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A B S T R A C T

New geochronological data from the Albera Massif confirm the presence of an Early – Mid Ordovician igneous 
event (472 - 465Ma) recorded in the pre-Variscan rocks of the Pyrenees. This event resulted in the emplacement 
of a large granitic body in the lower part of the pre-Upper Ordovician metasedimentary succession and in the 
intrusion of a series of metric sized dykes in the middle and upper parts of it. The two types of igneous rocks 
were gneissified during subsequent Variscan deformation. The geochronological data confirm the occurrence of 
the gneiss as having derived from an Ordovician intrusive sheet, as in other Pyrenean massifs. The dykes are 
considered to be the subvolcanic equivalent of the intrusive sheet. The data also provide insight into the age of the 
metasedimentary series of the massif and enable us to correlate the dated rocks with other gneissic and subvolcanic 
bodies of the Variscan massifs of the Pyrenees and Iberia.
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INTRODUCTION

The origin and significance of the large gneissic bodies 
that crop out at the core of metamorphic massifs in the 
Pyrenees has long been a subject of debate. Initial studies 
conclude that large granitic orthogneisses represent a 
Cadomian basement overlain by a lower Paleozoic cover 
(Autran et al., 1966; Autran and Guitard, 1969; Guitard, 
1970; Vitrac-Michard and Allègre, 1975). In contrast, 
pioneering geochronological work suggests an Ordovician 
age for the protoliths of the orthogneisses (Jäger and 
Zwart, 1968; Majoor, 1988). Although some works based 
on structural field data, (Sebastián et al., 1982; Liesa, 
1988; Vilà, 2003) have challenged the basement - cover 
interpretation, recent geochronological data have provided 
evidence contradicting this interpretation. These studies 
conclude that an Early – Mid Ordovician magmatic event 
(477-467Ma) gave rise to the protoliths of the Canigó, 
Roc de Frausa and Aston - Hospitalet gneisses (Cocherie 
et al., 2005; Castiñeiras et al., 2008a and Denele et al., 
2009, respectively). The absence of a Cadomian granitic 
basement and the presence of an Ordovician magmatism 
in the Pyrenees is comparable to the one described in 
other areas of northern Gondwana (Pin and Marini, 1993; 
Valverde-Vaquero and Dunning, 2000) and have been 
extensively discussed (e.g. Barbey et al., 2001; Deloule et 
al., 2002; Laumonier et al., 2004; Cocherie et al., 2005; 
Castiñeiras et al., 2008a).

In this scenario, the Albera massif played a prominent 
role, given that the basement-cover model was defined in this 
massif (Autran et al., 1966). This model was subsequently 
applied to other gneissic cored massifs of the Pyrenees 
(Guitard, 1970). However, no geochronological data on the 
Albera gneiss has been available to date. In this work, we 
present new geochronological data that furnish evidence of 
a well defined Early – Mid Ordovician magmatic event in 
this massif. The significance of the event is discussed and 
compared to other gneissic bodies of the Variscan massifs 
of the Pyrenees and the Iberian realm.

geological setting 

The Albera massif is located at the easternmost end 
of the Pyrenees where Variscan basement rocks crop out 
extensively (Fig. 1). It presents a half dome structure 
resulting from a set of E-W trending Neogene normal 
faults that cross cut the central part of the massif. The faults 
also account for the cropping out of the lowermost rocks 
(Figs. 1, 2). To the west, the massif is bounded by La 
Jonquera fault; to the south, the Valleta Fault marks the 
boundary between the low-grade metamorphic rocks 
of the Albera massif and the medium to high-grade 
rocks of the Cap de Creus massif (Fig. 2). Three main 
lithological units can be distinguished: i) a pre-Upper 
Ordovician metasedimentary sequence including acidic 

Figure 1. Liesa et al.
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metaigneous rocks, ii) a large orthogneiss body, and iii) 
Variscan plutonic rocks, mainly granitoids. 

The pre-Upper Ordovician metasedimentary sequence is 
divided into a Lower Series and an Upper Series separated 
by a characteristic layer of black metapelites that constitutes 
the top of the Lower Series (Fig. 2) (Cirés et al., 1994; Vilà et 
al., 2005, 2007). The Lower series is composed of alternating 
layers of metagreywackes and metapelites with abundant 
centimetric discontinuous layers of white plagioamphibolic 
rocks. Discontinuous layers of metabasites, calc-silicate 
rocks, quartzites and marbles crop out throughout the whole 
Lower series. The Albera orthogneiss constitutes the main 
interlayered unit in the Lower series which is up to 500m 
thick. The series below the orthogneiss is migmatitic with 
alternating leucosomes, mesosomes and melanosomes. 
Plagioamphibolic and metasedimentary layers are also 
present. These characteristic layers and the abundance of 
pelitic minerals in the migmatites enable us not only to relate 
the two series but also to term these migmatites paragneisses 
after Autran et al. (1966). Towards the upper stratigraphic 
levels, the metasediments become gradually darker and 
more pelitic until they form a continuous unit of black 

metapelites known as the Black Series. The black metapelites 
are interbedded with white quartzites and blue-grey marble 
beds. The Upper Series is formed by alternating layers of 
metapelites and metapsammites with thin microconglomerate 
(2m thick), marble and black metapelite intercalations (Cirés 
et al., 1994; Laumonier et al., 1996; Vilà et al., 2005, 2007). 
Acidic metaigneous rocks form discontinuous bodies cross 
cutting the Upper Series and the Black Series. They correspond 
to gneissified subvolcanic dykes and sills or discontinuous 
lense–shaped layers of lava flows and volcaniclastic tuffs. 
They contain quartz and feldspar porphyroclasts in a finer 
grained matrix and their composition corresponds to that of 
peraluminous leucogranites and granites (Vilà, 2003). In this 
paper they will be termed rhyolithic metaporphyries.

The age of the sequence remains to be resolved because 
of its azoic character, although a Cambro-Ordovician (pre-
Caradocian) age has been suggested (Fontboté, 1949; 
Cavet, 1957). A Mid/Late Cambrian age (Laumonier, 
1988; Perejón, et al., 1994) or a Late Cambrian/Early 
Ordovician (Guitard et al., 1998) has been proposed for its 
upper part. Recent radiometric dating of interlayered metatuffs 
in neighbouring massifs (Cap de Creus, Roc de Frausa and 
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Canigó massifs) has yielded a Late Neoproterozoic-Early 
Cambrian age (580-540Ma) for the lower part of the succession 
(Cocherie et al., 2005; Castiñeiras et al., 2008a). Lithological 
similarities of the Cap de Creus and Albera sequences allow us 
to correlate the series, which suggests a Late Neoproterozoic-
Early Cambrian age for the Lower series of the Albera Massif 
though no pre-Variscan interlayered igneous rocks of the 
Albera massif have been dated so far. 

The Albera orthogneiss is formed by K-feldspar 
porphyroclasts surrounded by a matrix rich in quartz, 
feldspar and biotite. It is derived from a large pre-Variscan 
sheet-shaped granitoid intrusion. Guitard (1970) considered 
this gneiss to be equivalent to the G2 Canigó gneiss on the 
basis of its mineralogy and texture. According to Vilà (2003), 
it is derived from a peraluminous granodiorite.

Variscan intrusives are represented by three main 
groups of rocks: an anatectic leucogranite, a composite 
intrusion, namely the Sant Llorenç - La Jonquera batholith 
and El Castellar leucogranite. The anatectic leucogranite 
is formed by peraluminous dykes and stocks emplaced at 
the deepest outcropping tectonic levels in the anatectic and 
perianatectic domains (Autran et al., 1970; Vilà, 2003). It 
intruded synchronously with the main tectonic phase and 
regional metamorphism. The Sant Llorenç - La Jonquera 
intrusion is a sheet-shaped body made up of calc-alkaline 
granodiorites, tonalites and granites with associated small 
mafic complexes composed of diorite-gabbro stocks and 
ultramafic rocks, and leucogranite dykes (Autran et al., 
1970; Cocherie, 1985; Liesa and Carreras, 1989). The more 
mafic rocks are emplaced at lower structural levels in high-
grade metamorphic domains whereas the acidic rocks, which 
form the top of the pluton, are intruded at higher structural 
levels in low-grade metamorphic domains. The Sant Llorenç 
- La Jonquera and the mafic complexes develop a contact 
metamorphic aureole overprinting the main foliation but 
show a fabric that is related to a later folding phase. 

The El Castellar leucogranite forms a small elongated 
pluton intruded into the metasediments close to the La 
Jonquera plutonic complex. It represents one of the peripheral 
intrusions (Debon et al., 1995) of the La Jonquera complex 
and it is peraluminous and heterogeneous with numerous 
metasedimentary enclaves and pegmatite dykes (Vilà, 2003; 
Vilà et al., 2005).

Shrimp U-Pb zircon geochronology

Sample and zircon description

The samples collected for U-Pb zircon analysis 
correspond to two rhyolithic metaporphyries (samples 
A-08-1, A-08-2) and to an orthogneiss (sample A-08-5) 

(Fig. 2). Samples A-08-1 and A-08-2 are white – orange 
aphanitic massive rocks with discontinuous green to 
grey coloured thin foliated layers. They are mainly 
constituted by quartz and minor feldspar porphyroclasts 
(1-5mm) that are prominent in a fine-grained groundmass 
(0.02-0.05mm) composed of quartz, altered feldspar 
and phyllosilicates (muscovite and scarce chlorite). The 
phyllosilicates define an anastomosing foliation that wraps 
the porphyroclasts. Quartz outlines are rounded with 
deep embayments characteristic of magmatic corrosion. 
The field relations together with the compositional and 
textural features of these rocks allow us to interpret them as 
former hypabissal or subvolcanic rocks, probably granitic 
porphyries. 

Sample A-08-5 is an augen orthogneiss of granitic 
composition made up of quartz, microcline, plagioclase, 
biotite and small amounts of muscovite and opaque ore. 
Biotite and muscovite define a coarse discontinuous 
foliation separating quartz-feldspar layers, 2-3mm thick. 
Quartz constitutes the groundmass and shows both 
undulose extinction and subgrains. It displays a relatively 
uniform grain size of 0.4mm. Microcline and plagioclase 
constitute porphyroclasts that range from 1-4cm. 
Microcline is perthitic and exhibits tartan twinning owing 
to deformation.

Zircons from the three samples were isolated using 
gravimetric and magnetic techniques. About 40 zircon 
grains per sample were handpicked under a binocular 
microscope. They were selected from the most idiomorphic 
crystals to avoid all possibility of inheritance. The preferred 
zircons were mounted in epoxy resin together with some 
chips of zircon standard R33 (Black et al., 2004). Prior to 
isotopic analysis, the zircons were imaged with transmitted 
and reflected light on a petrographic microscope, and 
with cathodoluminescence on a JEOL JSM 5600 electron 
microscope housed at SUMAC (Stanford-US Geological 
Survey micro analysis centre). After the analysis, secondary 
electron images were taken to locate the exact position of 
the spots.

Zircon crystals from sample A-08-1 may be colourless, 
pale yellow or light purple and may contain few inclusions. 
Mineral habit is variable, commonly plain prisms with 
differently shaped pyramid terminations and length-
to-breadth ratios between 1:3 and 1:5. In some cases, 
the prisms are composite, resulting in stubbier zircons 
(aspect ratios of 1:1 or 1:2). Broken and moderately 
rounded grains are common irrespective of their habit. 
Under cathodoluminescence, they exhibit clear core-
rim structures with abundant inherited cores mantled by 
magmatic oscillatory zones (Fig. 3). The zircon yield 
from sample A-08-2 was poor, less than a hundred grains 
extracted from ~20 kg of rock, compared with the previous 
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sample. Zircons are mainly brownish and practically free 
of inclusions. The most frequent habits are dipyramidal 
prisms and equant grains due to the presence of composite 
faces (Fig. 3). Cathodoluminescence reveals a luminescent 
oscillatory zoning in most grains commonly surrounded by 
non-luminescent rims. The sharp limit between areas with 
different luminescence suggests that the rims are magmatic 
rather than metamorphic in origin. Xenocryst cores are 
rare. The orthogneiss (sample A-08-5) provided the most 
abundant zircon yield. Zircon grains can be colourless or 
coloured in different yellow tones with few inclusions. The 
most common habit is dipyramidal prisms with aspect ratios 
between 1:3 and 1:5, but more complex habits or rounded 
grains can also be found. Under cathodoluminescence, 
zircons display broad oscillatory zones, typical of magmatic 
environments (Fig. 3). 

U-Th-Pb analyses of zircon were conducted using the 
Bay SHRIMP-RG (Sensitive High-Resolution Ion Microprobe 
- Reverse Geometry). The analytical procedure followed for 
zircon dating is described elsewhere (e.g., Premo et al., 2008). 
The concentration of U was calibrated with zircon standard CZ3 
(550ppm U, Pidgeon et al., 1995), and isotopic compositions 
were calibrated against R33 (419 Ma, Black et al., 2004) which 
was analyzed every fourth analysis. Squid and Isoplot software 
(Ludwig, 2002, 2003) were used for data reduction following 

the methods described by Williams (1997) and Ireland and 
Williams (2003). Ages are based on 206Pb/238U ratios corrected 
from common Pb using the 207Pb method. Analytical results 
are presented in Table 1 and plotted in Figure 4.

Cathodoluminescence images for selected zircons.FIGURE 3

Tera-Wasserburg plot showing the distribution of SHRIMP 
zircon analyses for samples A-08-1, A-08-2 and A-08-5. Dashed and 
dotted ellipses represent analyses not considered for the mean age 
calculation. Grey arrows indicate modern Pb-loss track. Error ellipses 
are ±2σ.

FIGURE 4
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U-Pb results

Twelve zircon grains from sample A-08-1 were 
analyzed, using cathodoluminescence images to target 
oscillatory zones that were considered as magmatic in 
ori-gin. Xenocryst cores were avoided whenever possible. 
Six analyses generated a mean age of 465.0±4.3 Ma (Fig. 4) 
with a mean square of weighted deviates (MSWD) of 1.9. 
This age is interpreted as the crystallization age of the 
igneous protolith. In sample A-08-2, eighteen zircons were 
analyzed in magmatic areas with oscillatory zoning using 
cathodoluminescence images to avoid non-luminescent 
rims. Seven analyses yielded a mean age of 472.0±3.0 Ma, 
MSWD=1.3 (Fig. 4). In the orthogneiss (sample A-08-5) 
nineteen analyses were obtained from magmatic areas with 
a mean age of 470.4±3.1 Ma (Fig. 4). The MSWD=2.0 

was calculated by pooling together six analyses and 
was interpreted as the crystallization age of the igneous 
protolith.

discussion and conclusions

New geochronological data on the Albera massif furnish 
evidence of a well defined Early-Mid Ordovician magmatic 
event that brought about the intrusion of granitic bodies 
(ca. 470Ma) and acid subvolcanic porphyritic dykes (465-
472Ma) into the pre-Upper Ordovician sequence. These 
ages range within error to the Floian, Dapigian and the 
lower part of the Darriwilian, which are roughly equivalent 
to the Arenig in the British regional series division (see 
Finney, 2005). The ages also fit in well, within error, 

SHRIMP U-Th-Pb zircon data of the samples from the Albera massifTABLE 1

All errors are 1s.
Zircon description: om=oscillatory magmatic.
Bold ages used to obtain the mean age.
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with those obtained for the protoliths of other Pyrenean 
orthogneisses: Canigó gneiss (467±7 to 477±4Ma, Cocherie 
et al., 2005) Roc de Frausa gneiss (476±5Ma, Castiñeiras 
et al., 2008a) and Aston and Hospitalet gneisses (470±6Ma 
and 472±2Ma, Denele et al., 2009). Late Cambrian/Early 
Ordovician ages are also frequent in the gneisses of the 
Iberian Massif (Guadarrama orthogneiss: 470 to 480 Ma, 
Vialette et al., 1987; Cardoso gneiss: 480±2Ma, La Morcuera 
gneiss: 477±4Ma, Valverde-Vaquero and Dunning, 2000; 
Miranda do Douro gneiss: 483±3Ma, Bea et al., 2006 and 
496±3Ma, Zeck et al., 2007; Sotosalbos anatectic gneiss: 
465 to 480Ma, Castiñeiras et al., 2008b, among others) 
However, it should be noted that the magmatic episode 
recognized in the Pyrenees encompasses a shorter period 
(10Ma) and that no evidence of Late Cambrian or Early 
Tremadocian magmatic activity has been recorded. 
Thus, the igneous activity related to the Cambrian rifting 
episode, widespread in the Iberian Massif (Simancas 
et al., 2004) and in other European Variscan massifs 
(Linnemann et al., 2007), has not been recognized in 
the Pyrenees. 

The intrusive bodies located in the middle and upper 
parts of the successions can be regarded as the subvolcanic 
equivalent of the large granitic body coevally emplaced 
in the lower part of the succession. It should be stressed 
that the Albera massif is the only Pyrenean massif that 
has preserved shallow depth intrusive porphyries of 
Ordovician age to date. On the other hand, rhyolitic and 
rhyodacitic volcanic rocks and crystal-tuff porphyroids of 
Early Ordovician age occur in the Iberian massif (Ollo 
de Sapo and related facies: 480±2Ma, Valverde-Vaquero 
and Dunning, 2000) and in Sardinia (Lula porhyroid: 
474±13 Ma, Helbing and Tiepolo, 2005; metarhyolite 
and metadacite: 491.7±3.5 Ma to 479.9±2.1 Ma, Oggiano 
et al., 2009). According to the age obtained for these 
subvolcanic rocks, Early Ordovician (older than 472Ma) 
is the youngest age that can be assigned to the Upper 
series of the Albera massif. 

Our data confirm present day interpretations that 
consider the protoliths of all the orthogneisses to be 
intrusive and not part of an eroded Cadomian basement. 
Thus, the boundary between the gneisses and the overlying 
metasediments does not represent the basement-cover 
boundary that corresponds to the Upper Proterozoic 
– Cambrian boundary. Although further research and 
geochronological work is needed to assess the age of the 
pre-Upper Ordovician sequence (Vilà, 2003) the base of 
the Cambrian is probably located close to the top of the 
so-called Black Series of the Albera Massif (Vilà, 2003) 
or at the base of the Upper series in the Cap de Creus 
and Albera Massifs (see discussion in Castiñeiras et al., 
2008a).
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