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|ABSTRACT |

The dyke of the Pap6a volcanic breccia cross-cutting the Lower Jurassic sequence of the Lusitanian Basin (West
Iberia) contains granitic xenoliths. In this study, for the first time, U-Th-Pb zircon analysis of two xenoliths yielded
c. 298Ma for the biotite granite and of c. 305-291Ma for the two-mica granite, indicating that the pre-Mesozoic
basement of the Lusitanian Basin includes Permian intrusions. These ages are close within the margin of error to the
age of the Late Carboniferous granites of the Berlengas isles that with the Late Devonian high-grade metamorphic
rocks of the Farilhoes isles, located northwest of the study area, form the pre-Mesozoic basement of the Lusitanian
Basin. These new geochronological findings enable us to establish that Permo-Carboniferous magmatism lasted
at least 14Ma in this region, as in other regions of the Appalachian-Variscan belt. Furthermore, a comparison with
available data from Paleozoic tectonic units of the Appalachian-Variscan belt located in and outside the Iberian
Massif suggests that the Lusitanian Basin (Peniche) most probably rests on the South Portuguese Zone, which may
correlates with the Rhenohercynian Zone present in southwest England, and the Meguma terrane of Nova Scotia.
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INTRODUCTION

The study of xenoliths in volcanic pipes can enable
the characterization of the magmatic and metamorphic
rocks that constitute the crust at depth. This approach is
particularly relevant where such rocks that have formed
at deeper crustal levels are not exposed in a given basin
or occur hundreds of kilometres away from the basin with
no apparent relationship with it. The ascent of magma
to its level of extrusion may involve the incorporation
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of fragments of solid rock material from the host rocks
through which it has passed (e.g. Dostal et al, 2005;
Puelles et al, 2019). Therefore, a volcanic pipe that
cuts a sedimentary basin, whose basement rocks are
unknown, may provide evidence of the deeper crustal
rocks preserved as xenoliths, of which granites are a good
example. This paper describes the field occurrence of
two granitic xenoliths from the Papda intrusive volcanic
breccia in the Jurassic strata of the Lusitanian Basin
(western Iberia).
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In the present study, for the first time, zircon grains
extracted from xenoliths of granite from a post-Sinemurian
volcanic breccia are described using cathodoluminescence
imaging and SHRIMP U-Pb geochronology. The findings
are compared with the available literature and used to
discuss the pre-Mesozoic basement of the Lusitanian
Basin. We have considered not only the Paleozoic tectonic
units from the Iberian Massif but also those located in other
parts of the Appalachian-Variscan belt, such as Nova Scotia
and southwest England. The analysis of the composition
and age of the breccia matrix and other type of xenoliths are
beyond the objective of the present study.

GEOLOGICAL SETTING
Lusitanian Basin

In western Iberia, the Mesozoic Lusitanian Basin extends
landwards for about 250 kilometres along the coastline of
Portugal from Settibal to Porto ( ). In the Peniche
region, a well-preserved Lower Jurassic section more than
450m thick can be observed (Duarte et al, 2004). This
section includes the Toarcian Global Boundary Stratotype
Section and Point (GSSP) of the International Commission
on Stratigraphy (Rocha et al., 2016) ( ). The Triassic—
Jurassic boundary is not recognised in Peniche, but marls
with gypsum and dolomitic limestones of the Rhaetian-
Hettangian Dagorda and Pereiros formations are found at
about 10 km to the east in the Obidos typhonic valley (Alves
et al., 2003; Camarate Franca et al., 1960; Zbyszewski, 1959)
( ). The first evidence of the Lower Jurassic carbonate
platform is found in the Sinemurian Coimbra and Agua de
Madeiros formations, composed of bioclastic limestones
and dolomitic limestones interbedded with marls (Duarte
and Soares, 2002; Duarte, 2007). The carbonate sequence
includes from bottom to top: bioclastic limestones with
brachiopods and bivalves interbedded with centimetre-
thick layers of marls (Sinemurian—Pliensbachian Agua de
Medeiros Formation), marls and limestones with crinoids
(Pliensbachian Vale das Fontes Formation), centimetre-thick
layers of limestones and marls containing belemnites and
ammonites (Pliensbachian Lemede Formation), and marls
and detrital limestones with crinoids (Toarcian Carvoeiro
Formation) (Duarte and Soares, 2002; Duarte et al., 2004).

Magmatic activity in the Lusitanian Basin occurred in
the Lower Jurassic (c. 200-180Ma) and Cretaceous (c. 147-
141 and 94-72Ma) ( ; Grange et al., 2008; Kullberg
et al., 2013; Miranda et al., 2009). Given the absence of
absolute ages, field relations provide the only basis for
arguing that the PapOa volcanic breccia is younger than
the Lower Jurassic strata. Some authors have pointed to
the Cretaceous as the most probable age for this volcanic
episode (Andrade, 1979; Romariz, 1963-1964).
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FIGURE 1. A) Location of the South-Portuguese (SPZ), Pulo do Lobo
(PLZ), Ossa-Morena (SPZ), Galicia-Tras-os-Montes (GTMZ), Central
Iberian (ClIZ), Cantabrian (CZ) and West Asturian-Leonese (WALZ)
zones (Iberian Massif) in the Appalachian-Variscan belt, and adjoining
terranes: Saxo-Thuringian (STZ), Northern Phyllite (NPZ) and
Rhenohercynian (RHZ) zones, Mid-German Crystalline High (MGC),
Ganderia (GD), Meguma Terrane (MT), Avalonia (AVL), Laurentia (LR).
Modified from Pereira et al., 2017b and references therein. Porto-
Tomar Fault Zone (PTFZ), Minas Fault Zone (MFZ), Nazaré Fault
(NZ). B) Simplified geological map of the Lusitanian Basin and the
Berlengas and FarilhGes islands (Modified from Camarate Franca et
al., 1960; Oliveira et al., 1992).

Pre-Mesozoic basement

The structural complexity of the pre-Mesozoic basement
of the Iberian Massif, that is unconformably overlain by the
Mesozoic Lusitanian Basin, resulted from the progressive
amalgamation of different tectonic units during the course
of the Gondwana and Laurussia collision, forming the
Appalachian-Variscan orogeny (Matte, 2001). In the Iberian
Massif, an allochthonous nappe pile formed at c. 390-
365Ma as a result of the continental subduction (Galicia-
Tras-os-Montes Zone, GTMZ; Martinez Catalan er al.,
2019). The following evolutionary stages of this collisional
belt (c. 365-315Ma) led to the spatial reorganisation of
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FIGURE 2. A) Simplified Geological Map of the Peniche region with
location of the sampling site and the Toarcian Global Boundary
Stratotype Section and Point (GSSP, Rocha et al., 2016). Modified
from Camarate Franca et al., 1960; Oliveira et al., 1992. B) Sketch of
the sampling site of the Papba volcanic breccia; photograph showing
xenoliths (yellow arrows) of different size of carbonate rocks, mafic
igneous rocks (basaltic composition?) and granitic rocks.

the different tectonic units derived from the margins of
Gondwanan (Central Iberian Zone, CIZ, and Ossa Morena
Zone, OMZ) and Laurussian (South Portuguese Zone, SPZ)
involved in the Carboniferous collision (Azor et al., 2019).

The latest adjustments to this orogenic system
configuration were caused by c. 315-300Ma strike-slip
shearing and upright folding related to the waning stages
of the continental collision (Diez Fernandez and Pereira,
2017; Gutiérrez-Alonso et al., 2015; Martinez Catalan
et al., 2007). Regarding the above-mentioned, we might
expect that the basement of the Lusitanian Basin would
present distinctive characteristics in accordance with the
underlying Paleozoic tectonic zone (Pereira et al., 2016),
but there is still debate on what this is. The pre-Mesozoic
basement flanking the Lusitanian Basin is represented
by four tectonic zones showing differences in terms of
stratigraphy, deformation, metamorphism, and magmatism:
the CIZ, GTMZ, OMZ and SPZ (Martinez-Catalan ef al.,
2007, ). Stratigraphy of the CIZ and OMZ includes
Neoproterozoic to Permian rocks with some significant
stratigraphic gaps ( ). These rocks include Ediacaran
successions of greywackes and pelites interbedded with
volcanic rocks formed in a magmatic arc (Cadomian
orogeny; Pereira et al., 2012; Talavera et al., 2015). In the
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OMZ, Cambrian sedimentation is continuous and mostly
siliciclastic, including two minor periods of carbonate
production (Sanchez Garcia et al., 2019) ( ). Cambrian
siliciclastic rocks and minor carbonate rocks are only
represented in the northern and central domains of the CIZ,
reaching up to Cambrian Series 2, Stage 4 (Dias da Silva
et al., 2014; Gutiérrez-Marco et al., 2019). In both tectonic
zones, Ordovician to Lower Devonian marine siliciclastic
sedimentation is relevant and include a few unconformities
(Gutiérrez-Marco et al., 2019; Robardet and Gutiérrez-
Marco, 2004), but Middle Devonian sedimentary rocks are
almost absent (Robardet, 2003) ( ). In the interval c.
530-470Ma magmatism was significant in the OMZ (Diez
Fernandez et al., 2015; Sanchez-Garcia et al., 2019), while
in the CIZ, igneous rocks have yielded Upper Cambrian
to Upper Ordovician ages (c. 498-450Ma; Colmenar et al.,
2017; Diasda Silvaet al.,2015; Montero et al.,2007; Rubio-
Ordonez et al., 2012) ( ). Furthermore, c. 460-455Ma
volcanic rocks are found in the structurally higher GTMZ
parautochthonous unit, which presents a stratigraphic
record comparable with that of the CIZ (i.e. Autochthon)
(Dias da Silva et al., 2016). Upper Devonian magmatic
rocks and high-grade metamorphism are unknown in the
CIZ and OMZ ( ). The only exception is a few gabbro-
dioritic plutons in the OMZ that have yielded questionable
ages of 362+13Ma and 376+22Ma (Rb-Sr, K-Ar and Sm-
Nd ages; Ribeiro et al., 2019). Upper Devonian to Lower
Carboniferous marine siliciclastic rocks are overlain by
Upper Carboniferous terrestrial strata in the CIZ and OMZ
(Martinez-Catalan et al., 2007; Quesada et al., 1990) and
by Upper Carboniferous marine strata in the SPZ (Oliveira,
1990; Pereira et al., 2020). Carboniferous and Lower
Permian magmatism (c. 350-290Ma) is widespread in the
Iberian Massif (Castro et al., 2002; Dias da Silva et al.,
2018; Fernandez-Suarez et al., 2011; Pereira et al., 2015,
2017a) ( ). In the western Iberian Massif, the dextral
movement of the Porto-Tomar fault zone at c. 310-308Ma
(Gutiérrez-Alonso et al., 2015; Pereira et al., 2010) caused
the lateral displacement of the adjacent CIZ, OMZ, and
SPZ, resulting in a much greater tectonic complexity in the
pre-Mesozoic basement of the Lusitanian Basin.

The discussion on the nature of the Paleozoic tectonic
unit that constitutes the pre-Mesozoic basement of the
Lusitanian Basin is still ongoing, with a number of authors
pointing to a range of possibilities: i) the CIZ (Terrinha
et al., 2019); ii) the OMZ and CIZ (Oliveira et al., 1992;
Pereira et al., 2016); iii) the OMZ and SPZ (Alves, 2011;
Capdevila and Mougenot, 1988; Kullberg et al., 2013);
iv) the SPZ (Ribeiro et al., 2007); and v) the CIZ, OMZ
and SPZ (Pimentel and Pena dos Reis, 2016). However,
there is a clue that may help to solve the puzzle. Pre-
Mesozoic basement rocks are described in the Berlengas
and Farilhoes isles as being exposed along a horst on the
continental shelf northwest of Peniche (Camarate Franca et
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FIGURE 3. Summary of the stratigraphy of the Central-Iberian (ClZ), Ossa-Morena (OMZ) and South Portuguese (SPZ) zones (Iberian Massif), and the
Rhenohercynian Zone (RHZ, SW of England) and the Meguma Terrane (MT, Nova Scotia) (modified from Gutiérrez-Marco et al., 2019; Leveridge and
Shail, 2011; Murphy et al., 2018; Oliveira and Quesada, 1986; Oliveira, 1990; Pereira et al., 2020; Sanchez Garcia et al., 2019; Shail and Leveridge,

2009; White et al., 2018).

al., 1960; Freire de Andrade, 1937) ( ; 2A). Granite
from the Berlengas isles was first dated at 280+15Ma (Rb-
Sr whole-rock; Priem ef al., 1965) and recently at 305+1Ma
(U-Pb on zircon and monazite fractions; Ribeiro et al,
2019; Valverde-Vaquero ef al.,2011). A sample of anatectic
granite/diatexite associated with paragneiss migmatites of
the Farilhoes isles (Bento dos Santos ef al., 2010) yielded
376+3Ma (U-Pb on monazite fractions; Valverde-Vaquero
et al., 2011), interpreted as representing the best estimate
for the age of high-grade metamorphism. Unfortunately,
contact relationships between Berlengas granite and
Farilhoes high-grade metamorphic rocks have not yet been
determined.

RATIONALE AND SAMPLING

In this study, two fresh xenoliths of granitic rocks were
sampled from the Papda volcanic breccia ( ; 4A)
for the characterization of the pre-Mesozoic basement of
the Lusitanian Basin. The aim was to date granitic rocks
derived from the underlying basement. Using the new
U-Pb data, we aim to discuss: i) the source of the granitic
xenoliths, and ii) the relation between the xenoliths of
granitic and quartz-feldspathic metamorphic rocks and the
Paleozoic basement of the Berlengas and Farilhoes isles.
If a link between them can be established, as previously
suggested by Andrade (1979) and Romariz (1963-1964), a
comparative analysis with the pre-Mesozoic basements of
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the Appalachian-Variscan belt located both in the Iberian
Massif and outside it (Meguma terrane in Nova Scotia and
Rhenohercynian Zone in SW England) could be attempted.

In the study area of Papda, the NE-SW-trending 30
metres-wide dyke of a matrix-supported mafic breccia
cross-cutting the Lower Jurassic strata seems like a sub-
vertical volcanic pipe ( ). The matrix resembles
coarse to fine-grained mafic tuff ( ) with abundant
rock fragments and great variation in size ( ;

). In the dark tuffitic matrix which is commonly intensely
altered and replaced by soft yellowish clay, rounded to
subangular xenoliths ranging from millimetres to metres
in size stand out, ( ). Xenoliths occur in four
main groups, each reflecting a different source: i) granitic
rocks; ii) quartz-feldspathic foliated rocks (high-grade
metamorphic rocks and/or deformed granitic rocks); iii)
mafic (basaltic?), pumice, and fine-grained tuffitic rocks;
and iv) quartzitic and carbonate hornfels derived from the
host sedimentary rocks. Groups i) and ii) represent the
deeper crustal sources and often are not easy to distinguish
due to the intense weathering. Groups i) and ii) represent the
deeper crustal sources and often are not easy to distinguish
due to the intense weathering. Group iii) xenolits are the
most abundant, and are derived from sources formed during
the subvolcanic process; The two xenoliths of granitic rocks
selected for U-Pb geochronology had elongated shapes
and were sub-angular to rounded, with a diameter of more
than 20 centimetres. They were remarkably fresh, contrary
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FIGURE 4. Photographs of the Pap6a volcanic breccia: A-D) distinct types of xenoliths within a tuffitic matrix: A-B) basaltic rocks and quartzitic and
carbonate hornfels; C) quartz-feldspathic foliated rocks, carbonate hornfels and basaltic rocks; D) granitic rocks and carbonate hornfels; E) Bt-granite
(from sample Xpp-2); F) two-mica granite (from sample Xpp-3); the description of microscopic scale observations of both samples is in the text.

to what is often found due to intense weathering. Sample
Xpp-2 coarse-grained biotite granite ( ) was mainly
composed of quartz, K-feldspar prevailing over plagioclase,
and biotite, also including opaque minerals, muscovite,
zircon, and apatite. This sample appeared to have been
derived from a source with textural and compositional
characteristics similar to those of Berlengas granite. Sample
Xpp-3 coarse-grained two-mica granite ( ), consisted
of quartz, K-feldspar, plagioclase, muscovite, and biotite as
their main components. It also included monazite, apatite,
opaque minerals, and zircon as accessory minerals.

U-PB GEOCHRONOLOGY

Zircon grains for U-Pb geochronology were selected
using traditional techniques: density separation using a
sieve with a mesh size of less than 500 microns, density
(panning) separation procedures, and mineral identification
using a binocular lens and preparation of epoxy resin mounts
with zircon grains (Universidade de Evora, Portugal).
Cathodoluminescence imaging and U-Pb measurements
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using SHRIMP were carried out at IBERSIMS (Universidad
de Granada, Spain). Zircon grains were tracked by the
primary beam during 120s prior to analysis and then
analyzed over 6 scans following the isotope peak sequence
1967r,0, 2%Pb, 204.1 backgrounds, 2Pb, 207Pb, 28Pb, 23,
28ThQ, »*UO. Every peak of each scan was measured
sequentially 10 times: 2s for mass 196; 5s for masses 238,
248, and 254; 15s for masses 204, 206, and 208, and 20s for
mass 207. The primary beam, composed of '°0'°0%*, was
set to an intensity of 4-5nA, using a 120um Kohler aperture,
which generates 17x20um elliptical spots on the zircon
surface. The secondary beam exit slit was set at 80um,
reaching a resolution of about 5000 at 1% peak height. All
calibration procedures were performed on the TEMORA
zircon, SL13 zircon, and GAL zircon standards, and
mass calibration was done using GAL zircon (ca. 480Ma;
Montero et al., 2008). Analytical sessions used SL.13 zircon
(Claoué-Long et al., 1995) as a concentration standard of
U= 238ppm. TEMORA zircon (ca. 417Ma, Black et al.,
2003) was used as isotope ratio standard having been
subject to measurement every 4 unknowns. Data reduction
was accomplished using SHRIMPTOOLS software (www.
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ugr.es/fbea). The measured 2°°Pb+/8U* and UO*/U* ratios
were used to calculate 2Pb/**®U as described by Williams
(1998). For high-U zircon grains (U>2500ppm) 2*°Pb/*8U
was corrected using the algorithm developed by Williams
and Hergt (2000). The obtained analytical uncertainties are
1o precision estimates. Ages were estimated using constants
suggested by the IUGS Subcommission on Geochronology
(Steiger and Jager, 1977) and the common Pb corrections
presumed a model common Pb composition for the age of
each spot (Cumming and Richards, 1975). U-Pb results
are listed in , see the appendix. Concordia curves
and weighted-average means were obtained using Isoplot
(Ludwig, 2008), and verified using the TuffZirc algorithm
(Ludwig and Mundil, 2002), which is largely insensitive to
both Pb loss and inheritance ( ; 0).

Xenolith of biotite granite (sample Xpp-2)
Coarse-grained biotite granite (sample Xpp-2)

contained stubby-to-elongated euhedral zircon grains
(80-350um in diameter). Zircon grains mostly showed

Age of granitic xenoliths in the Papda volcanic breccia

well-developed crystal faces. Long prisms had a length-
to-width ratio of up to 4:1. CL-imaging imaging showed
simple grains with growth zoning typical of magmatic
zircon (Corfu et al., 2003) varying from narrow to faint
and showing broad zoning. Composite grains included
unzoned cores or showed oscillatory growth zoning,
banded zoning and sector zoning. The cores were
mantled by narrow low-luminescence-to-broad rims with
oscillatory zoning ( ). U and Th ranged from 202 to
3996ppm and from 42 to 1488ppm respectively, and Th/U
ranged from 0.02 to 1.4. The average Th/U ratio of 0.4 is
typical of igneous origin (Hoskin and Schaltegger, 2003).
Of a total of 22 U-Th-Pb isotopic analyses, 15 with a
discordance of <5% yielded a weighted mean of 295+5Ma
(MSWD=4.2), indicating overdispersion or overestimated
uncertainties ( ). By excluding six analyses (4.1, 9.1,
11.1, 16.1, 18.1 and 21.1), a weighted mean 2°°Pb/>%U
age of 298+4Ma (MSWD=1.7) was obtained. This age is
interpreted as the best estimate for the crystallisation age
of plutonic rock, which coincided within the error with
the TuffZirc age of 299+3Ma ( ).
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two-mica granite. CL images of representative zircon grains.

Xenolith of two-mica granite (sample Xpp-3)

Coarse-grained two-mica granite (sample Xpp-3) mostly
included elongated zircon grains (70-420um in diameter)
with a few very long prisms and a 6:1 length-to-width ratio.
Simple grains showed concentric oscillatory zoning with
variable width or banded zoning. CL-imaging demonstrated
the complex nature of composite grains, including cores
of variable appearance with concentric zoning, banded
zoning, and unzoned cores, which were surrounded by rims
with concentric oscillatory zoning or were homogeneous
and presented low level of luminescence ( ). A few
cores showed the development of irregular domains of
homogeneity, cutting discordantly across growth zoned
domains, suggesting modifications during late and post-
magmatic cooling (Corfu et al., 2003). U content, although
variable, was quite high, ranging from 730 to 7847ppm,
while Th values ranged from 99 to 1938ppm, resulting in
Th/U ratios ranging from 0.04 to 1.24 ( ), and an
average Th/U ratio of 0.26. A total of 18 U-Th-U isotopic
analyses, with a discordance of <5%, yielded a weighted
mean of 293+x4Ma (MSWD= 3.5) ( ).
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The high MSWD value is associated with the scattering
of data points. 2’Pb/?*Pb and 2%Pb/>**U ratios are well
defined for a cluster of 10 analyses, yielding a weighted
mean age of 292+2Ma (MSWD= 1.09) and a TuffZirc age of
291+4-3Ma, regarded as the crystallisation age of two-mica
granite ( ). In this interpretation, the three older ages
that provide a weighted mean of 305+5Ma (MSWD=0.13;

), probably represent inherited grains from a former
zircon forming event. Alternatively, the scattering of data
could be explained by the combination of Pb-loss, common
Pb correction, and/or recrystallization (e.g. Kroner et al.,
2014), and thus, the best estimation of the crystallization
age of two-mica granite could be c. 305Ma (i.e. similar to the
Berlengas granite). A zircon grain showing two oscillatory
zoning domains separated by a thin dark unzoned domain
was analysed. The most internal oscillatory zoning domain
yielded a concordant age of 307+3Ma, whereas a discordant
age of c. 277+8Ma was obtained for the most external one
( ), suggesting isotopic disturbance of grain structure.
Thus, given the uncertainties of the data set is desirable to
quote a maximum (c. 305Ma) and a minimum (c. 291Ma)
crystallization age for this granitic rock.
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DISCUSSION

The Papda volcanic breccia, first described by Choffat
(1880), has been traditionally interpreted as a fragment of
a volcanic cone that was preserved from erosion due to the
collapse of a crustal block between two subvertical normal
faults (Andrade, 1979). However, our understanding is not
the same, admitting that it is a subvertical dike cross-cutting
the Lower Jurassic sedimentary host. The most abundant
xenoliths in the Papda volcanic breccia are of mafic tuff
and of fine-grained material probably derived from
previous crystallization in the dyke walls or representing
lava fragments. Mafic xenoliths probably derived from the
fragmentation of material from the walls of the subvolcanic
pyroclastic dike, and/or from the falling back of pyroclastic
material, pumice, welded-tuff, and lava fragments (Kano et
al., 1997; Motoki et al.,2012; Winter et al., 2008). Xenoliths
of metamorphic rocks mostly comprise carbonate rocks
and also siliciclastic rocks derived from the host Mesozoic
sedimentary sequence of the Lusitanian Basin. Granitic and
quartz-feldspathic foliated rocks also occur as xenoliths,
representing the pre-Mesozoic basement of the Peniche
region ( ). Xenoliths of granitic rocks present little
compositional variation but show significant textural
differences, including aplitic and pegmatitic textures. In
some cases, they are altered and difficult to distinguish from
quartz-feldspathic metamorphic rocks. These xenoliths of
granitic rocks and quartz-feldspathic foliated metamorphic
rocks, of probable upper and middle crust provenance,
are comparable lithologically and geochemically to the
pre-Mesozoic basement rocks forming the Berlengas and
FarilhOes isles (Camarate Franca et al., 1960; Freire de
Andrade, 1937; Rosa et al., 2019) ( ).

The new geochronology data obtained from the granitic
xenoliths of the PapOa volcanic breccia show that the
pre-Mesozoic basement of the Lusitanian Basin includes
Permo-Carboniferous granites (c. 298 and 305-291Ma;
this study). A number of provenance hypotheses may be
advanced to explain the presence of xenoliths of Permian
granitic rocks in the Pap6a volcanic breccia. In the Iberian
Massif, Permian magmatism is present throughout the
CIZ (Fernandez Suarez ef al., 2011), OMZ (Pereira et al.,
2017a), and SPZ (Braid et al., 2012; Diez Montes et al.,
2017), therefore they may all be regarded constituting the
Lusitanian Basin pre-Mesozoic basement.

In a Late Carboniferous paleogeographic reconstruction
(Stampfli et al., 2013 the SPZ is probably the continuation
of the Meguma Terrane (Nova Scotia) before the opening of
the Atlantic Ocean. The SPZ has usually been associated
with the Meguma terrane (Braid et al., 2012; Domeier and
Torsvik, 2014; Nance et al., 2015; Pereira et al., 2017b) and
the Rhenohercynian Zone of southwest England (Matte,
2001; Oliveira and Quesada, 1988; Shail and Leveridge,
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2009), which suggests that it was part of the Laurussian
margin before the collision with the Gondwanan margin
(OMZ and CIZ). In the Rhenohercynian Zone, there is
the Permian Cornubian Batholith, 250km long, 20-40km
wide and 5-10km thick, hosted by Early Devonian to Late
Carboniferous marine sedimentary rocks with subordinate
volcanic rocks (Simons et al., 2016). Farther south, these
Devonian and Carboniferous rocks (Leveridge and Hartley,
2006), are in contact with the c. 397Ma Lizard ultramafic-
mafic Complex, that records a history of magmatism and
metamorphism extending at least from c. 397Ma to c.
370Ma (Clarke et al., 2003; Leveridge and Shail, 2011).

The Cornubian Batholith comprises six major
plutons and several minor stocks emplaced coevally with
lamprophyric dykes and basaltic lava flows, indicating
about 20Ma of magmatic activity, from c. 294 to 274Ma
(Chesley et al., 1993; Clark et al., 1994; Dupuis et al.,
2015). Permo-Carboniferous ages were also recognised in a
few plutons (c. 308-301Ma; Braid et al., 2012; Diez Montes
et al., 2017) that are associated with the Sierra Norte
Batholith of the eastern SPZ. Berlengas granite, dated at
305+0.5Ma (monazite and zircon fractions; Valverde-
Vaquero ef al., 2011), and the two xenoliths of granite from
the Papda volcanic breccia (c. 298Ma and c. 305-291Ma,
this study) coincide within the margin of error with the
age of crystallisation of the Permo-Carboniferous plutons
of the SPZ and Rhenohercynian Zone. Permian igneous
activity is not recognised in the Meguma terrane (Don
Hermes and Murray, 1988). Meguma terrane stratigraphy
includes Cambrian to Early Ordovician sedimentary
rocks unconformably overlain by Silurian-Early Devonian
sedimentary and volcanic rocks dated at c. 446-434Ma
(Keppie and Krogh 2000; White and Barr, 2012; White et
al, 2018).

This Early Paleozoic succession may represent the
covered, unknown oldest stratigraphic record of the SPZ
in the southwest Iberian Massif. In the Meguma terrane,
the Early Paleozoic sequence is intruded by c. 382-357Ma
plutons (including the South Mountain and Musquodoboit
batholiths, Clarke ef al., 1997; Tate and Clarke, 1995).
In Nova Scotia, the Late Devonian sequence comprises
sedimentary rocks interbedded with volcanic rocks
(Doig et al., 1996; Murphy et al., 2018; Pe-Piper et al.,
2004). Zircon and monazite U-Pb ages obtained from
from granulite facies metasedimentary xenoliths from
a Late Devonian mafic dyke that intrudes the Meguma
terrane, yielded three age groups at c. 399, 377 and
354Ma, interpreted as representing metamorphic events
(Greenough et al., 1999; Shellnutt et al., 2018). One of
these three age groups recorded in the Meguma terrane
was contemporaneous with the widespread plutonism
(c. 378-368Ma) that involves the mafic stocks and large
granitic plutons of the Musquodoboit and South Mountain
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batholiths (Moran et al, 2007). It deserves special mention
because the metamorphic rocks of the Farilhoes isles also
experienced high-grade metamorphic conditions under
granulite facies (Ribeiro er al., 2019) dated at 376x3Ma
(Valverde Vaquero et al., 2011). By contrast, Late Devonian
high-grade metamorphism has not been reported in the
OMZ and CIZ ( ). Furthermore, U-Pb geochronology
of magmatic rocks from the Iberian Pyrite Belt (Oliveira et
al., 2013; Paslawski et al., 2020; Rosa et al., 2008) and the
Sierra Norte Batholith (Braid ef al., 2012; Gladney ef al.,
2014; De la Rosa ef al., 2002) in the SPZ, likewise provided
Late Devonian-Early Carboniferous ages of c. 374-335Ma.
Whatever the case, as there are no dating for xenoliths of
foliated quartz-feldspathic rocks, we cannot rule out the
hypothesis that they may represent high degrees of partial
melting of the basement entrapped in ascending magma
(Dostal et al., 2005) contemporaneous with the formation
of Papba volcanic breccia. A detailed petrographic and
geochronological study of the different sedimentary rocks
and quartz-feldspathic xenoliths remains to be carried out.

CONCLUSIONS

The age of the granitic xenoliths from the Papda
volcanic breccia (c. 298 and c. 305-291Ma) corroborates
the previous hypotheses, based on field, petrography,
geochemical, and geochronology data, that the Lusitanian
Basin rests on a pre-Mesozoic basement that includes
Permo-Carboniferous intrusions like those described in the
Berlengas and Farilhoes isles. This enable us to posit that:
i) Permo-Carboniferous magmatism probably lasted at least
14Ma, from c. 305 to 291Ma, in this region, similarly to what
happened in others regions of the Appalachian-Variscan
belt; and ii) the Lusitanian Basin basement was affected
by the Permo-Carboniferous granite intrusion and Upper
Devonian high-grade metamorphism and magmatism, as
evident in the Paleozoic terrain with Laurussian affinity
including the SPZ, the Rhenohercynian Zone and the
Meguma terrane. The present study thus confirms that the
pre-Mesozoic basement represented by the OMZ and CIZ
(Gondwana) was still connected to SPZ-Rhenohercynian
Zone-Meguma Terrane (Laurussia) during the Mesozoic
evolution of the Lusitanian Basin. Thus, the rifting that led
to the opening of the Central Atlantic Ocean left behind
large fragments of Paleozoic Laurussian continental
material stranded in the western Iberian margin.
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Age of granitic xenoliths in the Papda volcanic breccia
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