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Geostatistical and multivariate statistical analyses were applied to heavy mineral data from an Amazonian fluvial-
lake system near the Tapajós River mouth to investigate the spatial distribution and source-area of sediments. Twenty-
one points were investigated, and the physical characteristics of the Green Lake deepest point were determined. Sand 
accumulates in the lake margins and mud quantity increases towards the lake center. Heavy mineral assemblage 
is composed of zircon, tourmaline, kyanite, rutile, staurolite, anatase, sillimanite, garnet, and spinel. Tourmaline, 
staurolite, and spinel are more abundant in the southeast area of the lake, while kyanite is dominant in the north 
area and zircon is in the whole lake except in its southeast area. Zircon - tourmaline and zircon - staurolite pairs are 
negatively correlated (r= -0.947 and -0.775, respectively), while tourmaline - staurolite and sillimanite - anatase 
pairs have a positive correlation (r= 0.628 and 0.675, respectively) which indicate different source rock types. 
Geostatistical analysis grouped the heavy minerals in three grups: Group 1 (tourmaline – staurolite – spinel - 
kyanite) and Group 2 (garnet – rutile – sillimanite - anatase) related to metamorphic source rocks ranging from 
medium to high grade, and Group 3 (zircon) related to acid igneous source rocks. The heavy mineral assemblage 
of Green Lake is analogous to the assemblage of the Alter do Chão Formation, indicating that this formation is the 
source of sediments of Green Lake.
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INTRODUCTION

The study of the spatial distribution and composition 
of recent sediments is common in oceanographic re-search, 
as well as in studies of estuaries, lakes and modern fluvial 
environments (Brito et al., 2009; Dadalto and Albino, 
2009; Leandro et al., 2014; Tavares et al., 2010; Veronez 
Jr. et al., 2009). In Amazonian sys-tems, this technique 
is used to understand the source and transportation of 
suspended load sediments (Guyot et al., 2007; Viers et al., 
2008) and dissolved solids (Moquet et al., 2016). However, 
only a few studies focus on the provenance of sand in lake 
environments (e.g. Sawakuchi et al., 2018).

Studies of heavy minerals in recent sediments are 
commonly conducted to understand fluvial dynamics 
(Landim et al., 1983; Pan et al., 2016; Yang et al., 2009) 
although it is traditionally used in provenance (Mendes 
et al., 2015; Moral Cardona et al., 2005; Morton and 
Hallsworth, 1994, 1999), coastal dynamic (Nascimento Jr. 
et al., 2017; Sousa et al., 2017) and stratigraphic analyses 
(Góes et al., 2007; Knox et al., 2007; Svendsen and Hartley, 
2002).

Multivariate statistics have a great application in 
sciences, especially in environmental sciences. It is used 
for grouping and differentiation of n-groups (Ebqa’ai 
and Ibrahim, 2017; Matiatos, 2016; Yıldırım and 
Tokalıoğlu, 2016). It is employed for interpolation using 
a spatial correlation function data without bias and with 
minimal variance (Vieira, 2000). Despite its efficiency, its 
application in determining heavy mineral distributions is 
limited (Aguiar Neto et al., 2016; Ochoa et al., 2013). 

Regions having different relief and erosion rates 
composed of different Precambrian to Cenozoic rocks 
are drained by Brazilian Amazon rivers (Tassinari et al., 
2000; Wittmann et al., 2011). Hence, mixing of sediments 
along these rivers is common, which makes it difficult to 
ascertain sediments source and distribution. 

Determination of spatial distribution of heavy minerals 
along rivers and lakes is a difficult task (Aguiar Neto et al., 
2016; Derkachev and Nikolaeva, 2007; Frihy et al., 2022; 
Nascimento Jr. et al., 2015; Nascimento Jr. et al., 2017). 
Studies of geospatial distribution of heavy minerals in the 
Brazilian Amazon are sparse. This research aims at testing 
the application of multivariate techniques in the Green 
Lake sediments.

Heavy minerals in the Amazon River are of immature 
Andean origin (Landim et al., 1983) whereas the ultrastable 
mineral assemblage of the Tapajós River interpreted as 
cratonic (Gozzi, 2019). In the Green Lake, sediments of the 
Amazon River and the Tapajós River, are mixed (Mendes 

et al., 2020), which makes it difficult the determination of 
the source and the heavy mineral spatial distributions. The 
main objective of this research is to determine the spatial 
distribution of the heavy minerals in order to assess their 
provenance and testing the applicability of multivariate and 
geostatistical analysis.

GEOLOGICAL SETTING

The Green Lake micro-basin is formed at the Tapajós 
and Amazon rivers’ confluence due to the seasonal dis-
charge variations of these rivers (Fig. 1A-C). The monthly 
average discharge varies from 4,000 to 30,000m–3s–1 in the 
Tapajós River and from 105,000 to 235,000m–3s–1 in the 
Amazon River (ANA, 2018). Differences in the discharge 
of these two rivers creates a hydraulic barrier at the mouth 
of the Tapajós River. This bar prevents the suspended load 
sediments of the Tapajós River to enter the Amazon River 
(Meade et al., 1991).

The changes in the flow rates of the Tapajós and the 
Amazon rivers are due to the seasonal variations in rain-
fall, which is characteristic of tropical regions. When the 
Amazonian rainfall period is short, the Green Lake becomes 
hydrologically isolated from the Tapajós River (Fig. 1E). On 
the other hand, if precipitation increas-es, the discharge of 
the Tapajós River increases, and it incorporates the Green 
Lake area resulting in both rivers behaving as a unified 
fluvial system (Fig. 1F). In such situations, as sediment 
distribution along rivers depends on the rock and soil types, 
vegetation cover, declivities, topography and rain regime, it 
becomes difficult to comprehend the sedimentary processes 
occurring within the Green Lake (Carvalho, 2008).

Cretaceous siliciclastic rocks of the Alter do Chão 
Formation have been considered the probable source of 
the heavy minerals of Green Lake (Mendes et al., 2020; 
Ribeiro et al., 2017). However, these researches failed to 
demonstrate a preferred spatial distribution of its heavy 
minerals and a relation between the Green Lake bottom 
sediments and the ones from the Amazon River or the 
Tapajós River.

MATERIALS AND METHODS

A planimetric map with the spatial distribution of the 
sampling points was used (Fig. 1C). Graduated rules and 
Secchi discs measurements were performed to determine 
the lake depth. A Van Veen Grab sampler was used to 
collect 21 sediment samples. These samples were sieved 
and divided into mud and sand fractions. Green Lake’s 
physical parameters were measured using an OAKTON 
multiparameter meter.
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The heavy minerals were extracted from the very fine- to 
fine-sized sand (63-125µm) –as most of the heavy minerals 
occur in this size interval (Morton and Hallsworth, 1999)– with 
bromoform. The heavy minerals were identified, characterized 
and quantified under polarized microscope based on the count 
of a minimum of 300grains/line (Galehouse, 1971). The 
Zircon-Tourmaline-Rutile (ZTR) index (Hubert, 1962) was 
used to determine the mineralogical maturity.

Geospatial concentration maps were constructed using 
the SURFER® software (Golden Software) through a 
kriging algorithm for interpolating data points. The kriging 
tool was chosen because it guarantees an excellent trend 
description and represents the best choice when the number 
of observations is limited, as in this case.

The multivariate statistical analysis was done using the 
SPSS software (SPSS Inc., Chicago, IL, USA). Correlation 
matrices were used to identify heavy mineral relations. In this 
analysis, Pearson’s product-moment correlation coefficient 
(r) was applied. The Principal Component 

Analysis (PCA) was used to group heavy minerals and 
to assess the composition of their source rocks. The PCA 
components were transformed using varimax rotation with 
Kaiser normalization.

PCA has been successfully used in the identification of 
pollutants. Different applications for the PCA use available 
data and require no factor weighting (Lu et al., 2010; 
Tokalıoğlu and Kartal, 2006; Yongming et al., 2006). Due 
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FIGURE 1. A-B) Geological map of the Pará State; C) map of Green Lake showing the distribution of the sampling points (Adapted from Mendes et al. 
2020; fig. 1 B therein); D) aerial photograph of the Green Lake and Tapajós River separated by a sand bar (Love island); E) Green Lake and Tapajós 
River during the low rainfall period; F) Tapajós River flowing into the Green Lake during the high rainfall period.
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its applicability and excellent results, PCA was applied 
to heavy mineral data (Cascalho, 2019; Derkachev and 
Nikolaeva, 2007; Ryan et al., 2007).

Different heavy mineral associations were identified by 
Cluster analysis (Derkachev and Nikolaeva, 2007; Ryan et 
al., 2007). The similarity measurement used in the cluster 
analysis was performed according to Ward’s method, as 
this methodology agglomerates observations in different 
homogeneous groups with minimum variances. The results 
are displayed as a dendrogram created with hierarchical 
clustering, and the values of the distance between clusters 
are presented.

RESULTS

The Green Lake is V-shaped with two arms oriented in 
NE-SW and NW-SE directions. It is deepest at the confluence 
(5.5m). The lake bottom is relatively flat and slightly deeper 
at the center (Fig. 2A). Sand accumulation takes place 
mainly in the marginal portions of the lake with grain size 
decreasing towards the lake center (Fig. 2B), where there is 
predominantly mud accumulation (Fig. 2C). In the deepest 
point of the lake (LV-19), physical-chemical parameters show 
low variation (Table 1). The measured ranges are 0.5°C for 
temperature, 0.71mg/L for dissolved oxygen, 0.74μS for 
electrical conductivity, 0.53 Nephelometric Turbidity Units 
(UNT) for turbidity, and 0.27 for pH.

Heavy Minerals

Zircon, tourmaline, kyanite, rutile, staurolite, anatase, 
sillimanite, garnet, and spinel form the heavy minerals 

assemblage (Mendes et al., 2020, Table 1B therein, see also 
their fig. 4) (Table 2; Fig. 3). This assemblage is considered 
moderate to stable even though the calculated ZTR index 
value, above 90%, indicates an abundance of stable heavy 
minerals (Mendes et al., 2020). Mineralogical similarities, 
variations in spatial distribution, and significant changes in 
the heavy mineral assemblage were noted 

The range of variation is more significant for zircon 
(68.1–90.2%), tourmaline (3.2–22.2%), and staurolite (0.5–
6.4%) as standard deviation values are greater than 1.5. For 
the other heavy minerals, the variations are insignificant and 
the standard deviation values are less than 1.0 (Table 2).

The zircon grains are prismatic bipyramidal in shape. 
They are characterized by slightly worn facets, inclusions, 
and zoning. Tourmaline grains are subangular to rounded, 
having equidimensional prismatic shapes. The kyanite 
grains are irregular prisms presenting impact and spearhead 
dissolution marks. The angular staurolite grains show 
impact and dissolution marks. The sillimanite grains are 
colorless and prismatic. Garnets and spinel grains occur in 
a few samples, constituting up to 0.5%. They commonly 
show corrosion features.

Geostatistical Analysis

The heavy mineral distribution maps (Fig. 4) show that 
tourmaline, staurolite, and spinel grains occur in larger 
quantities in the southeastern part of the lake; anatase and 
sillimanite grains predominate in the southeastern and 
northern regions; whereas the zircon grains are most present 
in the north-central region. The other minerals do not show 
a preferential distribution.
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FIGURE 2. A) Green Lake bathymetry map, B) sand fraction spatial distribution map and C) mud fraction spatial distribution map. From Mendes et 
al. (2020).
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Table. 1. Sample spatial distributions, collection depth and physical properties of Green 
Lake (LV-19 point), Brazilian Amazon 

 

Samples UTM coordinate Depth  
 Depth 

(m) 
Temperature 

(°C) 
DO 

(O2 mg.L-1) 
EC 

(μS.cm-1) 
Turbidity 

(UNT) pH 
X Y (m)  

LV-01 727526 9723610 0.5   0.2 29.5 6.10 13.16 2.10 4.05 
LV-03 728207 9724356 4.8        0.5 29.5 6.06 12.66 1.92 4.08 
LV-04 728673 9724850 1.8   1.0 29.3 6.25 12.79 1.78 4.12 
LV-05 729165 9725390 1.8   1.5 29.3 6.17 12.53 2.31 4.15 
LV-06 729519 9725765 2   2.0 29.2 6.08 12.45 1.79 4.14 
LV-07 730030 9726300 1   2.5 29.2 6.24 12.42 1.95 4.19 
LV-08 730256 9726449 1   3.0 29.1 5.87 12.67 2.17 4.16 
LV-09 727867 9725236 0.5   3.5 29.1 5.68 12.47 1.84 4.31 
LV-10 728203 9724964 2.5   4.0 29.1 5.80 12.64 1.79 4.32 
LV-11 728497 9724430 3   4.5 29.1 5.77 12.67 1.82 4.29 
LV-12 728794 9723951 0.5   5.0 29.0 5.53 12.69 2.26 4.26 
LV-13 729164 9723381 3.5   5.5 29.0 5.81 12.59 1.90 4.23 
LV-14 729625 9723252 2.5         
LV-15 728897 9723053 2.5         
LV-16 729602 9722686 2.5         
LV-17 729823 9722539 0.5         
LV-18 728560 9723522 4.8         
LV-19 728101 9723878 5.5         
LV-20 727685 9724051 3.5         
LV-21 727825 9723428 0.5         
LV-22 727789 9723192 0.2         

 

 

 

Zircon
Tourmaline

Rutile

Anatase

Staurolite

Kyanite

Sillimanite Garnet
Spinel

TABLE 1. Sample spatial distributions, collection depth and physical properties of Green Lake (LV-19 point), Brazilian Amazon

FIGURE 3. Photomicrographs of heavy minerals from bottom sediments of Green Lake,Brazil. Scale bars = 0.1mm.
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Multivariate Statistical Analyses

Correlation analysis

Pearson correlation coefficient (r) indicates that only 
some of the heavy mineral pairs are correlated (Table 3). 
The statistically significant pairs (P< 0.01) are delineated 
and have positive correlation values. Zircon -tourmaline 
and zircon- staurolite are negatively correlated (-0.947 
and -0.775, respectively), while tourmaline -staurolite and 
sillimanite- anatase show positive correlations (0.628 and 
0.675, respectively). The correlations for the other mineral 
pairs are not significant.

Principal components analysis

Due to the complexity of correlation results (positive 
and negative), we have performed PCA additional 

analyses on heavy minerals to aid in delineating their 
provenance. 

By extracting eigenvectors and eigenvalues from 
the correlation matrix, the number of main significant 
components and the percentage of total variance they 
explain (Table 4) were determined. Four statistically 
significant components explain 79.6% of the total variance 
obtained by the linear discriminant function equations 
(Table 5). Opaque, mica, and authigenic minerals were 
excluded from the linear discriminant calculation. The four 
eigenvectors present values greater than 1 and the first two 
represent 53% of the total variance. It indicates that these 
two eigenvectors are the most important and capable of 
discriminating the studied sediments.

The first eigenvector constituted 33.8% of the total 
variance and presented greater weights for zircon, tourmaline, 

Table. 2. Percentual composition and statistical parameters of transparent and non-
micaceous heavy minerals, very-fine sand fraction (63 - 125 µm) from Green Lake bottom 
sediments. Zir = zircon; Tou = tourmaline; Rut = rutile; Kya = kyanite; Sta = staurolite; 
Ana = anatase; Sil = sillimanite; Gar = garnet; Spi = spinel; ZTR = Zircon + Tourmaline 
+ Rutile index; SD= Standard deviation; CV = Coefficient of variation [SD/mean] x 100; 
DV = Density variation (g/cm3) 

 

Sample Zir Tou Rut kya Sta Ana Sil Gar Spi ZTR 
LV-01 83.5 6.0 2.0 1.5 4.0 1.0 2.0 0.0 0.0 91.5 
LV-03 86.5 4.7 2.0 2.0 2.8 1.0 1.0 0.0 0.0 93.2 
LV-04 90.2 3.2 1.3 1.8 2.2 0.0 0.9 0.4 0.0 94.7 
LV-05 87.3 5.9 1.0 1.0 3.0 0.8 1.0 0.0 0.0 94.2 
LV-06 83.5 7.0 1.5 2.0 3.0 1.0 1.5 0.0 0.5 92.0 
LV-07 84.8 6.1 1.5 3.0 3.0 0.3 1.0 0.3 0.0 92.4 
LV-08 83.5 7.5 2.0 2.5 3.5 0.0 1.0 0.0 0.0 93.0 
LV-09 87.2 4.4 0.5 2.9 3.0 0.5 1.0 0.0 0.5 92.1 
LV-10 88.0 4.0 1.0 2.5 3.5 0.0 1.0 0.0 0.0 93.0 
LV-11 86.5 4.0 1.0 2.5 4.0 0.5 1.5 0.0 0.0 91.5 
LV-12 88.8 7.1 0.9 1.7 0.5 0.0 0.5 0.0 0.5 96.8 
LV-13 83.8 7.6 1.5 2.3 1.9 1.0 1.9 0.0 0.0 92.9 
LV-14 82.0 10.5 1.0 2.5 2.0 0.5 1.5 0.0 0.0 93.5 
LV-15 90.2 6.3 0.5 1.5 1.0 0.0 0.5 0.0 0.0 97.0 
LV-16 83.0 9.5 1.0 2.0 1.5 1.5 1.5 0.0 0.0 93.5 
LV-17 68.1 22.2 0.5 1.8 6.4 0.0 0.5 0.0 0.5 90.8 
LV-18 79.0 12.0 1.5 3.0 3.5 0.0 1.0 0.0 0.0 92.5 
LV-19 77.5 13.0 0.5 2.5 5.0 0.0 1.5 0.0 0.0 91.0 
LV-20 79.0 12.5 1.0 2.0 5.0 0.0 0.5 0.0 0.0 92.5 
LV-21 77.5 15.0 1.0 1.0 5.0 0.0 0.5 0.0 0.0 93.5 
LV-22 89.1 4.2 3.2 1.0 1.5 0.0 1.0 0.0 0.0 96.5 

Min 68.1 3.2 0.5 1.0 0.5 0.0 0.5 0.0 0.0 90.8 
Max 90.2 22.2 3.2 3.0 6.4 1.5 2.0 0.4 0.5 97.0 
Mean 83.8 8.2 1.3 2.0 3.1 0.4 1.1 0.0 0.1 93.2 
SD 5.3 4.6 0.7 0.6 1.5 0.5 0.5 0.1 0.2 1.8 

CV (%) 6.3 56.1 53.8 30.0 48.4 125.0 45.5 0.0 200.0 1.9 

DV 4.6 – 
4.7 

2.9 – 
3.4 

4.18 
–4.25 

3.5 –
3.65 

3.6 –
3.8 

3.8 –
3.97 

3.23 
–3.27 

3.4 –
4.3 

3.5 – 
4.1  

 

 

TABLE 2. Percentual composition and statistical parameters of transparent and non-micaceous heavy minerals, very-fine sand fraction (63-125µm) 
from Green Lake bottom sediments. Zir= zircon; Tou= tourmaline; Rut= rutile; Kya= kyanite; Sta= staurolite; Ana= anatase; Sil= sillimanite; Gar= 
garnet; Spi= spinel; ZTR= Zircon + Tourmaline + Rutile index; S= Standard deviation; CV= Coefficient of variation [SD/mean] x 100; DV= Density 
variation (g/cm3)
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and staurolite. The second eigenvector presented 18.77% of 
the total variance and the greatest weights are for anatase 
and sillimanite. The third eigenvector constituted 13.7% 
of the total variance and presented the greatest weights for 
rutile and spinel. The fourth eigenvector explained 13.2% 

of the total variance and presented the greatest weights for 
kyanite and garnet.

The communality values above 0.6 indicate that the 
number of factors is acceptable and validates the factor 

FIGURE 4. Geospatial heavy minerals distribution maps, Green Lake, Brazilian Amazon. For legend, see Table 2.
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model used (Hair Jr. et al., 2014). A principal component 
plotting was performed (Fig. 5). In the 2D plot, the 
tourmaline-staurolite and sillimanite-anatase pairs have an 
opposite direction relative to zircon (Fig. 5A). In the 3D 
plot, three relationships were made with Kya-Spi-Sta-Tou; 
Gar-Rut-Sil-Ana and Zir (Fig. 5B). 

Cluster analysis

The heavy mineral values were standardized using 
z-scores and the Euclidian distances between the heavy 
mineral values were calculated. The hierarchical cluster 
grouping is presented as a dendrogram. The dendrogram 
indicates the existence of three subgroups: the first one 
contains only zircon; the second one contains tourmaline, 
kyanite, spinel, and staurolite; and the third one contains 
garnet, rutile, anatase, sillimanite (Fig. 5C).

DISCUSSION

The grain size of the Green Lake sediments varies between 
mud and coarse sand (Mendes et al., 2020), which is a 

sedimentary characteristic of Amazonian lakes (Souza-Filho 
et al., 2016). To determine the spatial distribution of heavy 
minerals, the application of classical and modern analytical 
techniques was required. In addition, distribution modeling was 
applied to understand changes in provenance, morphological 
characteristics, control during transportation, and recent or past 
climates (Morton and Hallsworth, 1994, 1999).

The geostatistical and multivariate statistical techniques 
are efficient tools for identifying distribution patterns 
of the heavy mineral assemblage of the Green Lake and 
assessing the sediment source. Despite their efficiency, the 
application of these techniques in heavy minerals studies is 
uncommon (Derkachev and Nikolaeva, 2007; Ochoa et al., 
2013; Ryan et al., 2007). PCA has been widely used in a 
variety of studies to reduce the number of parameters and 
facilitate correlation analysis between variables (Tokalıoğlu 
and Kartal, 2006). The kriging grouping (Fig. 4) combined 
with PCA assisted in determining the main heavy minerals 
groups and in interpreting the sediments source.

In this work, it was assumed that a significant positive 
correlation between heavy mineral pairs (Tour-Sta, Sil-Ana) 

Table. 3. The Pearson’s correlation coefficient (r) matrix for the relationships among the 
concentrations of the nine heavy minerals, Green Lake, Alter do Chão Village 

 

 Zircon Tourmaline Rutile kyanite Staurolite Anatase Sillimanite Garnet Spinel 
Zircon 1.000 -0.947 0.279 -0.100 -0.775 0.126 0.074 0.254 -0.174 
Tourmaline  1.000 -0.385 -0.049 0.628 -0.249 -0.280 -0.268 0.209 
Rutile   1.000 -0.207 -0.237 0.130 0.253 0.065 -0.309 
kyanite    1.000 0.097 -0.023 0.256 0.141 0.042 
Staurolite     1.000 -0.242 -0.097 -0.126 0.039 
Anatase      1.000 0.675 -0.176 -0.011 
Sillimanite       1.000 -0.103 -0.229 
Garnet        1.000 -0.156 
Spinel         1.000 

 

 

Table. 4. Principal components analysis (PCA) results of heavy mineral concentrations 
of Green Lake after varimax rotation with Kaiser normalization 

 

Mineral Principal component Communalities 
1 2 3 4  

Zircon -0.966 -0.017 0.135 0.005   0.952 
Tourmaline 0.890 -0.160 -0.238 -0.141   0.894 
Rutile -0.265 0.158 0.684 -0.278   0.641 
kyanite 0.087 0.186 -0.158 0.872   0.828 
Staurolite 0.869 -0.105 0.046 0.109   0.781 
Anatase -0.183 0.871 -0.022 -0.087   0.800 
Sillimanite -0.053 0.874 0.267 0.231   0.891 
Garnet -0.297 -0.416 0.289 0.547   0.644 
Spinel 0.006 -0.028 -0.852 -0.101   0.736 
Initial eigenvalues 3.048 1.689 1.238 1.193  
Variance (%) 33.868 18.771 13.756 13.250  
Cumulative variance (%) 33.868 52.639 66.395 79.645  

 

 

TABLE 3. The Pearson’s correlation coefficient (r) matrix for the relationships among the concentrations of the nine heavy minerals, Green Lake, Alter 
do Chão Village

TABLE 4. Principal Components Analysis (PCA) results of heavy mineral concentrations of Green Lake after varimax rotation with Kaiser normalization
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suggests a common or combined source, and a negative 
correlation (Zir-Tou, Zir-Sta) suggests mixing of sources. 
The other mineral correlations (Kya, Rut, Gar, Spi) are not 
well defined.

The results of this study suggest that the Green Lake 
heavy minerals can be classified into three groups (Tables 
3; 4; Figs. 4; 5): Group 1 (Tou–Sta–Spi-Kya), Group 2 
(Gar–Rut–Sil-Ana), and Group 3 (Zir). This classification 
indicates that the sediments are from at least two different 
rock types: metamorphic rocks, Groups 1 and 2, and acid 
igneous rocks, Group 3. Based on the PCA analysis (Table 
4), internal variations were associated with the degree 
of metamorphism (Fig. 5B). Despite the metamorphic 
origin, temperature and pressure variations in the minerals’ 

formation reflect stability of the minerals under the weathering 
conditions.

Variations in the degree of correlation in Groups 1 and 2 
indicate changes from medium to high-grade metamorphic 
source rock types. The occurrence of kyanite and sillimanite 
indicate metapelites as source rock because they are rich 
in aluminum (Winter, 2014). Minerals in Group 1 show 
significant correlation indicating medium-grade metamorphic 
rocks as common source. Generally, these metamorphic 
minerals are common in schists, meta-schists, and gneisses 
(Deer et al., 1997). Group 2 minerals are common in high-
grade metamorphic rocks. Group 3, composed by zircon only, 
did not have a significant correlation with any other group, 
suggesting their source is different from Group 1 and 2.
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FIGURE 5. Principal Components Analysis (PCA) loadings for the principal components for the heavy minerals study. A) 2-D plotting of the two 
principal components (PC1 vs. PC2); B) 3-D plotting of the three principal components (PC1 vs. PC2 vs. PC3) for the nine heavy minerals under 
study. Details are shown in Tables 3 and 4. The red arrow indicates metamorphic degree increase; C) hierarchical dendrogram of the heavy minerals 
using Ward’s clustering method.
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Three possibilities are proposed to explain the variations 
and spatial distribution of the Green Lake heavy minerals: 
i) fluvial dynamic interaction between the Tapajós River 
and the Amazon River; ii) internal dynamics of the lake 
related to the physicochemical variables and iii) variations 
in the source of the sediments.

Due to its higher discharge, the Amazon River flows 
into the Tapajós River (Freitas et al., 2017; Medeiros 
Filho, 2015; Medeiros Filho et al., 2016), and, thus, it may 
introduce sediments into the Green Lake. However, the 
immature heavy mineral assemblage of the Amazon River 
is mainly composed of hypersthene, augite, and amphibole 
derived from Andean source rocks (Landim et al., 1983; 
Lima Jr. and Nogueira, 2013). This assemblage differs 
from the Green Lake heavy mineral assemblage in terms 
of mineral species and mineral proportion. Therefore, the 
possibility of the Amazon River controlling the Green Lake 
heavy mineral assemblage was disregarded.

Hydrographic studies on the Tapajós River have been 
focused on physical-chemical analyses (Sousa et al., 
2009), heavy metals (Maia et al., 2016), carbon content 
(Bertassoli Jr. et al., 2017) and description of heavy mineral 
assemblages (Gozzi, 2019). Despite its the importance, 
only a few studies on sediment characterization of the 
Tapajós River have been performed (Medeiros Filho, 2015; 
Medeiros Filho et al., 2016).

In order to state that the Tapajós River introduces 
sediments into the Green Lake, it is necessary to 
demonstrate that the sediment dispersal pattern in the 
lake is controlled by the Tapajós River. This relationship 
is well-defined during the Amazonian winter when the 
Tapajós River flows into the Green Lake (Fig. 1F), and the 
Amazonian summer, when Green Lake is isolated from 
the Tapajós River (Fig. 1E). However, sediment transport 
of Tapajós River is hampered by the hydraulic-barrier 
effect in the confluence of Tapajós and Amazon rivers 
(Nascimento et al., 1976).

Provenance studies at the confluence of the Madeira and 
Amazon rivers suggest that the Madeira River contributes 

with heavy minerals derived from a cratonic source and, the 
Amazon River provides andalusite-rich Andean sediments 
(Nascimento Jr. et al., 2015). At the Xingu and Amazon 
rivers confluence, there is a dominance of unstable heavy 
minerals (epidote, hypersthene, amphibole) whereas 
upstream along the Xingu River stable/ultra-stable heavy 
minerals (zircon, tourmaline, rutile) dominate (Souza, 
2018). If identical geological context occurs at the Amazon 
and Tapajós river confluence (Fig.1A), one would expect 
that the heavy mineral assemblage of the Tapajós River was 
unstable like the one in the Xingu River, however, this is not 
the case.

The Tapajós River is characterized by an irregular 
ultrastable heavy minerals distribution (Gozzi, 2019). 
Upstream, tourmaline is the dominant constituent (65 to 
70%), while zircon registers up to 45%. Downstream, near 
the Green Lake, rutile (33%) and tourmaline (50%) occur. 
The Green Lake heavy mineral assemblage is represented 
by medium to high-grade metamorphic minerals together 
with igneous minerals (Mendes et al., 2020) (Fig. 3; Table 
2).

The species and relative proportions of the Green 
Lake heavy minerals differ from those downstream of the 
Tapajós River, so it is unlikely to consider the Tapajós River 
introduces sediments into the Green Lake. Geospatial 
distribution of the Green Lake heavy minerals is another 
evidence the Tapajós River cannot be the source of these 
sediments. The concentration of the heavy minerals is low 
in the western and southwestern portions of the lake (Fig. 
4), which is where the Tapajós River flows into the lake. 
Therefore, this low concentration suggests an insignificant 
heavy minerals transportation into the lake.

Low Zr and Hf values in the Tapajós River, near Alter 
do Chão and Santarém areas, indicates deposition of 
zircon grains, which are related to an earlier Green Lake 
deposit (Medeiros Filho et al., 2016). This is an additional 
evidence to disregard the Tapajos River as the supplier of 
sediments to the Green Lake. As the Green Lake heavy 
mineral assemblage is not similar to that of the Tapajós 
River, other sedimentary sources were considered.

 

Table. 5. Linear discriminant function equations used for separation of mineral groups. 
For legend, see table 2 

 

df1= - 0.966zir + 0.890tou - 0.265rut + 0.087kya + 0.869sta - 0.183ana - 0.053sil - 0.297gar + 0.006spi 
 
df2= - 0.017zir - 0.160tou + 0.158rut + 0.186kya - 0.105sta + 0.871ana + 0.874sil - 0.416gar - 0.028spi 
 
df3= + 0.135zir - 0.238tou + 0.684rut - 0.158kya + 0.046sta - 0.022ana + 0.267sil + 0.289gar - 0.852spi 
 
df4= + 0.005zir - 0.141tou - 0.278rut + 0.872kya + 0.109sta - 0.087ana + 0.231sil + 0.547gar - 0.101spi 

 

TABLE 5. Linear discriminant function equations used for separation of mineral groups. For legend, see Table 2
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The area surrounding Green Lake is composed of friable 
rocks of the Alter do Chão Formation. This formation is 
known for its siliciclastic composition (conglomerate, 
sandstones and mudstones). High degree of weathering 
results in feldspar hydrolysis —a common phenomenon 
under hot and humid climate conditions like that one in 
the Amazon region— and kaolinite neoformation (Mendes 
et al., 2013). The Green Lake heavy mineral assemblage 
is similar in species and relative concentration to that of 
the Alter do Chão Formation (Mendes et al., 2013, 2015, 
2020).

The Green Lake heavy mineral assemblage is mainly 
controlled by recent/modern weathering and erosion of the 
rocks surrounding the lake, the Alter do Chão Formation. 
This weathering modifies the original mineral assemblage 
by eliminating less stable heavy minerals. In this case, 
application of discriminant equations (Table 5) proved to be 
an important tool to determine the relationship between the 
heavy mineral assemblage of the Alter do Chão Formation 
and the one found in the Green Lake.

Low pH values, electrical conductivity, and dissolved 
oxygen in the Green Lake contribute to the mortality of 
organisms, thereby, generating carbonic acids which, in 
turn, increase the corrosion potential. ZTR minerals are 
not affected by superficially pH conditions and shallow 
diagenesis, but garnet and spinel, as well as other 
unstable minerals, are sensitive and easily dissolved in 
this weathering environment (acid pH) (Morton, 1984). 
Some of the superficial textures of the heavy mineral grains 
indicating chemical dissolution in the Green Lake heavy 
minerals corroborate this interpretation (Mendes et al., 
2020).

The recent ultra-stable mineral assemblage of Green 
Lake (ZTR> 90%) suggests that most of the original minerals 
were eliminated. This feature is corroborated by the low 
abundance of unstable minerals in the lake sediments. The 
heavy mineral dissolution and modification may, to some 
extent, be responsible for the spatial distribution pattern of 
heavy minerals in the Green Lake - when only one sediment 
source is considered.

CONCLUSIONS

Researches on provenance and spatial distribution of 
bottom sediments in Amazonian fluvial lakes are rare. This 
study aims to understand the spatial distribution and source 
rocks of the Green Lake sediments through geostatistical 
and multivariate statistical analysis. The Green Lake 
heavy mineral assemblage demonstrates various spatial 
distribution patterns. Using PCA and cluster analysis, 
three heavy mineral groups were identified. Group 1 and 

2 suggest sediment contribution from medium to high-
grade metamorphic source rocks, while Group 3 suggests 
sediments originating from acid igneous source rocks. 
From these results, the authors concluded that the Green 
Lake bottom sediments come from weathering and erosion 
of the outcrops of Alter do Chão Formation that are 
surrounding the lake. The bottom sediments of this lake 
were not a contribution of either the Tapajós River or the 
Amazon River. Factors related to the surface weathering 
of the Amazonian region, pH, dissolved oxygen amounts, 
and electric conductivity made the Green Lake water acidic. 
This feature has increased the corrosion potential of the 
lake water and, hence, caused dissolution of unstable heavy 
minerals, resulting in their observed geospatial distribution 
pattern.
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