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2-D Niblett-Bostick magnetotelluric inversion
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|ABSTRACT |

A simple and robust imaging technique for two-dimensional magnetotelluric interpretations has been developed
following the well known Niblett-Bostick transformation for one-dimensional profiles.

The algorithm processes series and parallel magnetotelluric impedances and their analytical influence functions
using a regularized Hopfield artificial neural network. The adaptive, weighted average approximation preserves
part of the nonlinearity of the original problem, yet no initial model in the usual sense is required for the recovery
of the model; rather, the built-in relationship between model and data automatically and concurrently considers
many half spaces whose electrical conductivities vary according to the data. The use of series and parallel imped-
ances, a self-contained pair of invariants of the impedance tensor, avoids the need to decide on best angles of rota-
tion for identifying TE and TM modes. Field data from a given profile can thus be fed directly into the algorithm
without much processing. The solutions offered by the regularized Hopfield neural network correspond to spatial
averages computed through rectangular windows that can be chosen at will. Applications of the algorithm to
simple synthetic models and to the standard COPROD?2 data set illustrate the performance of the approximation.

KEYWORDS | Niblett-Bostick inversion. Hopfield Neural Network. Magnetotelluric.

INTRODUCTION imposed to construct realistic solutions that fit the data to a
given degree. Most commonly, the norm of the solution or
Electromagnetic inverse problems in geophysics are of its first or second derivative are minimized together with
nonlinear. Even relatively simple cases, like the one- the misfit to the data. This technique, first developed for
dimensional (1-D) magnetotelluric (MT) problem, require 1-D problems, can readily be applied in higher dimensions.
special treatment to fully handle nonlinearities (e.g., Applications to the 2-D MT inverse problem include those
Bailey, 1970; Weidelt, 1972; Parker, 1983). Methods based of Rodi (1989), de Groot-Hedlin and Constable (1990),
on linearization can be applied iteratively to handle the Smith and Booker (1988) and Rodi and Mackie (2001).
nonlinearity of the problem (e.g., Oldenburg, 1979; Smith Minimizing roughness avoids the appearance of sharp
and Booker, 1988). In practice, as well as not being linear, features in the solution models that are not strictly required
electromagnetic inverse problems are ill-posed and severely by the data. That is, the resulting models are as smooth and
underconstrained. Sensible external constraints are usually even as the data permit.
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It is also possible to obtain useful and somewhat
more general information by slightly shifting the focus
of attention; instead of looking for a single model that fits
the data, one can ask for general properties of all possible
models that fit the data. The method of Backus and Gilbert
(e.g., Backus and Gilbert, 1968, 1970) allows for the
computation of spatial averages by means of averaging
functions constructed as linear combinations of the Fréchet
derivatives of the data. The averaging functions are made
to resemble box-car functions for the averages to have the
usual intuitive meaning. The results are average models for
given window sizes. The models are not intended to produce
responses that fit the data. In fact, they seldom do better
in this respect than models designed specifically for fitting
purposes. It is perhaps for this reason that average models
are not very popular among interpreters of field data who
seem to prefer the assurance of a direct fit to the data.

Summarizing the above two paragraphs, we have on one
side an optimization process of fitting data with external
constraints, and on the other side, an optimization process
of fitting Fréchet derivatives to box-car functions. Although
the two processes are complementary, particularly for
nonlinear problems, the latter is seldom applied, perhaps
because it requires intensive computations, but most likely
in view of the reason stated in the previous paragraph. In
this paper, we present an approach that combines features
from both methods. On one side, we keep the reassuring
feature of constructing models whose responses optimize
the fit to the data and, on the other, we maintain the concept
of spatial averages. Spatial averages not only appeal to
intuition, but when plotted against depth they resemble a
profile of the property itself, filtered by the corresponding
window. As shown in Gomez-Treviiio (1996), a solution in
terms of averages represents a robust alternative to the well
known 1-D Niblett-Bostick transformation.

Between linearization and nonlinear methods, there are
approximations simple enough to be handled analytically
but that still keep some of the nonlinear features of the
original problem. Such is the case of the Niblett-Bostick
approximate integral equation (e.g., Niblett and Sayn-
Wittgenstein, 1960; Bostick, 1977; Jones, 1983) which
has inspired a number of generalizations. For instance:
iteration of the corresponding exact equation (Esparza and
Gomez-Trevifo, 1996) and, still within the approximation,
a solution of the non-uniqueness problem by direct
computations of spatial averages (Gémez-Trevifio, 1996).
Other generalizations include the extension of the basic
idea to 1-D inversion of controlled source electromagnetic
data (e.g., Boerner and Holladay, 1990; Smith et al., 1994;
Christensen, 1997).

The 1-D Niblett-Bostick approximation has the
following basic features that are worthwhile exploiting in
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2-D: a) it captures the basic physics in a simple integral form,
b) it relates the data directly to an arbitrary conductivity
distribution and, c) it relies on the relatively simple theory
of a homogeneous half-space, but it handles heterogeneous
media by adapting its conductivity according to the data,
without the need for an initial or reference model. These
features are exploited by the 1-D extensions mentioned
above in relation to controlled source methods. Extensions
to higher dimensions for special types of electromagnetic
measurements also profit from them (e.g. Pérez-Flores and
Goémez-Treviiio, 1997; Pérez-Flores et al., 2001; Brunner
et al., 2003; Friedel, 2003). In this paper, we explore the
possibilities of the same approach for the two-dimensional
(2-D) MT problem.

THE APPROXIMATION

In the magnetotelluric method, surface measurements
of natural time-varying electric and magnetic fields are
readily converted to four complex impedance values per
given angular frequency o. In turn, these values are usually
normalized to obtain apparent resistivities or, equivalently,
apparent conductivities, by referring the actual impedances
to those of a homogeneous half-space (Cagniard, 1953).
Here we use apparent conductivity o, as derived from the
magnitude of a complex impedance Z which, for the mo-
ment, represents any of the four elements of the impedance
tensor. The formula for apparent conductivity is simply
given as

o, (x,0) = ou, | Z(x,0)|”, (1)

where u, stands for the magnetic permeability of free-space
and x represents horizontal distance in an x-z coordinate
system whose z axis represents depth. o,(x, w) represents
the data at a given distance in a 2-D model with a flat
topography and for a given angular ®. The data are usually
presented as_individual sounding curves as a function of
period T = %for different distances x, or in a pseudo-
section format contouring values of o, as plotted over
x-T coordinates. o,(x, w) represents what is available;
what is required is o(x, z), the subsurface conductivity
distribution.

A useful relationship between o,(x, T) and o(x, z) for
the problem at hand is (Gémez-Trevifio, 1987a):

o,(x,T) =1LJ. F(x,xz,0o,T)o(x',z"Ydx'dz', (2)
—-m

where:
dl
m= 0gao,

- dlogT’ )

and F(x,x’,z’,0,T) represents the Fréchet derivative of
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a.(x, T) with respect to o(x, z). The integration is defined
over the entire lower half-space. The recovery of o(x, z) from
g.(x, T) is clearly a nonlinear problem since F depends on
o. Otherwise, the integral equation could be readily solved
using any of the available methods of linear analysis. It
is still possible to apply linear methods sequentially, as
in traditional linearization, simply by updating a starting
model on the right-hand side of the equation. Esparza and
Gomez-Trevifio (1996), working with the 1-D problem,
showed that reasonably good results can be obtained in a
single iteration using an adaptive approximation. In 1-D,
the approximation is

F(z',o,T)=(1-m)F,(z',0,,T). 4

F(z’,0,T) on the left hand-side represents the true Fréchet
derivative for an arbitrary conductivity distribution, and
Fy(z’,0,T) on the right stands for the much simpler
Fréchet derivative of a homogeneous half-space, whose
conductivity is known and equal to the measured apparent
conductivity. F, is simply an attenuated cosine function
that gradually vanishes with depth. The factor (1-m) drops
out of the approximation when substituting expression (4)
in equation (2). Using the Fréchet derivative F,(z’,a,,T)
for a homogeneous half-space (Gémez-Trevifio, 1987b),
the approximation in 1-D can be written as

o (=2 & {cos(?) . sin(?)}a(z !
' )

where 0, =503,/7 /35, .1In the original Niblett-Bostick
integral equation, the upper limit of integration is 0.7076,
and the kernel is simply (0.7070,)".

a a

To solve equation (5) numerically, we divide the
half-space into a large number of layers with uniform
conductivities. The result is that the integral equation can
be written as a matrix equation

o,=Ao. (6)

The vector o, contains the data for the different
periods. The vector o represents the unknown conductivity
distribution in its discrete form, and the matrix A contains
the weights of the conductivity elements for all the
available data. The elements of the matrix can be evaluated
analytically as

2z, 2z.
22,15, 22,16, |
a, = 770 cos(—Ll) — T ) cog(FM),
y 5
ai ai
7

where z; is the top depth of the j-th layer, and J,; is the skin
depth of the i-th measurement.
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By analogy, making the same type of assumptions and
approximations in 2-D, equation (2) can be written as

o,(x,T) =J. F (x,x',z,0,,T)o(x',z")dx'dz". (8)

Analytical expressions for F), are derived in Appendix A
for the traditional TE and TM modes, respectively. In turn,
they are used in Appendix C to derive the corresponding
expressions for series and parallel apparent conductivities.

In 2-D, to construct equation (6) the half-space is
divided into a large number of rectangular elements. The
integration over the elements can be performed analytically
as described in Appendix B. This is particularly useful for
handling the singularities at the points of measurement,
and also for the final rectangles on the sides and bottom of
the model. It is worth remarking that each of the elements
of o, s a weighted average of all the unknown conductivity
values and, that on virtue of equation (2), the elements
of matrix A are dimensionless. Furthermore, the sum of
the elements of any row of A is identically unity, which
is a very useful property for checking the accuracy of the
computations involved. Notice that although equation (6)
is a system of linear equations, the model it represents
is actually nonlinear, for A depends on the unknown
distribution ¢ through the different values of o,.

HOPFIELD ARTIFICIAL NEURAL NETWORKS

The application of artificial neural networks to the
inversion of MT data has been explored in various
directions. One way is to use the multi-layer feed forward
neural network architecture (Rummelhart et al., 1986)
which uses a set of responses and models presented to the
input and output defined neurons, respectively. During a
learning phase, the network back-propagates (through its
neurons and interconnection weights) errors due to misfit
of the model and the obtained neural model. Learning from
one response-model ‘pattern’ is achieved by updating the
inter neuron connection weights according to a gradient
descent minimization criteria. The process is then applied
to the complete response-model data set, thereby achieving
a learning epoch.

Once the network is trained, it recovers a model in
almost no time when provided with a sounding curve. The
distinctive feature of this learning approach is that there
is very little physics fed into the algorithms. In fact, as far
as the algorithms are concerned, the models and responses
used in the training sessions may or may not be related
through any physical link, the learning process is simply
the same. Hidalgo and Gémez-Trevifio (1996) explored
this approach for the 1-D problem with reasonably good
results. However, extending the method to 2-D would be

[17 |



J. RODRIGUEZ et al.

extremely cumbersome, for it is necessary to cover many
possibilities during each epoch training session.

Another approach to inversion based on neural networks
bypasses the learning sessions by directly providing the
algorithm with the relevant physics behind the particular
application. Zhang and Paulson (1997) applied a simple
recursive regularization algorithm associated with a
Hopfield artificial neural network (HANN) in order to
solve the 1-D MT inverse problem with excellent results.
In the same paper the authors explored the application to
the 2-D full nonlinear inversion of MT data. Our interest
in this algorithm was triggered by the fact that there are
no references in the literature attempting to continue their
research in this direction, even though the results presented
are very promising. In this methodology there are no
dedicated input-output defined units (as with the feed-
forward network architecture). Instead, every neuron o;
is interconnected with every other o; neuron through a 7j;
weight link as detailed below. Every neuron has a twofold
input-output purpose. We assume M apparent conductivity
measurements and N blocks whose conductivities are
unknown. According to equation (6), for given conductivity
values g;, j = I,...,N, the responses 6, k = 1,...,M, of the
model can be expressed as

N
G, = z a,;0;,k=1..,M. ©)
j=1

The misfit between o, (the data) and G, (the model
responses) can be written as

¥ R
=5; (O—a/c_o-ak)z Z [ow— Z a0 ; (10)

Squaring as indicated and rearranging terms, this
expression corresponds to

N N
C= 22 Z [_Z a1y
=l jli=l
N 1 M M
_Z [_EZ o +Z akl ak]a

i=1 k=1 k=1

1 M

EZ (Cu) (11)

It can be noted that this is an unnecessarily long, and
certainly very cumbersome way of representing C, the sum
of squares. However, this particular form helps to recognize
its correspondence to

N
E=— Z TU.G_, — l.o,, (12)
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where

M
__Z a4 and
k=1

1 M 5 M
—=) apo,+ ). 4,0, (13)
2 k=1 k=1

E is the Ising Hamiltonian (Ising, 1925) which Tank
and Hopfield (1986) showed is a never increasing quantity
as the dynamics defined by the following equation evolve
from given starting values:

o = sgn Z T.o"+1, | (14)

J#i=1

o"*"is the updated conductivity value of o which is either
a given starting value or the result of a previous iteration.
The relevance of dynamic is that as iterations proceed
E decreases at each step. Since E corresponds to C, the
dynamics ensure that the sum of the squared differences
between data and model responses decrease at each step,
thus leading to the model whose responses best fit the data
in a least square sense. It can be noted that with the HANN
the matrix elements 7}; are known and provided by the
physics of the problem, since they are the elements (A" A ),
which in turn come from the integral equation.

Strictly speaking, equation (14) applies only to binary
variables that can take values of zero and one, as in the HANN
architecture (Hopfield, 1982). The corresponding equations for
an assemblage of such variables, to make up for arbitrary values
of conductivity, are very similar and are given in Appendix D.

The application of equation (14) is straightforward
when M>N, for the process reduces to the standard least
squares problem. This corresponds to the over constrained
case when we have more data than unknown parameters.
In general, however, M<N since there usually are fewer
data points than unknowns. We found, as did Zhang and
Paulson (1997), that the algorithm still converges even for
M<N, but the solution is hardly useful for any practical
purpose because it is highly oscillatory and unrealistic. It is
then necessary to make some extra assumptions about the
solution. This issue is addressed in the next section.

SPATIAL AVERAGES
True averages

As reviewed in the introductory section above, the
methods of Backus and Gilbert allow for the computation of

spatial averages. This is done by means of averaging functions
constructed as linear combinations of the Fréchet derivatives
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of the data in such a way that the averaging functions
resemble boxcar functions for the averages to have the usual
meaning. The resulting models are not intended to produce
responses that fit the data, but to address the non-uniqueness
character of the inverse problem. Within the limitations of
linearization, they can be called true averages. More rigorous
approaches for computing averages have been developed for
the 1-D magnetotelluric problem (e.g. Weidelt, 1992), but their
extension to higher dimensions are far from trivial.

Simulated averages

The shortcut that we take consists of computing models
that are averages of themselves everywhere with a given
neighborhood, and that at the same time their responses fit
the data at an optimal level. Consider that

<t> o 1
Z WiO (js1y- (15
I=—n

The dynamics of the HANN in (14) transforms to

ol =— —sgn{z Z w,a((jl,) +I,}. (16)

J#i=1 I=—n

Following Zhang and Paulson (1997), we will refer to
this as the regularized version of the HANN or RHANN.
The updated conductivities o;**" are obtained from averages
of the original values o;”. The choice of the appropriate
filter depends on the application. Zhang and Paulson (1997)
found binomial filters useful to stabilize their solution.
In our case, we use boxcar functions, for this leads to the
simplest and most intuitive type of averages. The filter, with
2n+1 uniform weights w, = (2n+1)", k = -n,..., n (square
window), can be of different widths. We introduce a further
parameter Sto accommodate a traditional trade-off between
two contrasting features. We modified the dynamics to

1
(+1) _ 0]
o, =3%3 —sgn{ E [(A-b)T;0;

J#i=l1
+BY Twol, 1+ 1} a7)
I=—n

When =1 we get the full filtered solution. On the other hand,
when =0 we return to the original unfiltered solution given
by equation (14). In this way, by varying this parameter we
can gradually control the effect of the averaging process.

APPLICATIONS
1-D averages

Before proceeding to the application in 2-D of the above
numerical averaging technique, it is convenient to illustrate
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its performance in 1-D, and compare its results with
existing methods of average estimations. In the following
lines, we test the performance of equation (16) as it applies
to the solution of equation (6). The elements of the matrix
are computed using equation (7) which represents the 1-D
version of the proposed approximation. The synthetic data
for the tests, shown in Fig. 1A, correspond to apparent
conductivity responses of the model shown in Fig. 1B.

The tests are intended to demonstrate that the proposed
approach for the computation of averages has the same
properties as the simple formula for averages in Gémez-
Trevifio (1996). The formula is

o,(1,)9,(T,) ~0,(1),(T))
0,(T,)~6,(T))

(18)

<o(z,z,) >=

B

where <o(z,z,)> represents the average of conductivity
between z;= 0.7070,(T;),i = 1,2. The averages are assigned
to the mean geometrical depth z = \/71 z,- Any two data
points can be used in the formula regardless of how far
apart they are in the sounding curve. If the points are
contiguous, the windows are narrow and the average
model, the average of the real earth, has the highest
possible resolution. If, on the other hand, the chosen
points are wide apart, the windows are themselves wide,
for z, and Z, tend to separate. As the windows widen, the
models tend to flatten, as they should. This intuitively
appealing feature of spatial averages is built into equation
(18) in spite of its simplicity. Figures 1C and 1D show
this feature developing when considering averages taken
from data values 1 and 5 periods apart, respectively, for
the synthetic data presented in Fig. 1A.

A corresponding sequence of full filtered models (8=1)
is presented in Figs. 1E and 1F when the RHANN algorithm
is applied to the same set of data. It can be observed that
the behavior of the averages follows that of the averages
shown in Figs. 1C and 1D. There are some differences
that can be traced back to basic differences between the
two approaches. One is that equation (18) is based on the
original Niblett-Bostick approximation that assumes a
boxcar function as the kernel of equation (5). The RHANN
algorithm uses the kernel as indicated in equation (5) which
includes a small negative sidelobe (Gémez-Trevifio, 1987b)
and extends to infinity. This is a somewhat less restrictive
approximation than the rather simpler boxcar function. The
other difference originates in the fact that the windows in
each approach are necessarily different, because in the first
case they cannot be uniform, for they are determined by the
data, and in the second case they are uniform for all depths.
The overall effect is a somewhat better performance for
the approximation given by equation (5) judging by the
resemblance of the average models to the original model
from which the data were drawn.
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FIGURE 1T A) Synthetic data for test model. B) Test model. C) Recovery of test model using the average approach given by equation (18). 7, and T, are
chosen as follows: T-T, .. D) Using T-T, . . Notice the smoothing effect on the models as the averaging windows widen. The windows, shown below the

model, are nonuniform because they depend on the data whose index is shown in the right axis. E) and F) show the recovery of full filtered test models
(8 =1) using a 500 layer RHANN. In this case, the window size is chosen at will corresponding to a uniform window size in log depth (i.e., the same
averaging window size for the 500 layers). Notice the same overall behavior of the average models as compared with those in Figures 1C and 1D,

respectively.

More appealing from the practical point of view, is the
stabilizing property of the averages when applied to noisy data.
‘When equation (18) is applied to noisy data using contiguous
data points, which is equivalent to using the original Niblett-
Bostick transformation in terms of slopes, the estimation of
the conductivity profile is very unstable. This is equivalent
to the use of a narrow window, which understandably leads
to a noisy recovery of a conductivity profile. Increasing the
width of the window improves the stability of the recovered
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profile. This is illustrated in Fig. 2, which presents the results
of applying equation (18) to the noisy data shown in Fig. 2A.
The natural regularizing effect that the wider windows have
on the recovered profiles can be observed in Figs. 2C and 2D.
The results of applying the RHANN algorithm to the same
set of data are shown in Fig. 2E and 2F. The sequence of
models illustrates the evolution of the process as the windows
are widened, reaching a reasonably good recovery with the
widest window.
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The above results show that the RHANN algorithm
mimics the performance of equation (18) when applied
to 1-D sounding data. First, we have that the simulated
averages actually behave as true averages, with the added
benefit that the RHANN algorithm allows more freedom in
choosing the size of the windows, for they can be chosen
at will and are independent of how the data were sampled.
Second, we have the same type of regularization effect as
provided by equation (18), when the algorithm is applied
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to noisy data. In both instances, the main benefit of the
RHANN algorithm is that it can be readily applied to
higher dimensions.

Two-dimensional averages
The problem at hand can be summarized as follows:

evaluate the performance of equations (16) and (17) as they
apply to the solution of equation (6), where the elements of
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FIGURE 2T A) Synthetic data with 5% noise added to test model. B) Test model. C) Recovery of test model using the average approach given by equation
(18). T, and T, are chosen as follows: T-T, , . D) Using T-T__ . Notice the smoothing effect on the models as the averaging windows widen. The windows,
shown below the model, are non-uniform because they depend on the data whose index is shown in the right axis. Figures E) and F) show the recovery
of full filtered test models (8 = 1) using a 500 layer RHANN. In this case, the window size is chosen at will, corresponding to a uniform window size in
log depth (i.e., the same averaging window size for the 500 layers). Notice the same overall behavior of the average models as compared with those

in Figures 2C and 2D, respectively.
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the matrix are computed for 2-D on the basis of equation
(8), as developed in Appendix C. The evaluation is effected
first using synthetic data sets and then employing the
standard COPROD2 (Jones, 1993) data set. For the case of
synthetic data, we generate a 2-D mesh array discretization
consisting of 21 lines and 60 columns in which we
embedded resistive and conductive blocks as shown in Fig.
3A. Figures 3B and 3C present average models derived
by convolving the original model with the two windows
indicated in each case. The object of the exercise is to
recover the average models from a given set of synthetic
data. Twenty-nine soundings at the indicated sites were
simulated in the period range of 0.01 to 100 s. The TM
and TE impedances were converted to corresponding series
and parallel quantities using equations (C7) and (C8).

Figure 4A shows the resultant model obtained when
using the RHANN algorithm. This result was achieved
after a ‘stable’ state of the dynamics was reached, when
a uniform half-space of resistivity p=10 Q-m was used as
an initial condition for each neuron state. Figure 4B shows
the model obtained when a different uniform half-space
of p=1 Q-m was used as an initial condition. Graphics 4A

b

Depth  (km)

Depth (km)

I3 D Window Size

O

0.0
32
6.5
9.8
13.0

(km)

Depth

5x5 D Window Size

Resistivity (ohm-m)

1 2 4 8 20 30 60 100

FIGURE 3T A) Two-dimensional test model. B) and C) Average models
obtained when the window shown at the right is applied to the original
model. These average models are the target of the RHANN approach.
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Series & Parallel Data B=1.0 rms= 13%

.3 km 3.3 6.6 10 133 166

233 266
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3x3 I:l Window Size

B Series & Parallel Data

3x3 I:I Window Size

(km)

Depth

Resistivity (chm-m)
1
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FIGURE 4T A) Resultant model obtained when using the regularized
Hopfield artificial neural network (RHANN). This result was achieved
after a stable state of the dynamics was reached, when uniform half-
space of resistivity » = 10 Q-m was used as an initial condition for
each neuron state. B) Model obtained when a different initial condition
is used. In this case a half-space of p = 1 Q-m was used. The ahove
graphics were obtained using both series and parallel data.

and 4B were obtained using both series and parallel data.
It can be observed that the models are practically identical,
as they should be, for the need of an initial state is an
internal requirement of the HANN algorithm and not of the
formulation of the inverse problem as given by equation
(6). It can also be noted that the conductive block is better
resolved than the resistive one, as could be expected from
the known features of the Niblett-Bostick approximation
as well as from the basic properties of electromagnetic
induction in general. We found that it is still possible to
emphasize either the resistor or the conductor by choosing
the data to be inverted. The series response is more
representative of resistors while conductors are better
reflected in the parallel data (Romo et al., 2005). This is
illustrated in Fig. 5 for the case of the resistor and in Fig.
6 for the case of the conductor. In the preceding figures,
and in the ones that follow, the rms values shown on top
of the models were computed as 100 times the square root
of the mean of the residuals squared. The residuals are
simply the difference between the data and the computed
response of the model given by equation (6), normalizing
each difference by the corresponding computed response.

We now turn to illustrate the performance of the

algorithm with field data. The data corresponds to the
original COPROD2 (Jones, 1993) data set, with no
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Series Data B=1.0 rms= 15%

133 16.6 20 233 266 293

3 km33 6.6 10
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33 D Window Size

Resistivity (ohm-m)

1 2 4 8 20 30 60 100

FIGURE 51 Model obtained by means of the RHANN, when using data
from the series mode only with a 3x3 window size and g = 1.0 . It
can be seen that the series-based inversion emphasizes the resistivity
nature of the anomalies.

Parallel Data p=1.0 rms= 22%

3km 33 6.6 10 133 166 20 233 266 283

(km)

Depth

o
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Resistivity (ohm-m)
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FIGURE 61 Model obtained by means of the RHANN, when using data
from the parallel mode with only a 3x3 window size and = 1.0. It can
be seen that the parallel-based inversion emphasizes the conductive
nature of the anomalies.

corrections for static effects. The full tensor was used to
compute the invariant series and parallel impedances using
equations (C3) and (C4). We used 34 sounding sites with
22 periods each, for a total of 748 apparent conductivity
values. The range of periods was from 1.3 s to 1365 s. This
same data set was recently inverted by Romo et al. (2005)
using Rodi and Mackie (2001) inverse code adapted for
series and parallel data. The model shown in Fig. 7 presents
two main conductive anomalies. The deeper anomaly to
the left of the model corresponds to the North American
Central Plains (NACP) conductivity anomaly, which has
been discussed in detail in the magnetotelluric literature
(Jones, 1993). The smaller lobular anomaly towards the
right end of the profile corresponds in turn to the Thomson
Nickel Belt (TOBE) anomaly.

The challenge for the proposed 2-D Niblett-Bostick
approximation is the recovery of these two anomalies. The
model was discretized using a 36Xx70 mesh array for a total
of 2,310 conductivity unknowns. Using 22 bits to represent
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COPROD2 DATA INVERSION WITH FULL TENSOR
Log Resistivity
(ohm-m)
0 TYIYYYY YY WHYYYYYYY ¥V YYY Y Y VY ¥ vy

3

Depth  (km)
g 8 & & 8

250 450

(krn)

FIGURE 7| Model obtained by means of the Rodi and Mackie (2001)
non-linear inverse method adapted for series and parallel data (Romo
et al., 2005) when applied to the COPROD2 (Jones, 1993) standard data
set.

each unknown, the 748x2,310 matrix took 20 min to
compute in an AMD Athlon 1.2 GHz processor, with 20
extra minutes for the minimization. Figure 8A shows the
result of jointly inverting the series and parallel data. It
can be observed that the approximation clearly recovers

rms= 75%

p=1.0

A Series & Parallel Data
-2 km 45 2 137 183 230 276 322 369 4ME

(km)

Depth

33 [ Window Size
B Series Data

-2 km 45 9 137 183 230 276 322 369 ME

rms=63%

3x3 [ window Size
C Parallel Data p=1.0
-2 km 45 9N 137 183 230 276 322 3689 MHE

rms= 54%

0

(km)

Depth

3x3 [ Window Size
Resistivity (ohm-m)

1 2 4 8 20 30 60 100

FIGURE 81 Models obtained by the RHANN algorithm when applied to
the COPROD2 (Jones, 1993) standard data set. A) Result obtained using
data from series and parallel modes. B) Result obtained using data from
the series mode only. C) Result obtained using data from the parallel
mode only.
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only the NACP anomaly. The TOBE anomaly is somehow
diluted towards the right side of the model. The results are
somewhat similar when only series data are inverted, as
can be observed in Fig. 8B. The main difference is that in
this last case, the NACP anomaly decreases to about half
the size because of the removal of the parallel data which,
as mentioned above, tends to emphasize conductors. This
effect is explicitly shown in Fig. 8C, where only parallel
data were used in the inversion. Both conductive anomalies
are now clearly manifested, in reasonable agreement with
the model shown in Fig. 7, which does not depend on the
approximation. Notice also that, of the three models of Fig.
8, the one for the parallel data has the least rms misfit. Still,
alevel of 52% misfit might seem too large. A corresponding
model with a 22% misfit is shown in Fig. 9A. This was
obtained simply by lowering the trade-off parameter from
1 to Y2. As expected, the higher-resolution model now
includes smaller scale anomalies, but the same two main
conductors still dominate the picture. Thus, summarizing,
when in search of conductors as in most MT surveys, we
should feed the approximation with parallel data, which
emphasize conductors.

To test the robustness of the algorithm we perturbed
the data by multiplying each sounding curve by a random
factor of 60% to simulate the static shift effect produced by
small local variations in conductivity around the sounding
sites. The results are shown in Fig. 9B. The reference

A Parallel Data f=05 rms= 22%

-2 km 45 91 137 183 230 276 322 369 41E

E

<

=

=

7]

a

3x3 3 Window Size 0% Noise

B Parallel Data p=0.5 rms=41%

-2 km 45 91 137 183 230 276 322 369 415

3x3 [ Window Size 60% Moise

Resistivity (ohm-m)

1 2 4 8 20 30 60 100

FIGURE 91 Models obtained by the RHANN algorithm when random noi-
se was added to the individual sounding curves of the COPROD2 stan-
dard data set to simulate static shift effects. The models were obtained
using data from the parallel mode. A) 0% of random noise added to
data. B) 60% of random noise added to data.
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E
[ =5
£ 25
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§ |

50 3]
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Resistivity (chm-m)
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60% Moise

FIGURE 10 I Zoom view of the first 5 km for the models shown in Figure 9.

model is the same high-resolution model described in the
previous paragraph, it is shown in Fig. 9A and has a misfit
of 22%. When the soundings were perturbed by 60% the
best fit achieved was 40%, much better than an expected

A Parallel Data p=05 rms= 22%

-2 km 45 91 137 183 230 276 322 369 415

5x5 [ Window Size 0% Noise

w

Parallel Data B =05 rms=42%

-2 km 45 21 137 183 230 276 322 369 415

Depth  (km)

5x5 [ Window Size 60% MNoise

Resistivity (ohm-m)

1 2 4 8 20 30 60 100

FIGURE 11 T Same as for Figure 9 but using a wider window.
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80% if the algorithm could not accommodate the static
shift into the structure. As can be observed in Fig. 9B, the
model for the perturbed data presents basically the same
broad features of the two main conductive anomalies. The
static shift is accommodated mainly by means of extra
variations of conductivity at shallow depths, as expected.
This is highlighted in Fig. 10 that shows a zoom view of
the first 5 km of the model. The static shift surfaces as high
frequency lateral features, over the already highly variable
top conductive surface layer. Similar results, with somewhat
broader features, are obtained with a larger window. This
is illustrated in Fig. 11 for the complete model, with and
without extra static contamination.

CONCLUSIONS

The present application builds on the well-known
Niblett-Bostick approximation for 1-D soundings. Our
intention has been to show that such an approximation is
viablein higher dimensions, both on theoretical and practical
grounds. Most quantities involved are analytical as far as
they can be; the use of series and parallel impedances avoid
elaborated processing of the data prior to interpretation
and the RHANN square window approach allows for the
computation of averages in a simple fashion. We feel that
these features can make the present approximation a fair
extension of the popular Niblett-Bostick transformation.
Parallel impedances, in particular, are recommended as
standard practice for the approximation.
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APPENDIX

1 Fréchet Derivatives

Inthis appendix we develop formulae for the 2-D Fréchet
derivatives of apparent conductivity for a homogeneous
half-space. We assume e’ for time dependence in the
fields. The definition of apparent conductivity in terms of
the fields for the TE mode is:

H _(x,0) |2
E_(x,0)

¥

(A.1)

|0, [= oy |

>

perturbing the conductivity distribution o(x,z) produces
perturbations on both sides of this equation. We have

S, (x.0)  SH,(x,0)
E,(x,0)  H.(x0)

olo,|=-2|o,|Re[ 1. (A.2)

We will need E,(x,z) and H,(x,z). To find E\(x,z) we
have to solve the following differential equation:

V’E, —iouo(x,2)E, =0, (A.3)

for the case of a homogeneous half-space. The solution is
simply

-z

Va
E,(x,2)=E(0)e " 2, (A4)
where 3 is the skin depth, given by

P (A.5)
[0)INex

In what follows, all the distances are normalized by the
skin depth. H,(x,z) can be found using Maxwell’s equation
VxE =-iauH, the result is

H (x,z)=- ! gEv(x,z). (A.6)
’ iop,d 0z -

Using equation (A4), the horizontal magnetic field can
be written as

-2i

H (x,2)= mE(O)e"@. (A7)

Hy

To find JE,(x,0) we use the scattering relation
(Hohmann, 1971; Weidelt, 1975) which, for TE mode,
reduces to

Geologica Acta, 8(1), 15-30 (2010)
DOIl: 10.1344/105.000001513

dE, (x,0)= I G(x,0,x'",2")E, (x',2")80(x', 2" )dx'dz". (A.8)

In this equation, G is the y component of the electric
field at (x,0) produced by a line source of alternating
current located at (x’,z’) and parallel to the y axis. The
expression for G can be found in Wait (1962) and is

—io © U= _yizes)  —ufez
G(x,z;x',z") = o Ho IO [77»e “EE) g ]
T u+

y cos[?»(x—x)]d}h
u

(A.9)

with u? = N\? + 2i. To find 8H,(x,0) we take perturbations
on both sides of equation (A6), the result is

SH (50) =——L 5 (x,2) ., (A.10)

’ iop,0 0z

Finally, using equations (A2), (A8) and (A10), we find
the Fréchet derivative in terms of the normalized distances.
For TE mode:

2 (= \
G™ = Re[g j , Gl cos[A(x—x)]dM], (A.11)
where
G = AAI2AN) i (A.12)
A+u

For TM mode apparent conductivity is given by
H , (x,0)
E (x,0)
Taking perturbations on both sides of this equation, we find

(A.13)

|2

|0, [= o, |

SE, (x,0) 8H,(x,0)

olo,l=-2]o,|Re[
E (x,0) H, (x0)

1. (A.14)

In the above equation, since JH, is zero, we have to
find OF, only. For this we use the scattering relations given
by Lee and Morrison (1985):

dE (x,z) = J. (811,812-813)E(x',2")d0(x', 2")dx'dz".
(A.15)

g 1s the j-component of the electric field in (x,z) produced
by a 2-D oscillating electric dipole located in (x’, z”) and
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oriented in the i direction. On the other hand, the horizontal
magnetic field satisfies the following differential equation

V’H, —iwpu,0H =—lVHV xVp. (A.16)
oo

The solution of this equation for a homogeneous half-
space is simply

H,(x,2) = H(0)e " (A.17)
Therefore, the horizontal electric field is given by

_HON2
O

E (x,2) 5

(A.18)

Since E for TM mode is (E,,0,E,) and for ahomogeneous
half-space E. is zero, we only need g,, to compute JE,. The
expression for g, is given in Lee and Morrison (1980).

-1

* —ulz—z'| —u(z+z")
2762 I 0 M[e - +e ] '
TO

gulx,z;x',z") =
x cos[A(x—x")]dA. (A.19)

Combining equations (A14), (A15), (A18), and (A19),
we find the Fréchet derivative for TM mode:

G™ =Re[§ [ 0‘” ue 7 cos[A(x —x")ldA].  (A.20)

2 Integral of Fréchet derivatives for TE and TM
modes

Here we find the integral of the Fréchet derivatives for
a typical cell. For TE mode we integrate equation (A11) in
the region x,<x’'<x;,, 2<7’<z;,,. That is

Ly =" [ 8G™ (x,x',2)dx'dz, (B.1)

The result is

J =3jw A+i(L+2)
o Mu+ ) +A20)

x [sin[A(x —x,,,)]—sin[A(x —x,)]]dA. (B.2)

[ —(u+«/27i)zjH _e—(u+@)z/]

For TM mode we integrate equation (A20) in the same
region, the result is

2w u ~(ui2D)z w20z,
I, =— —[e M—e 3|
™M I 0 AMu+-/20)

x [sin[A(x—x,,)]-sin[A(x—x)]}dA.  (B.3)
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The integrals Ix and I, as defined by Eqgs. (B2) and (B3)
are complex numbers. However, the real part of each one
represents the corresponding integral of the Fréchet derivate
of |o,|. The horizontal axis is divided into n elements, from
X, to x,,, and the vertical distance is divided into m elements,
from z; to x,,, then Egs. (B2) and (B3) can be used to find the
integral of the Fréchet derivative in the rectangular region
defined by [x;, X;,1], and [z, z;1]. To take into account the
whole half-space we have to consider (-e<, x,] and [x,, +o°)
in the horizontal coordinate and [z,, +<<) in the vertical
coordinate. The first case can be computed by noting
that the corresponding sine transform for the argument
x—b with b—te is zero. The second case can be easily
computed, considering that the corresponding exponential
in equations (B2) or (B3) is null. In all cases, the actual
computations are performed using the digital filters for sine
and cosine transforms of Anderson (1975). Further details
are available in the thesis of Esparza (1991).

3 Series and parallel impedances and their derivatives
The series-parallel transformation

The horizontal components of the electromagnetic
field are linearly related through a second order impedance
tensor (e.g., Swift, 1967). That is,

[EX j {Zxxzxy j[Hx ]
E ) \z,z, )4,/ (C.1)

where Z,,, Z,,, Z,, and Z,, are complex numbers. E,, Z, are the
orthogonal components of the electric field and H,, H, are
the corresponding magnetic field components. Following
the work of Romo et al. (2005), we use an alternative
representation defined by the following transformation

22,22, > {Zs,Z,,0,A6}, (C.2)
where
Z2+72+7% + 77

ZS :( xx xy 2 yy »x )1/2’ (C3)
Z L. —7Z 7.

Zp=A2 (C4)

(Ve +ny +ZW +Zyx)

— Z +7Z

A = arctan(————2), (C.5)
ny —Zyx

— Z —Z.

6= larctan(u). (C.6)

2 ny +Zyx

If we consider a 2-D case in which the magnetotelluric
responses are solely characterized by Z, = Z,, and Zzz =
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Z,. modes, we have that A@ = 0, and 6@ is simply the strike
direction. Zs and Zp, the series and parallel impedances,
respectively, can be written as

Zg =%(Z?M +Z5), (C.7)
and

1 1.1t 1, (C.8)

Zy 27y Zy

Series impedance derivative

We can express the series apparent resistivity p* in
terms of the TE and TM apparent resistivities as

P = ngM %), (C.9)

in this equation the three apparent resistivities are complex
quantities. The partial derivate of p? is

N ™ TE
P, _l(apa . 9P,

= ), (C.10)
op, 2 op;, Op

J
pjis the resistivity of the j—th block in the model. We also
know that

%8/)5: ls olpil, 04° (C.11)
Pa ap/ |pa| apl apl

Using Egs. (C10) and (C11), we have

N ™ TE
L olpel _lpel P, 1 007y ()

lpi| p, 2 p dpr;  pi Op,

Using a relation similar to Eq. (C11) for p™ and p*,

N ™ ™ ™
L alpll Ly o (1 dlpl, 00
Pa ‘pa | apl 6p/

lp; | op; 2

TE 1 a TE a TE

p. Pl dp, Op,

in terms of apparent conductivities this is:

olos 1 ™ olo™ ¥ ™
g a|:5R{ /;a S(l :M‘ ‘aa |—l a¢ )
v 0219} o, oo,
TE oo’ B TE
B - kel A TR P
| o, | P do, do,

The general expression for the elements of matrix A is

lRe{lpZMlpr |pa 1oy \ (C.15)
2 el M el
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All quantities are obtained directly from the data.
Parallel impedance derivative

For the parallel data, it is better to deal with apparent
conductivities
ol =5 (" + o), (C.16)

The partial derivative with respect to o is
oo, 1 00, 0o

e 100 00 (C.17)
aaj 2 80'j 60'j

Writing parallel apparent conductivity as

ol dalle?, c1
then

100 _ 1 dlal|_ 04" (C.19)
ol oo, |ol| 0o, oo,

Using Eq. (C17)

1 olo)| 1

™ TE
Lpaaa +Lpao‘a ), (C20)
o, 0o, o, 0o,

o) | oo, 2

Using a relation similar to Eq. (C11) but for o, and
G,,TE, we have

dlo, | :lRe{IGTM R L 2], |—ia¢TM)
do;, 2 ‘ o | do, do,
TE TE
+ |O_Z"E |e[(¢P*¢TE)( 1 a|Ga |—la¢ )} (C21)

TE
lo, | OJo, oo,

The general expression for the elements of matrix A is

™

1 P (7 —pTE
5Re{el(ti’ 4 )[TM+e(¢ ¢ )ITE}' (C.22)

Again, all quantities are obtained directly from the
data.

4 Generalized Model in a Hopfield Artificial Neural
Network

It is necessary to define models with more realistic
conductivity values (not only O’s and 1’s). Therefore, a
general model whose states are formed by an ordered set
of 0’s and 1’s is defined to represent a finite precision real
number. We will refer to this model as the general sequence
model. The general sequence model {o#}" has a typical
element:
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U
of=>Y 2/BY-2"B,i=12,..,N, (D.1)

J=D

where B;= 0 or 1, D and U are numbers which depend
on the model precision and amplitude, respectively, and B
numerically equal to unity carries the dimensions of Bj.
Equation (D1) may be viewed as a binary representation of
{o?}Y with D+U+1 bits (e.g., Zhang and Paulson, 1997).
Hence, for the general sequence model we have

1 N U N U M
=) LY X 24488
2 =l m=-D j=1 n=-D k=l
- i i[ ;Z 2"4,) W+Z (2" 4,) €A+Z§: ") 4,4,)B1B,"
izl m=-D k=1 J=l
+ (a-term-independent-of-the-model). (D.2)

Once again, comparison of (D2) and (12) shows that C
and E have the same form except for the model-independent
term, provided that

V. =B (D.3)

im im?>

M
=[ Z 2ﬂ1+nAkiA

k=

J,withT,,,, =0, for(i,m)=(j,n),
(D.4)

zm/n ki

and
N
I, = *Z (2" 4,)° B(”+Z (2" 4,)0} +Z > Q" 4,4,)B.
k=l j=1

D.5)

This way the state of the B{i" neuron after dynamics
actualization will be:

U

Z B +1,,>0

imjn™> jn

M=

1 if
B(Hl) —

im

n=—2>D

.

0if ii Ty BY +1,, <0, D06

J=l n=—D

The number of neurons in the network is N(D+U+1),
where D and U are large enough to guarantee the amplitude
and precision of the model. It should be noted that in
order to implement the algorithm on a computer, several
optimizations can be made in order to improve both the CPU
computation time and memory resources. The program that
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we used to simulate the RHANN was written in C computer
language, in which 32 states of every neuron, namely 0’s and
I’s, can be stored in a 32-bit wide variable (unsigned long int
value). Power of 2 expressions such as 2™+ can be computed
and stored in memory as power2[m+n], we also note that
,,,,,, =l Z 2" 4,4,1 , the values of the products mark[i] Z 4,4,
can be calculated and stored in a bi- d1mens10nal array, in
order to be used later in the inner loops of the dynamics.
This way, we obtain the term Z Z T,,B) +1, in equation
(D6) by including equation (D4) 'We can state the term as:

sumO[i][m] =— Z powerZ[ern]*Z matk[i][j1BS,)  (D.7)

n=>D j=1

Similarly, in equation (D6), for I,, the three products
within can also be computationally optimized, this way we
will define the values sum1[i][m], sum?2[i][m] and sum3[i]
[m] as follows:

suml[i][m]=—%p0wer2[2*m]*i (4,)*BY, (D.B)
sum?2[i][m] = P0W€V2[m]*i (4;;)o% 5 (D.9)
sum3[i][m] = powerZ[m+U]*i matk[i][ j], (D.10)

J=l

therefore, the dynamics of the state of each neuron B will
be updated according to:

B _ 1 if sumO[i)[m]+ suml[i][m]+ sum2[i][m]+ sum3[i][m] > 0
1[m]+ sum2[i][m] + sum3[i][m] < 0.

(D.11)

"0 if sumO[i][m] + suml[i

Furthermore, it should be noted that the simple binary
natural representation of the problem makes it suitable to
be solved by a device which is capable of accumulating
sums of partial products (vector/matrix computation). Such
devices are currently available in the form of an electronic
circuit known as a Digital Signal Processor (DSP) or the
more versatile Field Programmable Gate Array (which
might have embedded DSPs included). Such circuits are
capable of fast multiplication-accumulation processing.
If such a custom digital computer could be realized, it
could reduce the computation times achieved by current
traditional CPU based computers.
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