while the lower part has four layers of Cu-Ni-Pt sulfide ore 
(Li et al., 2006a; Zhu et al., 2010; Zhong et al., 2011). The 
Xiangshan intrusion in the eastern Tianshan area of China 
hosts both Ti-Fe and Cu-Ni sulfide mineralization (Wang et 
al., 2006, 2009; Xiao et al., 2010).

There are two hypotheses explaining the coexistence 
of the magmatic sulfide ore deposit and the Fe-Ti oxide 
deposit. One is that the formation of Fe-Ti oxide ore 
occurred later than that of the sulfide; the Cu-Ni sulfide 
ore and the Fe-Ti oxide ore were products of a cogenetic 
magma at different evolutionary stages; and the liquids 
were iron enriched through fractionation at the late stage 
in the layered intrusions (Scoon and Mitchell, 1994; 
Wang et al., 2006, 2009; Xia, 2009; Xiao et al., 2010; 
Jiang, 2014). The other hypothesis argues that the Fe-
Ti oxide ore was formed earlier than the sulfides, while 
periodic magma recharge and the continuous mixing 
of resident and replenishing ferropicritic magma led to 
the crystallization of minor chromite and Cr-bearing 
magnetite and, thereafter, to relatively abundant Fe-Ti 
oxides, with the resultant S saturation giving rise to PGE-
enriched sulfide droplets (Zhu et al., 2010; Zhong et al., 
2011). 

Based on field observations, geochronology, major 
and trace element geochemistry, and PGE geochemistry, 
we discuss the petrogenetic relationships between Cu-

Ni sulfide and magnetite deposits and the mineralization 
process in the Pobei complex. A deep understanding of the 
relationship between the magmatic Cu-Ni sulfide ore and 
Fe-Ti oxide deposits will help the exploration of mafic-
ultramafic intrusions, especially the metallogenic types.

GEOLOGIC SETTING

Early Permian mafic-ultramafic intrusions discovered 
at the northeastern margin of the Tarim Basin in Xianjiang 
in northwestern China (Fig. 1), host economic magmatic 
sulfide deposits. This made Xinjiang the second most 
important district of nickel resources in China (Mao et 
al., 2008; Qin et al., 2011; Han et al., 2013; Yang et al., 
2014). 

The Tarim Basin is the largest sedimentary basin 
in China (Fig. 1B). According to recent geological 
mapping, drill core logging, and seismic data, the Permian 
ultramafic-mafic rocks of the the Large Igneous Province 
(LIP) in the Tarim Basin, form a NE-SW-trending zone 
across the basin, with an outcrop area of approximately 
250,000km2 (Fig. 1B; Jia, 1997). The Permian igneous 
units are dominated by basalts, with some peridotites, 
gabbros, basaltic andesites, and dolerites.

Basalt is mainly distributed in the eastern and southern 
part of the Bachu area, and the Early Permian Tajilitag 
V-Ti-Fe deposit is located in the southeast (Fig. 1B) (Li et 
al., 2001; Zhang et al., 2008a). Early Permian basalt has 
also been found in the Liuyuan and Pobei areas in Beishan, 
along the northeastern margin of Tarim (Jiang et al., 2007; 
Xiao, 2004). 

The Cu-Ni deposits along the northeastern margin 
of the Tarim Basin are mainly distributed in three areas 
(Fig. 1C): Beishan (Pobei), central Tianshan, and eastern 
Tianshan (Han et al., 2004; Zhou et al., 2004; Jiang et 
al., 2006; Chai et al., 2008; Zhang et al., 2008b; Han et 
al., 2010; Qin et al., 2011; Zhang et al., 2011; Tang et al., 
2012; Zhao et al., 2015; Liu et al., 2015, 2016).

oxide ores in the Pobei area were products of a cogenetic magma at different evolutionary stages; at the late stage, 
the magma became iron enriched through crystallization differentiation. The magma differentiation occurred in 
a deep staging magma chamber emplaced in the upper magma chamber. Earlier crystallized olivine with some 
interstitial sulfides gathered at the bottom of the staging magma chamber because of its greater density. That is to 
say, the ultramafic magma hosting the Cu-Ni sulfide formed at the bottom of the staging magma chamber, while 
the magnetite-mineralized gabbro was in the upper part. However, the magnetite-mineralized gabbro injected 
into the upper magma chamber first and the ultramafic lithofacies containing the olivine and the interstitial Cu-Ni 
sulfides were subsequently emplaced in the upper magma chamber as crystal mush.

Magmatic Cu-Ni sulfide deposit. Xiaochangshan Fe deposit. Crystallization differentiation. Magnetite-mineralized gabbro. Beishan. 

Early Permian.
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The Cu-Ni deposits related to the Early Permian mafic-
ultramafic complexes in eastern Tianshan include the 
Huangshandong, Tulargen, Huangshanxi, Hulu, and Xianshan 
deposits (Fig. 1C). The surrounding rocks are mainly Middle 
Ordovician and Carboniferous strata (Dong, 2005).

Central Tianshan was formed from a Precambrian block 
containing both the Tianyu and Baishiquan Cu-Ni deposits 
(Fig. 1C). The surrounding rocks of these deposits comprise 
Paleoproterozoic and Mesoproterozoic strata, which are 
mainly composed of mica quartz schist, gneiss, and migmatite, 
with ages in the range of 997Ma–1829Ma (Dong, 2005).

The Beishan (Pobei) area is generally considered to be 
the rift (Xiao, 2004; Su et al., 2011) in which the Poyi and 

Poshi Cu-Ni deposits  formed related to mafic-ultramafic 
intrusions (Fig. 1C). The surrounding rocks of these intrusions 
include Paleoproterozoic quartz-biotite schist (2203±74Ma), 
Mesoproterozoic gneissic biotite-plagioclase granite 
(1311Ma), mica quartz schist, and marble (Xiao, 2004).

The intergrowth of the fault sag and fault uplift in the 
Beishan region separates the pre-Permian sedimentary 
sequences (BGMRXUAR, 1993; Qin et al., 2011); the 
discovery of Permian bimodal igneous rocks in the Pobei 
area (Su et al., 2011; Yang, 2011) supports the fact that the 
Beishan region, in which the Pobei Cu-Ni-Fe deposit is 
located, is a Permian rift (Xiao, 2004). The Beishan Rift 
Zone is composed of Precambrian crystalline basement, 
mainly Paleoproterozoic rocks, overlaid by sedimentary 
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FIGURE 1. Tectonic units and distribution of magmatic deposits and Early Permian basalts in northern Xinjiang, northwestern China (modified after 
BGMRXUAR, 1993; Xiao et al., 2004), and age resources (Qin et al., 2002; Mao et al., 2003; Wu et al., 2005; Li et al., 2006b; Xiao et al., 2010; 
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rocks (Xiao, 2004). The rift zone is separated from the 
Kruktag Block by the Xingxingxia fault in the west and from 
the Dunhuang Block by the Liuyuan fault in the east (Fig. 1). 

The exposed rocks in the Beishan area are mainly part of 
the Paleoproterozoic Beishan group, the Mesoproterozoic 
Gudongjing group, the Lower Paleozoic Cambrian 
Shuangyingshan Formation, the Silurian Tushenbulake 
Formation, the Carboniferous Hongliuyuan Formation, the 
Shibanshan Formation, the Shengliquan Formation, the 
Permian Hongliuhe Formation, the Luotuogou Formation, 
the Paleogene Taoshuyuan Formation, and the Neogene 
Kuquan Formation (Xiao, 2004). 

The Pobei mafic-ultramafic complex is approximately 
35km in length and 8km in width. The mafic-ultramafic 
intrusions exhibit close relationships with regional faults 
(Fig. 2). The Baidiwa-Yunihe fault has a long-term effect 
on the distribution of the Pobei mafic-ultramafic intrusions 
and iron-copper-nickel ore deposits.

GEOLOGY OF THE POBEI Cu-Ni AND XIAOCHANGSHAN 
FE DEPOSITS

The Pobei complex is mainly composed of three mafic 
intrusions: gabbro, magnetite-mineralized gabbro, and 
leucocratic gabbro, from southwest to northeast (Fig. 2). The 
wall rock of the Poshi, Poyi, and Podong ultramafic rocks 

which host the Cu-Ni ore, comprises gabbro intrusions; the 
Xiaochangshan Fe deposit outcrops in the southern part of 
the magnetite-mineralized gabbro intrusion (Fig. 2). In the 
field, the gabbro cross-cutting the magnetite-mineralized 
gabbro (Fig. 3) indicates that the gabbro intrusion around 
the Poyi and Poshi Cu-Ni deposits was emplaced later than 
the magnetite-mineralized gabbro.

The Poyi multiple ultramafic intrusion experienced 
four stages during its formation. The intrusion sequence 
was as follows: dunite, hornblende-peridotite, wehrlite, 
and pyroxenite (Liu, 2015). The Poshi ultramafic intrusion 
has these four lithofacies together with troctolite. The Cu-
Ni ore bodies (Ni% higher than 0.4%) only exists in the 
hornblende-peridotite in both the Poyi and Poshi deposits.. 
The contact between the peridotite unit and the gabbro 
intrusions show a clear intrusive relationship. Moreover, 
gabbro xenoliths of several meters can be observed in the 
peridotite (Yang, 2011).

Therefore, there were three main emplacement events 
related to the mineralization in the Pobei complex, from 
early to late: the magnetite-mineralized gabbro related to the 
Xiaochangshan Fe deposit, the gabbro intrusion associated 
to the Poyi and Poshi Cu-Ni deposits, and the ultramafic 
intrusions that host Cu-Ni deposits (Poyi and Poshi).

The magnetite-mineralized gabbro is black (Fig. 
4). Clinopyroxene (Cpx) accounts for 35%–40% and is 
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euhedral to subhedral, with a particle size of approximately 
0.5x1mm; plagioclase (Pl) accounts for 50%–55% and is 
euhedral to subhedral, with a particle size of approximately 
0.5x1mm; and accounting for 2%–4% magnetite (Mt) also 
exists in intergranular clinopyroxene and plagioclase (Fig. 
4); therefore, Mt crystallized later than Cpx and Pl. The 
body of the Xiaochangshan magnetite ore is mainly located 
around the contact of the magnetite-mineralized gabbro 
and marble (Fig. 5). The ore mineral is magnetite, and 
ilmenite is rare.

ANALYTICAL METHODS

Major and rare elements of 11 magnetite-mineralized 
gabbro smaples were analyzed at ALS Chemex 
(Guangzhou) Co. Ltd using ME-XRF26 and ME-MS81 

methods, respectively. The analysis method for the loss of 
ignition was ME-GRA05.

The platinum group elements (PGEs) concentrations 
in 6 magnetite-mineralized gabbro samples and 2 Massive 
magnetite samples were determined at the Institute of 
Geochemistry of the State Key Laboratory of Ore Deposit 
Geochemistry in Guiyang, China, by Inductively Coupled 
Plasma-Mass Spectrometry (ICP-MS) coupled with a 
modified Carius tube isotope dilution method (Qi et al., 
2007). 

U-Pb dating and trace-element analysis of zircon 
from the magnetite-mineralized gabbro were conducted 
synchronously by Laser Ablation-Inductively Coupled 
Plasma-Mass Spectrometry (LA-ICP-MS) at the State 
Key Laboratory of Geological Processes and Mineral 
Resources of the China University of Geosciences in 
Wuhan. Detailed operating conditions for the laser ablation 
system and the ICP-MS instrument and data reduction are 
described in Hu et al. (2008, 2012b) and Liu et al. (2008, 
2010). The preferred U-Th-Pb isotopic ratios used for the 
standard Zircon 91500 are from Wiedenbeck et al. (1995). 
The uncertainty of the preferred values for the external 
standard 91500 was propagated to the ultimate results. 
Concordia diagrams and weighted mean calculations were 
made using Isoplot/Ex_v.3 (Ludwig, 2003). The preferred 
values of element concentrations for the USGS reference 
glasses were taken from the GeoReM database. (http://
georem.mpch-mainz.gwdg.de/).

In situ Hf isotope ratio analysis of zircon was 
conducted using a Neptune Plus MC-ICP-MS (Thermo 
Fisher Scientific, Germany) in combination with a 
Geolas 2005 excimer ArF laser ablation system (Lambda 
Physik, Göttingen, Germany) at the State Key Laboratory 
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FIGURE 3. Gabbro around the Poyi and Poshi Cu-Ni deposits cross-
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FIGURE 4. Characteristics of the magnetite-mineralized gabbro in a hand specimen and under the optical microscope.
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of Geological Processes and Mineral Resources of the 
China University of Geosciences in Wuhan. The detailed 
operating conditions are described in Hu et al. (2008, 
2012a, b). The offline selection, integration of the signals, 
and mass bias calibrations were performed using ICP-
MSDataCal (Liu et al., 2010).

RESULTS

Geochronology

Zircon grains from all samples are transparent, 
mostly subhedral, and 50–150μm in length. The 
internal structure of the selected zircon crystals from 
the magnetite-mineralized gabbro was studied with 
cathodoluminescence images (Fig. 6). Some of the grains 
exhibit concentric zoning, and others are structureless. 
The analytical results of the selected zircon crystals 
are listed in Table I (see Electronic Appendix at www.
geologica-acta.com). The concordia plots of the analyses 
are shown in Figure 7. The U, Th, and Pb contents of the 
zircons vary from 196–1348ppm, 112–947ppm and 32–
264ppm, respectively, and the Th/U ratios are ~0.46–
0.82. All analyses give concordant U-Pb ages within 
analytical errors (Fig. 7), yielding a concordia age of 
276±1.7Ma (MSWD=0.2) for the magnetite-mineralized 
gabbro.

Lutetium-Hafnium (Lu-Hf) isotopes

The Lu-Hf isotopes of the selected zircon crystals from 
the magnetite-mineralized gabbro are listed in Table II. The 
calculated εHf(t) values of these zircon crystals range from 
4.0 to 6.1, and is 5.3 on average. While, the εHf(t) of the 
zircon crystals of the Pobei gabbro enclosing the Poyi and 

Poshi Cu-Ni deposit ranges from -0.8 to 5.3, with 3.2 on 
average (Su et al., 2011); thus, the magnetite-mineralized 
gabbro has a εHf(t) of zircon close to that of the Pobei 
gabbro around the Poyi and Poshi Cu-Ni deposits.

Major and Rare Earth Elements (REEs)

The concentrations of major and Rare Earth Elements 
(REEs) in the magnetite-mineralized gabbros are listed 
in Table III. The magnetite-mineralized gabbros contain 
47.6%–55.8% SiO2, 15.2%–21.3% Al2O3, 3.2%–10.9% 
MgO, 0.10%–0.45% MnO, 5.85%–16.26% Fe2O3 (total), 
5.07%–12.95% CaO, 1.77%–3.97% Na2O, 0.67%–2.79% 
TiO2, 0.20%–1.1% K2O, 0.01%–1.26 P2O5, 0.02%–0.07% 
V2O5, and 29.19–194.9ppm REEs. 

Platinum Group Elements (PGEs)

The concentrations of PGEs in the magnetite-
mineralized gabbro and massive magnetite ores 
are listed in Table IV. The magnetite-mineralized 
gabbro and magnetite ores have extremely low PGE 
concentrations (0.01–0.05ppb Ir, 0.015–0.036ppb 
Ru, 0.007–0.023ppb Rh, 0.119–0.292ppb Pt and 
0.165–0.540ppb Pd) and show left-leaning primitive 
mantle-normalized PGE patterns (Fig. 8). The ∑PGE 
content of the magnetite ores ranges between 0.644 and 
0.746ppb and is 0.695 on average, whereas that of the 
magnetite-mineralized gabbro is 0.4–0.69, with a mean 
value of 0.49. Both the magnetite-mineralized gabbro 
and magnetite ores have negative Ru anomalies in the 
primitive mantle-normalized PGE diagrams (Fig. 8) 
relative to primitive mantle concentrations (Barnes 
and Maier, 1999). The Pd/Ir ratio of the magnetite ores 
is 18.14, which is higher than that of the magnetite-
mineralized gabbro.
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FIGURE 5. Relationship between the magnetite-mineralized gabbro and the magnetite ore body.
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DISCUSSION

The U-Pb age of the magnetite-mineralized gabbro is 
276±1.7Ma (n=16, MSWD=0.2; Fig. 7). The U-Pb ages of 
the zircon crystals separated from the gabbro intrusions, 
which formed the wallrock of the Poshi, Poyi, and Podong 
ultramafic rocks, where the Cu-Ni ores exist, are 274±4 
and 278±2Ma (Jiang et al., 2006; Li et al., 2006c). The fact 
that these two types of rock show the same age indicates 
that the rocks hosting the Cu-Ni and magnetite ore deposits 
probably originated from the same parental magma. 

The average εHf(t) value of the zircons from the 
magnetite-mineralized gabbro and the Pobei gabbro 
around the Poyi and Poshi Cu-Ni ore deposits is 5.3 and 
3.2, respectively, which indicate that they probably have 
the same origin. We have also calculated the degree 
of contamination of the surrounding rocks using the 
two-endmember isotope-mixing model (Fig. 9). The 
surrounding rocks of the gabbros are the Mesoproterozoic 
Baihu Group (Fig. 2) which is mainly composed of 

gneiss. So we choosed the Mesoproterozoic gneiss with 
8.85ppm Hf and εHf (t= 276Ma) of -16.2 (He et al., 
2015, calculated from εHf (t= 1409Ma)= 7.0) as one of 
the endmembers. Based on the Sr-Nd isotopes and trace 
elements, Yang (2011) suggested that the Pobei mafic-
ultramafic rocks may have been derived from a depleted 
mantle source. Therefore, we chose the depleted mantle 
as the endmember. The Hf content of the depleted mantle 
(Fig. 9) is 2.05ppm (Sun and McDonough, 1989), and 
the εHf (t= 276Ma) of the depleted mantle is 19.4, 
roughly calculated from Salters and Stracke (2004) and 
Griffin et al. (2000). The other endmember comprises 
the Beishan Mesoproterozoic gneiss with 8.85ppm Hf 
and εHf (t= 276Ma) of -16.2 (He et al., 2015, calculated 
from εHf (t= 1409Ma)= 7.0). The comparison of the 
εHf(t) values with those of the depleted mantle and a 
potential contaminant, the Mesoproterozoic gneiss 
from Beishan (He et al., 2015), reveals that 13% and 
16% of contamination are permitted for the magnetite-
mineralized gabbro and the gabbro around the Poyi and 
Poshi Cu-Ni deposits, respectively (Fig. 9). The degree 
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of contamination of these two types of gabbros with 
almost the same outcrop area is, in general, 15%. If the 
outcrop area of the two types of gabbros resulting from 
homologous evolution is roughly the same, the degree 
of contact with the surrounding rock is probably also 
the same; therefore, they may have a similar degree of 
crustal contamination. 

To gain a better understanding of the relationship 
between the magnetite-mineralized gabbro and the mafic-
ultramafic rocks related to the Cu-Ni ore deposits in 
the Pobei area, the major elements and REEs of mafic-
ultramafic rocks related to Cu-Ni ore deposits in Pobei 
were compiled (Fig. 10). 

The composition changes during the evolution of 
the magma because of the separation of crystals. The 
compositional change trends with MgO can reflect the 

process of crystallization differentiation (Bowen and 
Schairer, 1956). MgO is negatively related to SiO2 and 
positively related to TFe2O3 (Fig. 10), indicating the 
crystallization differentiation of olivine. CaO and Al2O3 
show a negative correlation with MgO (Fig. 10), indicating 
the crystallization differentiation of clinopyroxene. TiO2 
and MgO are negatively correlated (Fig. 10). A relationship 
between K2O, P2O5, and MgO was not noted. The Harker 
diagrams of the Pobei mafic-ultramafic rocks, especially 
the relationships of SiO2, TFe2O3, CaO, Al2O3, and MgO, 
reveal the crystallization differentiation evolutionary 
trend from the ultramafic rocks related to Cu-Ni deposits 
to the magnetite-mineralized gabbro related to the 
Xiaochangshan magmatic deposit. Although the Harker 
diagrams are not robust evidence to support the hypothesis 
of the same parental magma of the different intrusions, they 
at least do not contradict the crystallization differentiation 
evolutionary trend.

Because Mn, P, and REEs are not compatible with 
olivine and pyroxene during crystallization differentiation 

(Anderson and Greenland, 1969; Nagasawa et al., 1980; 
Hirokazu et al., 1984; Gaetani and Grove, 1997; Jones and 
Layne, 1997; Zack and Brumm, 1999; Adam and Green, 
2006), they tend to be enriched in the residual phase. The 
magnetite-mineralized gabbro has the highest P, Mn, and 
REE contents (Fig. 10), which indicates that it is probably 
a later product of the magma evolution relative to the 
mafic-ultramafic rocks (i.e. dunite, hornblende-peridotite, 
wehrlite, and pyroxenite) that host the Cu-Ni deposits. 

The PGEs, including Os, Ir, Ru, Rh, Pt, and Pd, 
have special chemical properties, leading to a different 
geochemical behavior compared to other trace elements. 
Therefore, the PGEs have a unique and irreplaceable 
geochemical tracer importance for the study of the 
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mantle-derived magma origin and evolution and the 
genesis of magmatic deposits (Qi et al., 2007; Lorand et 
al., 2008; Song et al., 2009). Ruthenium is a compatible 
element during crystallization evolution (Capobianco et 
al., 1994; Hill et al., 2000; Puchtel and Humayun, 2001; 
Righter et al., 2004) and thus will gradually be lost in 
the residual magma, magnetite-mineralized gabbro, 
and massive magnetite ores, which show a loss of Ru 
relative to dunite in the Poyi Cu-Ni ore deposits (Fig. 9), 
indicating that they may be later products compared to the 
Poyi ultramafic rocks (dunite). During the crystallization 
of the silicate minerals, Ir is compatible, while Pd is 
incompatible (Capobianco et al., 1994; Hill et al., 2000; 
Puchtel and Humayun, 2001; Righter et al., 2004). 
Therefore, along with the crystallization of olivine, 

chromite, and pyroxene, the Ir content will decrease, 
whereas the Pd content will increase in the residual phase, 
causing an increase in the Pd/Ir ratio. Therefore, the more 
complete the magma evolution is, the greater is the Pd/
Ir. However, the Pd/Ir ratio can also be influenced by the 
sulfide fractional crystallization. Experimental studies 
indicate that the first phase to crystallize from a sulfide 
melt is a monosulfide solid solution (Mss; Naldrett et al., 
1967; Kullerud et al., 1969; Misra and Flet, 1973, 1974). 
The Mss/sulfide liquid partition coefficient of Ir is 3.4–11, 
and that of Pd is 0.09–0.2 (Fleet et al., 1993; Barnes et 
al., 1997). If Ir were compatible during the fractionation 
of Mss in the rocks, Ir would show a negative correlation 
with Pd in the whole rock (Song et al., 2008). It is 
clear that Ir has a positive relationship with Pd in the 
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Pobei area (Fig. 11), indicating that the Mss fractional 
crystallization was weak in Pobei. Therefore, the Pd/Ir 
values of the Pobei mafic-ultramafic rocks are mainly 
influenced by the crystallization of silicate minerals. The 
Pd/Ir values of dunite without sulfide, the lithofacies 
containing sulfide (including hornblende-peridotite, 
wehrlite, and pyroxenite) in the Poyi Cu-Ni deposit, 
magnetite-mineralized gabbro, and massive magnetite 
ores are 8.19, 12.18, 12.26, and 18.14, respectively. This 
finding indicates that the massive magnetite was probably 
the latest product in the evolution of the Pobei mafic-
ultramafic intrusions, as the more complete the magma 
evolution is, the greater is the Pd/Ir.

Based on all the evidence, we think that the 
magnetite-mineralized gabbro was a late product 
during crystallization differentiation compared to Pobei 

ultramafic rocks, but field evidence shows that the 
former was emplaced earlier. Hence, the question is, 
what happened? We infer that the magma differentiation 
occurred in a deep staging magma chamber. The olivine 
crystals sank to the bottom of the magma chamber, 
leaving the less mafic residual magma in the upper 
part of the chamber (Fig. 12I). At the late stage, the 
magma became iron enriched through crystallization 
differentiation. The ultramafic rocks hosting the Poyi 
and Poshi Cu-Ni sulfide deposits belong to the lower part 
of the magma chamber, while the magnetite-mineralized 
gabbro is located in the upper part (Fig. 12I). The 
magnetite-mineralized gabbro in the upper part of the 
deep chamber was injected first into the upper chamber 
(Fig. 12II). The earlier crystallized heavy olivine and 
some interstitial sulfides were at the bottom of the 
staging magma chamber and thus were emplaced last 
(Fig. 12IV), forming the intrusive ultramafic bodies.

CONCLUSIONS

The Cu-Ni sulfide and Fe-Ti oxide ores in the 
Pobei area were products of a cogenetic parent magma 
in the Early Permian. The parent magma experienced 
crystallization differentiation in a deep staging magma 
chamber. The earlier crystallized olivine and some 
interstitial sulfides were located at the bottom of the 
staging magma chamber because they were denser. The 
magnetite-mineralized gabbro was formed in the upper 
part of the staging magma chamber at the late stage of the 
crystallization differentiation process. The magnetite-
mineralized gabbro then escaped from the deep staging 
magma chamber and injected first into the upper magma 
chamber. Subsequently, the olivine and the interstitial 
sulfides left the deep staging magma chamber and were 
finally emplaced in the upper magma chamber.
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ELECTRONIC APPENDIX I

TABLE I. LA-ICP-MS zircon U-Pb dating data from the magnetite-mineralized gabbro

TABLE 1 

Nº Pb
（Total） Th U Th/U 207Pb/235U 206Pb/238U t206/238 

 ppm ppm ppm   Ratio 1σ Ratio 1σ Age (Ma) 1σ 
1 174  644  850  0.757 0.3085 0.0110 0.0440 0.0004  277.8 2.7 
2 64  248  331  0.749 0.3246 0.0160 0.0435 0.0005  274.5 3.1 
3 74  254  477  0.533 0.3128 0.0118 0.0440 0.0005  277.8 3.1 
4 104  361  558  0.647 0.3497 0.0156 0.0442 0.0006  279.0 3.4 
5 52  204  262  0.778 0.3415 0.0193 0.0438 0.0007  276.1 4.2 
6 194  723  906  0.798 0.3133 0.0109 0.0438 0.0004  276.2 2.7 
7 124  443  557  0.796 0.3274 0.0130 0.0438 0.0005  276.4 3.0 
8 177  656  887  0.740 0.3083 0.0100 0.0436 0.0004  275.0 2.5 
9 43  146  254  0.577 0.3207 0.0220 0.0434 0.0007  274.1 4.2 
10 41  143  264  0.541 0.3253 0.0205 0.0441 0.0006  278.4 3.5 
11 61  228  278  0.820 0.3092 0.0197 0.0434 0.0006  273.9 3.8 
12 51  175  359  0.487 0.3163 0.0202 0.0436 0.0005  275.0 3.2 
13 32  112  196  0.571 0.3228 0.0238 0.0436 0.0008  275.2 4.7 
14 264  947  1348  0.703 0.3193 0.0135 0.0438 0.0005  276.3 3.0 
15 56  206  345  0.596 0.3274 0.0196 0.0438 0.0007  276.2 4.2 
16 42  137  297  0.462 0.3111 0.0216 0.0438 0.0006  276.1 3.9 

 

TABLE II. Hf isotopic data of zircons from the magnetite-mineralized gabbro

TABLE 2 

 

Nº 
176Hf/177Hf 

1σ 
176Lu/177Hf 

1σ 
176Yb/177Hf

1σ 
Age  

εHf(t) 1σ fLu/Hf 
Ratio Ratio Ratio (Ma) 

1 0.282717 0.000013 0.000708 0.000016 0.017262 0.000411 277.8 4 0.68 -0.98
2 0.28275 0.000014 0.001898 0.000002 0.048306 0.000208 274.5 4.9 0.7 -0.94
3 0.282742 0.000012 0.000547 0.000018 0.01321 0.00048 277.8 5 0.66 -0.98
4 0.282753 0.00001 0.000341 0.000003 0.00823 0.000067 279 5.4 0.63 -0.99
5 0.282775 0.000014 0.000705 0.000013 0.018106 0.000355 276.1 6.1 0.71 -0.98
6 0.282763 0.000011 0.000411 0.000008 0.01019 0.000203 276.2 5.7 0.64 -0.99
7 0.282765 0.000011 0.000462 0.000003 0.011378 0.000114 276.4 5.7 0.64 -0.99
8 0.282755 0.000012 0.000631 0.000013 0.015371 0.000316 275 5.3 0.66 -0.98
9 0.282748 0.00001 0.001041 0.000029 0.024978 0.000708 274.1 5 0.63 -0.97
10 0.282766 0.000011 0.000941 0.000024 0.023555 0.0006 278.4 5.7 0.65 -0.97
11 0.282751 0.000012 0.00064 0.000001 0.016318 0.000067 273.9 5.2 0.67 -0.98
12 0.282769 0.000013 0.000893 0.000027 0.021364 0.000678 275 5.8 0.69 -0.97
13 0.282754 0.000011 0.000616 0.000014 0.014838 0.000338 275.2 5.3 0.64 -0.98
14 0.282761 0.000011 0.000526 0.000001 0.013147 0.000066 276.3 5.6 0.65 -0.98
15 0.282732 0.000013 0.000745 0.000013 0.018363 0.000301 276.2 4.5 0.69 -0.98
16 0.282773 0.000012 0.00046 0.000001 0.011254 0.000037 276.1 6 0.67 -0.99
εHf(t) was calculated using the method of Blichert-Toft and Albarède (1998); the 176Lu decay constant is λ=1.865 x 10-11 y-1 
(Söderlund et al., 2004) 
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TABLE III. Major elements and REEs of magnetite-mineralized gabbros
TABLE 3 

 unit F-4-1 MD-5 H-5-1 YGL-1-1 XCS-B-4 XCS-B-10 B-Fe2-2 B-Fe2-3 B-Fe2-4 B-23 B-28 
SiO2 (%) 47.6 51.0 50.8 55.8 51.6 51.3 48.5 51.6 51.7 52.4 49.1 
Al2O3 (%) 16.55 21.3 17.10 17.80 15.40 15.20 15.55 16.30 17.25 16.55 15.40 
Fe2O3 (%) 11.56 5.85 9.37 11.12 8.58 8.57 16.26 10.02 10.36 11.68 7.33 
SO3 (%) 0.03 0.02 0.02 0.03 0.01 0.01 0.05 0.01 0.01 0.26 0.10 
Cr2O3 (%) 0.04 0.01 0.02 0.02 0.09 0.10 <0.01 0.06 0.05 0.04 0.06 
P2O5 (%) 0.01 0.56 0.25 0.11 0.16 0.15 1.26 0.14 0.16 0.23 0.07 
V2O5 (%) 0.07 0.02 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03 
CaO (%) 12.45 10.95 11.50 5.07 8.70 8.63 8.51 10.20 9.90 9.17 12.95 
K2O (%) 0.16 0.43 0.28 1.00 0.52 0.47 0.26 0.20 0.21 1.10 0.24 
MgO (%) 6.67 3.24 6.56 4.24 9.57 10.10 3.88 7.69 6.39 3.20 10.90 
MnO (%) 0.16 0.10 0.15 0.16 0.14 0.14 0.24 0.19 0.19 0.45 0.13 
Na2O (%) 2.36 3.97 2.84 2.89 2.98 2.84 3.58 2.66 2.97 3.60 1.77 
TiO2 (%) 2.79 0.77 1.37 1.20 1.10 1.06 2.56 1.20 1.28 1.13 0.67 
NiO (%) 0.01 0.01 0.02 0.01 0.06 0.06 <0.01 0.04 0.02 0.01 0.01 
LOI (%) -0.09 0.30 0.07 0.12 0.94 1.08 -0.50 0.10 0.22 0.30 1.23 
La ppm 1.9 13.9 11.7 31.4 7.3 6.2 21.0 4.5 4.5 18.0 3.8 
Ce ppm 4.5 31.7 25.5 59.4 17.7 15.8 51.3 10.4 9.8 38.9 9.3 
Pr ppm 0.69 4.09 3.52 6.85 2.45 2.14 7.00 1.46 1.31 4.85 1.38 
Nd ppm 3.6 18.2 17.2 27.5 11.5 10.5 34.1 7.2 6.7 21.5 6.9 
Sm ppm 1.16 4.61 3.94 4.77 3.23 2.98 8.38 2.14 1.96 5.26 2.05 
Eu ppm 0.94 1.90 1.49 1.87 1.14 1.02 2.68 1.08 1.19 1.60 0.78 
Gd ppm 1.76 5.10 4.91 4.47 3.71 3.75 9.62 2.78 2.33 5.56 2.68 
Tb ppm 0.30 0.77 0.86 0.73 0.63 0.59 1.41 0.48 0.42 0.95 0.43 
Dy ppm 1.73 4.40 4.73 4.33 3.97 3.82 7.76 2.89 2.70 5.59 2.80 
Ho ppm 0.35 0.87 1.14 0.96 0.79 0.76 1.56 0.61 0.51 1.16 0.58 
Er ppm 1.12 2.43 2.98 2.75 2.30 2.32 4.29 1.87 1.65 3.45 1.70 
Tm ppm 0.15 0.30 0.44 0.43 0.33 0.33 0.52 0.23 0.22 0.50 0.25 
Yb ppm 0.94 1.79 2.51 2.91 2.20 2.15 3.21 1.62 1.52 3.24 1.48 
Lu ppm 0.15 0.25 0.45 0.49 0.34 0.32 0.51 0.25 0.23 0.53 0.21 
Y ppm 9.9 23.6 28.9 26.8 21.6 21.0 41.6 15.8 15.2 31.2 15.4 
REE ppm 29.19 113.91 110.27 175.66 79.2 73.7 194.9 53.3 50.2 142.3 49.7 
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TABLE IV. PGE contents in the magnetite-mineralized gabbros, massive magnetite ores, and lithofacies related to the Cu-Ni deposit in the Pobei 
area

TABLE 4 

 

Nº Sample 
Ir Ru Rh Pt Pd ∑PGE  Pd/Ir Reference 

ng/g ng/g ng/g ng/g ng/g ng/g 
G-1 

Magnetite-
mineralized 

gabbro 

0.05 0.036 0.023 0.205 0.377 0.69 

12.26 This Paper 

G-2 0.024 0.015 0.007 0.119 0.259 0.424 
G-3 0.038 0.027 0.021 0.203 0.267 0.556 
G-4 0.018 0.027 0.014 0.136 0.221 0.415 
G-5 0.013 0.032 0.017 0.173 0.165 0.4 
G-6 0.01 0.026 0.013 0.18 0.244 0.474 
Ore-1 Massive 

magnetite  
0.019 0.028 0.013 0.292 0.292 0.644 

18.14 This Paper 
Ore-2 0.025 0.018 0.01 0.153 0.54 0.746 
PGE-1 

Dunite in Poyi 
Cu-Ni deposit 

0.228 0.549 0.176 1.859 1.262 4.074 

8.19 Liu et al., 
2015 

PGE-2 0.298 0.668 0.264 3.369 3.36 7.959 
PGE-3 0.591 1.011 0.184 4.578 3.582 9.946 
PGE-5 0.917 2.805 0.861 4.921 8.495 17.999 
PGE-6 0.272 0.59 0.162 1.905 2.028 4.957 
PGE-7 0.222 0.577 0.15 1.192 1.785 3.926 
PGE-8 0.385 1.403 0.429 3.565 3.743 9.525 
PGE-9 

Hornblende-
peridotite 

7.64 16.776 4.376 31.942 50.519 111.25 

12.18 Liu et al., 
2015 

PGE-10 2.506 12.724 4.438 41.901 76.681 138.25 
PGE-11 1.774 7.838 2.46 23.874 31.569 67.52 
PGE-12 1.08 5.696 1.982 14.694 23.167 46.62 
PGE-13 

Wehrlite 

0.718 1.372 0.42 5.815 5.14 13.46 
PGE-14 0.203 0.462 0.155 1.747 1.038 3.61 
PGE-15 0.658 1.225 0.452 3.956 5.69 11.98 
PGE-16 0.442 0.941 0.354 3.201 3.563 8.5 
PGE-17 Pyroxenite 2.861 4.815 0.649 14.463 12.063 34.85 

 

 


