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A B S T R A C T

The chemical composition of eclogites, found as boulders in a Tertiary conglomerate from the Guajira Peninsula, 
Colombia suggests that these rocks are mainly metamorphosed basaltic andesites. They are depleted in LILE elements 
compared to MORB, have a negative Nb-anomaly and flat to enriched REE patterns, suggesting that their protoliths 
evolved in a subduction related tectonic setting. They show island-arc affinities and are similar to primitive island-
arc rocks described in the Caribbean. The geochemical characteristics are comparable to low-grade greenschists 
from the nearby Etpana Terrane, which are interpreted as part of a Cretaceous intra-oceanic arc. These data support 
evidence that the eclogites and the Etpana terrane rocks formed from the same volcano-sedimentary sequence. 
Part of this sequence was accreted onto the margin and another was incorporated into the subduction channel and 
metamorphosed at eclogite facies conditions. 40Ar-39Ar ages of 79.2±1.1Ma and 82.2±2.5Ma determined on white 
micas, separated from two eclogite samples, are interpreted to be related to the cooling of the main metamorphic 
event. The formation of a common volcano-sedimentary protolith and subsequent metamorphism of these units 
record the ongoing Late Cretaceous continental subduction of the South American margin within the Caribbean 
intra-oceanic arc subduction zone. This gave way to an arc-continent collision between the Caribbean and the South 
American plates, where this sequence was exhumed after the Campanian. 

2

1

1

2 54

3

4

6 1

Eclogites. Primitive island-arc. Geochronology. Guajira Peninsula. Colombia. Caribbean.KEYWORDS

* 1

1 1

5

3

6



M .  W E B E R  e t  a l .

G e o l o g i c a  A c t a ,  9 ( 3 - 4 ) ,  4 2 5 - 4 4 3  ( 2 0 1 1 )
D O I :  1 0 . 1 3 4 4 / 1 0 5 . 0 0 0 0 0 1 7 4 0

Subducted island-arc, Guajira eclogites, Colombia

426

INTRODUCTION

High pressure rocks provide an important record of the 
geodynamic history of convergent margins. They enable 
the identification of extinct subduction zones and their 
tectonothermic history allows the characterization of the 
particular conditions of the tectonic environments of plate 
convergence (Ernst, 1988).

The geochemistry of eclogites can be used to constrain 
the tectonic setting in which the protoliths formed prior 
to being taken into the subduction path (Bocchio et 
al., 1990; Volkova et al., 2004; Unger et al., 2005), and 
understanding their origin can yield major insights as to 
the type of subduction or collisional setting (e.g. Tang et 
al., 2007). In addition, geochronological data can constrain 
the timing of the various stages of the tectonic evolution of 
these rocks (e.g. Stöckhert et al., 1995). 

Different high-pressure metamorphosed oceanic and 
related continental units have been identified around the 

circum-Caribbean areas. They represent a record of the 
evolution of intra-oceanic subduction or arc-continent 
collision between the front of the Caribbean and the North 
and South American plates (e.g. Sisson et al., 1997; García-
Casco et al., 2008; Krebs et al., 2008). Of these, only three 
locations have been identified along the southern margin 
of the Caribbean. These are: the Cordillera de la Costa-
Margarita belt in Venezuela (Stöckhert et al., 1995; Sisson 
et al., 1997), the Villa de Cura belt also in Venezuela (Smith 
et al., 1999; Unger et al., 2005) and the Guajira boulders in 
a conglomerate in northern Colombia (Lockwood, 1965; 
Green et al., 1968; Zapata et al., 2005; Weber et al., 2007) 
(Fig. 1). 

In this paper we present new geochemical and 
geochronological results from studies of the eclogites, 
found as clasts within proximal Miocene conglomerates, in 
the Colombian-southern Caribbean region, and greenschists 
from the nearby Etpana Terrane (Lockwood, 1965; Green 
et al., 1968; Zapata et al., 2005; Weber et al., 2007) 
(Fig. 2). Their stratigraphic and tectonic position link them 
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FIGURE 2
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with the NW allocthonous Caribbean belt. Furthermore, 
similarities to other high-pressure occurrences within the 
Caribbean area, provide evidence as to the complexity of 
the convergence tectonics between the South American 
and Caribbean plates.

GENERAL GEOLOGY

The Guajira Peninsula, in north-easternmost Colombia 
(Fig. 2), is characterised by several isolated mountain 
ranges surrounded by broader flat lands and Cenozoic 
basins (Alvarez, 1967; Lockwood, 1965; MacDonald, 
1964). Within these ranges, at least three main lithotectonic 
belts can be identified (Fig. 2). From southeast to northwest 
they include 1) a weakly deformed Mesozoic volcano-
sedimentary belt with a typical south American passive 
autochthonous margin record (Villamil, 1999), 2) an older 
metamorphic basement, with Proterozoic and Paleozoic 
rocks intruded by Jurassic granitoids, whose characteristics 
resemble basement domains of different segments of the 
Northern Andes (Alvarez, 1967; Aspden et al., 1987; 
Cordani et al., 2005; Cardona-Molina et al., 2006) and 
3) several deformed low grade meta-volcano-sedimentary 
units that are interpreted as intra-oceanic arcs and 
subduction-accretion complexes, related to the Caribbean 
plate evolution, that were probably accreted during the 
Late Cretaceous (Weber et al., 2009). The northernmost 
of these units is the Etpana Terrane (elsewhere called 
Etpana Formation) that comprises low-grade greenschists, 
phyllites and quartzites, and interspersed serpentinites, 
rodingites and gabbros (MacDonald, 1964; Lockwood, 
1965; Alvarez, 1967; Zuluaga et al., 2008). 

Remnants of a mafic to intermediate island-arc to back-
arc are exposed immediately to the northwest in the Cabo 
de la Vela mafic-ultramafic complex (Fig. 2). This island-
arc was active at least until ca. 77-74Ma, as indicated by 
K-Ar whole rock ages on basalt-andesite dikes (Weber et 
al., 2009). Together the Etpana Terrane and the Cabo de la 
Vela Complex have been interpreted as elements of the arc-
continent collision between the Caribbean plate and the 
South American margin (Weber et al., 2009). The intrusion 
of the Parashi Granodiorite at ca. 50Ma defines the lower 
limit for metamorphism of the Etpana Terrane (Cardona et 
al., 2007). 

Available paleomagnetic constrains have shown 
that the geologic units in northern South America must 
have undergone significant block rotation since the Late 
Jurassic (MacDonald and Opydike, 1974). During the 
eastern migration of the Caribbean plate in the Neogene, 
a complex strike-slip system developed in northeastern 
Colombia and transported tectonic fragments, including 
the Guajira blocks, from their original position towards the 

east (Macellari, 1995; Montes et al., 2005; Vence, 2008; 
Montes et al., 2009). 

ANALYTICAL TECHNIQUES 

Whole rock geochemistry

Whole rock chemical analyses were carried out at 
Acme Analytical Laboratories Ltd. in Vancouver, Canada. 
A 0.2g aliquot is weighed into a graphite crucible and 
mixed with 1.5g of LiBO2 flux. The crucibles are placed in 
an oven and heated to 1050°C for 15 minutes. The molten 
sample is dissolved in 5% HNO3. Calibration standards 
and reagent blanks are added to the sample sequence. 
Sample solutions are aspirated into an Inductively Coupled 
Plasma-Emission Spectrometer (ICP-ES) (Jarrel Ash Atom 
Comb 975) for determining major oxides and certain trace 
elements (Ba, Nb, Ni, Sr, Sc, Y & Zr) in the sample. For 
determination of the trace elements, including rare earth 
elements (REE), solutions are aspirated into an Inductively 
Coupled Plasma-Mass Spectrometry (ICP-MS) (Perkins-
Elmer Elan 6000).

Sample EK-K2 was analysed using a Phillips PW-
2400 X-ray Fluorescence (XRF) spectrometer at the 
GeoForschungsZentrum Potsdam (major and trace 
elements) and REE Inductively Coupled Plasma-Optical 
Emission Spectrometer (ICP-OES, VistaMPX) at the 
Geochemical Laboratory of the University of Potsdam.

Ar-Ar geochronology

Argon-Ar analyses were performed on two hand-
picked mica samples separated from eclogite samples 
MJ-033 and MJ-039 at the Geochronology Laboratory 
of the Departamento de Geología of the Centro de 
Investigación Científica y de Educación Superior de 
Ensenada, México. The argon isotope experiments were 
conducted on mineral grains with a coherent Ar-ion Innova 
370 laser extraction system on line with a VG5400 mass 
spectrometer. All the samples and irradiation monitors 
were irradiated in the U-enriched research reactor of 
the University of McMaster in Hamilton, Canada, at 
position 5C in capsule CIC-66 for 10hr. To block thermal 
neutrons, the capsule was covered with a cadmium liner 
during irradiation. As irradiation monitors, aliquots of 
standard FCT-2 sanidine (27.84±0.04Ma) were irradiated 
alongside the samples and distributed among them to 
determine the neutron flux variations. Upon irradiation the 
monitors were fused in one step while the samples were 
step-heated. The argon isotopes were corrected for blank, 
mass discrimination, radioactive decay of 37Ar, 39Ar and 
atmospheric contamination. For the Ca neutron interference 
reactions, the factors given by Masliwec (1984) were used. 
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In processing the data, the decay constants recommended 
by Steiger and Jäger (1977) were applied. The equations 
reported by York et al. (2004) were used in all the straight 
line fitting routines of the argon data reduction. The plateau 
age was calculated from the weighted mean of consecutive 
fractions that were in agreement within 1σ. The error in the 
plateau, and in the integrated and isochron ages includes the 
scatter in the irradiation monitors. The analytical precision 
is reported as one standard deviation (1σ). For each sample 
the relevant 40Ar-39Ar data for all the experiments is 
presented, and includes the results for the individual steps 
and the integrated ages. In the table, the fractions selected 
to calculate the plateau age are identified as well as the 
fractions ignored in the isochron age calculation. The 
preferred age is highlighted in bold typeface.

ECLOGITES

Various types of high-pressure rocks, including 
eclogites, white-mica schists and quartzites are found 
as rock-clasts up to 20cm in size within a Miocene 
conglomerate. Studies on the conglomerate have shown 
that the source of the clasts is proximal, possibly from the 
nearby Etpana Terrane (Zapata et al., 2010). Nevertheless, 
no in-situ outcrops of the eclogites and high-pressure 
metasediments have been found thus far. The eclogites 
were first described by Lockwood (1965) and preliminary 
geothermometry was undertaken by Green et al. (1968) and 
Weber et al. (2007). The selected samples have a variety of 
compositions and are similar to those described in previous 
studies, except for sample 2832 (J-291A) described by 
Green et al. (1968), which contains scapolite and calcite.

In general, all samples are different from one another 
in detail, but can be divided roughly into two groups: 
Samples that contain more than 99% omphacite + garnet 
+ rutile (GM-2b, MJ-007B, MJ-043), and a second group 
of samples that, in addition to these minerals, also contain 
high proportions of other minerals such as clinozoisite ± 
kyanite ± mica ± amphibole ± quartz ± sphene (GM-2c, 
MJ-033, MJ-039, MJ-040, EK-K2). Folded mesoscale 
banding of garnet-rich and garnet-poor domains is evident 
in three of the samples (MJ-007B, MJ-033, MJ-039). This 
suggests that some of the eclogites were formed from 
layered gabbros. All rocks contain compositionally zoned 
garnet, with orange cores and lighter coloured pink rims 
(Fig. 3A). Garnet zonation patterns show Fe-rich cores and 
Mg-rich rims (Weber et al., 2007).

In the first group, two samples have a porphyroblastic 
texture defined by garnet crystals within an omphacite 
matrix (GM-2b, MJ-043), and one sample has a 
granoblastic texture, with garnet-rich domains interspersed 
with scarce pyroxene-rich domains (MJ-007B) (Fig. 3B). 

In all samples garnet is euhedral. Samples GM-2b 
and MJ-007B show weakly foliated fabrics defined 
by the omphacite (Fig. 3B), whereas sample MJ-043 is 
isotropic. Two populations of pyroxene can be identified, 
a larger one with zonation shown by darker green cores 
compared to the edges, and a smaller one, that comprises 
the main matrix foliation (Fig. 3A). In addition to the main 
minerals, sample GM-2b contains <1% of white mica 
within the matrix. A small degree of retrogression to green 
amphibole, chlorite and sphene is evident in sample MJ-
007B (Fig. 3B).

Of the second group, in which additional mineral phases 
are present, three samples contain Ky (MJ-033, MJ-039, 
EK-K2) as an important part of the assemblage (Fig. 3C). 
Other minerals present are quartz ± clinozoisite ± white mica ± 
talc. In general the textures comprise porphyroblastic garnets in 
a weakly foliated matrix. Two samples display compositional 
banding (Fig. 3D): Sample MJ-039 has quartz-white mica 
bands intercalated with garnet + omphacite + amphibole 
bands (Fig. 3C), whereas sample MJ-033 has complex folded 
intercalations of garnet-rich, omphacite-rich, quartz-rich and 
kyanite-rich bands. Garnet in all samples is euhedral. Kyanite 
crystals are porphyroblasts, often with inclusion free cores and 
poikilitic rims that suggest two generations of crystal growth. 
Sample retrogression is evident in kyanite porphyroblasts 
that are almost totally replaced by a fine mass of white mica. 
Textures composed of white micas and quartz in sample 
MJ-039 suggest that they are pseudomorphs after a previous 
tabular mineral phase.

Sample GM-2c is a retrogressed eclogite with a 
heterogranular texture containing garnet + omphacite + 
rutile + quartz as the peak metamorphic assemblage. There 
is conspicuous evidence of two consecutive retrogression 
events. In the first event, poikilitic clinozoisite laths 
reaching 1.7cm along with colorless amphibole (Fig. 3E) 
are interpreted to have formed in the Guajira during the 
exhumation of these rocks (Weber et al., 2005). About 
60% of the rock was replaced by this process. The second 
event is defined by the breakdown of garnet to form the 
assemblage to chlorite + white mica + amphibole + 
quartz, indicating that these rocks retrogressed through the 
amphibolite facies (Weber et al., 2005).

Sample MJ-040 is a heterogranular eclogite containing 
15% of clinozoisite. Replacement textures in garnets and 
clinozoisite (Fig. 3F) suggest that omphacite grew after 
these two minerals crystallized.

40Ar/39Ar age determinations

White micas from two eclogite samples (MJ-033 and 
MJ-039) were selected for 40Ar-39Ar step heating analyses. 
Results are presented in Figure 4 and Tables 1A and 1B.
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White mica from sample MJ-033 yields a well-
defined plateau age spectra with about 70% of the 
released 39Ar during three steps. The calculated plateau 
age of 79.2±1.1Ma is consistent with the isochron age 
of 77.3±1.5Ma (Fig. 4A). Ca/K ratios derived from the 

37Ar/39Ar show that the obtained plateau may come from 
a relatively homogeneous reservoir, whereas in the last 
steps the ages become a little younger and fall away from 
the plateau. The high Ca/K ratios suggest the presence 
of a potential Ca-bearing phase, probably inclusions of 
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FIGURE 3
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minerals such as clinozoisite and sphene, which have been 
observed petrographically.

Muscovite from sample MJ-039 also shows an age 
spectra in which 85% of the 39Ar was released in two 
intermediate stages (Fig. 4B). Ca/K ratios are also 
homogeneous, although in the other heating stages 
there is evidence of some mix with high Ca phases. The 
plateau age of 82.2±2.5Ma is close to the calculated 
isochron age of 81.6±2.7Ma (Fig. 4B).

Closure temperatures for white mica in the Ar-Ar 
system have conventionally been considered to lie between 
325° and 375°C (McDougall and Harrison, 1999). Recent 
experiments have suggested that temperatures may be 
as high as 425°C (Harrison et al., 2009). In the case of 
the analysed micas from the Guajira eclogites, initial 
calculated temperatures are above 700°C (Weber et al., 
2005), consequently the Ar-Ar ages are possibly related to 

the cooling of the last metamorphic event, and therefore 
might be linked to the exhumation path.

Geochemistry 

Seven samples were analysed for major and trace 
element geochemistry. Analyses are presented in Table 2.

Figure 5 shows variation diagrams of selected 
elements versus Zr. Zirconium has been plotted against 
other elements as it is accepted as immobile during 
alteration (Humphris and Thompson, 1978; Staudigel et 
al., 1996). In general, elements considered as compatible 
are well correlated with Zr, whereas elements such as 
K2O, Ba and Rb, which are considered as incompatible, 
show some degree of scatter. Sample MJ-043 has high 
Zr contents and in general plots away from the overall 
trend, indicating possible differences in the chemistry of 
the protolith.
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Sample EK-K2 GM-2b GM-2c MJ007B MJ033 MJ040 MJ043 GUA24A GUA24B
SiO2 50.4 48.08 49.16 45.35 53.84 47.15 47.17 54.77 50.51
TiO2 1.21 1.54 1.21 1.17 1.37 0.77 3.58 0.81 1.12
Al2O3 14.2 14.1 17.54 14.67 15.88 15.85 15.32 13.63 16.46
Fe2O3 12.11 14.29 12.11 18 12.03 12.48 15.36 9.41 10.74
MnO 0.155 0.21 0.15 0.4 0.22 0.27 0.14 0.17 0.2
MgO 6.51 6.88 4.96 6.1 5.85 5.63 5.33 6.38 4.64
CaO 9.76 10.08 9.76 10.29 7.09 13.96 8.37 9.27 8.48
Na2O 4.04 4.59 4.12 3.09 3.27 3.85 4.64 0.51 4.12
K2O 0.03 0.04 0.34 0.02 0.13 0.01 0.01 1.05 0.42
P2O5 0.1 0.02 0.11 * 0.14 0.02 0.32 0.14 0.28
Cr2O2 0.008 0.018 0.016 0.052 0.022
LOI 1.31 0.1 0.3 0.7 0.1 0.3 0.6 3.6 2.8
Total 99.75 100.01 100 99.78 99.77 99.74 99.73 99.79 99.82

Ba 53 72 77.8 28 36 27 11 203 57
Rb 0 8 0.6 3.5 0.6 0.5 20.3 7
Sr 37 37.2 258.8 19.3 85.6 525.7 177.2 146 152.1
Cs 0 0.4 * * * * 0.4 *
Ga 14 15 17.7 10.9 16.4 13.1 20.5 14.2 15
Ta 0.2 0.1 0.3 * * 1.9 * *
Nb 4 3.3 1.7 5.4 2.1 0.7 24.7 1 1.4
Hf 3.9 2.2 2.8 2.2 1.2 6.2 1.5 2
Zr 67 113.2 68.3 85 72.9 42.2 232.8 44.2 67.9
Y 23 43.7 27.7 66.2 26 20.1 32.4 21.6 24.9
Th 0.9 0.4 0.9 0.5 0.8 2.4 0.5 0.9
U 0.5 0.2 0.4 0.3 0.2 0.7 0.2 0.4
La/Nb 1.05 2.3 2.82 1.04 2.62 7.14 0.91 3.3 3.93
Cr 49 * * * * * * * *
Ni 103 727 1407.5 42.6 4.8 9.6 19.4 22.5 23.1
Co 38.1 39.7 23.9 34.3 30.6 42.9 23.9 29.2
Sc 46.82 32 31 48 36 41 41 32 31
V 406 334 304 371 342 318 258 273
Cu 6.9 33.7 16.5 32.1 18.3 78.9 67.9 38.3
Pb 0.2 0.5 1 0.6 1.3 0.9 1.7 0.9
Zn 68 13 8 12 11 5 14 33 55
Bi 0 0 * * * * * *
Cd 0.1 0 * * * * 0.1 *
Sn 1 1 1 * * 2 * *
W 0.6 0.3 * 2.8 2 2.7 * *
Mo 0.4 0.7 * 0.7 0.9 1.2 0.2 0.3
Be 1 1 * * * 1 * *
Au 0.8 0 2.4 1.6 1.3 0.9 2.8 0.6
Hg 0 0 * * * * * *
As 0.5 1 1.1 * * * * *
Se 0 0 * 0.5 * 0.8 * *
Sb 0.1 0.1 0.1 * * * * *

La 4.21 7.6 4.8 5.6 5.5 5 22.4 3.3 5.5
Ce 11.07 20.3 13.2 11.8 13.1 12.2 51.8 9.3 15
Pr 1.6 3.29 2.15 1.82 2.26 1.89 6.94 1.53 2.22
Nd 8.16 16.2 11.7 9 11.7 9.4 30.5 8.2 11.7
Sm 2.91 4.5 3.5 2.17 3.18 2.62 7.22 2.74 3.43
Eu 1.11 1.52 1.22 0.68 1.19 0.95 2.51 0.92 1.18
Gd 3.66 4.98 4.12 4.09 3.94 3.14 7.66 3.43 4.14
Tb 0.55 0.89 0.74 1.15 0.74 0.57 1.26 0.64 0.75
Dy 4.11 6.81 4.86 8.53 4.39 3.32 6.51 3.89 4.67
Ho 0.89 1.48 0.98 2.25 0.94 0.72 1.25 0.82 0.97
Er 2.72 4.54 2.81 8.24 2.8 2.11 3.42 2.4 2.95
Tm 0.39 0.74 0.45 1.45 0.42 0.32 0.5 0.34 0.45
Yb 2.66 4.48 2.72 10.08 2.6 2.02 2.95 2.01 2.71
Lu 0.4 0.68 0.43 1.63 0.4 0.31 0.43 0.3 0.41
La/Yb 1.58 1.7 1.76 0.56 2.12 2.48 7.59 1.64 2.03
* not analysed

Eclogite Greenschist

Geochemical data for Guajira samplesTABLE 1
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Most eclogite samples from Guajira plot within the 
basaltic andesite field (Fig. 6) in the diagram proposed 
by Winchester and Floyd (1977), in a classification of 
volcanic rocks using less mobile (incompatible) element 
ratios, except for sample MJ-043, which plots in the 
alkali-basalts field. All the samples analysed are tholeiitic, 
except for sample MJ-043, which contains 3.58wt% 
TiO2 and is an alkali basalt. The low to moderate MgO 
concentrations (4.65-6.5wt.%), the Mg# [Mg#=100Mg/
(Mg+Fetot)] between 21 and 35 for SiO2 ranging from 
45.35 to 54.77wt%, as well as Ni contents lower than 
40ppm, indicate that the protoliths of most of the eclogites 
are unlikely to be primary melts of the upper mantle and 
therefore represent fairly fractionated melts of basaltic to 
andesitic composition that cannot have been in equilibrium 
with a mantle peridotite. The low concentrations of Nb 
(<5,5ppm), Zr (<80ppm) and light rare earth elements 
(LREE), in most samples, are also mentioned.

On the Th-Hf-Nb representative geochemical 
discrimination diagram (Fig. 7A), the Guajira samples 
show consistent overlap, and plot within the destructive 
plate-margin basalt field. As expected, sample MJ-043 
plots in the E-MORB or within-plate basalt field, away 
from the overall array.

In order to discriminate between volcanic-arc tholeiites 
and MOR or back-arc basin basaltic rocks, samples were 
plotted on the discrimination diagram of Shervais (1982) 
(Fig. 7B). In general The Guajira rocks fall within the 
MORB- back-arc basin field, and only sample MJ-043 falls 
within the ocean-island or alkali basalt field.

Multi-element diagrams

MORB-normalized multi-element diagrams are 
presented in Figure 8 (after Pearce, 1983). Eclogite 
samples show a similar trend (Fig. 8A) with the exception 
of samples MJ-043 and MJ-007B, which are plotted 
separately (Fig. 8B). 

Some samples plotted on Figure 8A and those 
plotted on Figure 8B are notably depleted in Large 
Ion Lithophile Elements (LILE) K, Rb, Sr, and Ba, 
when compared to MORB. Sample MJ-043 is enriched 
in High Field Strength Elements when compared to 
MORB, whereas sample MJ-007B has a similar pattern. 
The LILE are scattered, possibly due to some degree 
of element migration during ocean floor alteration and 
metamorphism (Aguirre, 1988; Volkova et al., 2009). 
All samples have High Field Strength Elements patterns 
similar to N-MORB, and a strong negative Nb anomaly. 
Also, three of the four samples have a slightly negative 
Ti anomaly, the exception being sample MJ-033. La/Nb 
ratios range from 1.05 to 7.14. Samples MJ-007B and 
MJ-043 have no evident negative Nb anomaly and Y and 
Yb are scattered.

REE-diagrams

Chondrite normalized REE diagrams are presented in 
Figure 9. Eclogite samples are plotted in Figure 9A, and 
samples MJ-043 and MJ-007B are plotted separately, 
in Figure 9B. Eclogite samples from the Guajira region, 
except MJ-043 and MJ-007B, show a strong consistency 

A, sample MJ-033 muscovite

Pwr F 39Ar 40Ar*/39ArK t (Ma) % 40Ar* 40Ar/36Ar 37ArCa/39ArK ti (Ma) tp (Ma) tc (Ma) (40Ar/36Ar)i MSWD/n
0.20 0.0018 13.86 ± 6.98 77.2 ± 38.1 17.10 356.44 1.492
0.65 0.0038 13.99 ± 3.69 78.0 ± 20.1 32.86 440.11 < 0.001
1.00 0.0526 13.70 ± 0.26 76.4 ±   1.4 86.04 2117.44 < 0.001
1.30 0.1457 14.12 ± 0.36 78.7 ±   1.9 § 92.98 4208.72 < 0.001
1.50 0.2373 14.21 ± 0.23 79.2 ±   1.3 § 95.85 7127.44 < 0.001
1.80 0.3025 14.28 ± 0.23 79.5 ±   1.2 § 96.90 9523.56 0.004
2.10 0.0842 13.32 ± 0.27 74.3 ±   1.5 96.14 7663.45 0.024
2.10 0.1721 13.57 ± 0.18 75.7 ±   1.0 95.55 6642.92 0.112 78.0 ± 1.4 79.2 ± 1.1 77.3 ± 1.5 293 ± 32 2.2 / 8

B, sample MJ-039 muscovite

Pwr F 39Ar 40Ar*/39ArK t (Ma) % 40Ar* 40Ar/36Ar 37ArCa/39ArK ti (Ma) tp (Ma) tc (Ma) (40Ar/36Ar)i MSWD/n
0.20 0.0021 149.25 ± 21.83 696.5 ± 84.5 15.60 350.12 0.242
0.41 0.0027 -4.58 ±   8.95 -26.3 ± 51.7 † - 4.21 283.56 < 0.001
0.80 0.0122 12.25 ±   1.40 68.4 ±   7.7 † 35.98 461.59 < 0.001
1.10 0.0196 12.22 ±   0.55 68.3 ±   3.0 † 66.58 884.19 0.053
1.50 0.3537 14.66 ±   0.66 81.6 ±   3.6 § 93.37 4454.26 < 0.001
1.80 0.4607 14.87 ±   0.58 82.7 ±   3.2 § 96.82 9303.17 < 0.001
2.00 0.0463 12.57 ±   0.23 70.2 ±   1.3 † 91.50 3475.70 0.033
3.00 0.1026 13.43 ±   0.21 74.9 ±   1.2 † 95.03 5947.88 0.054 81.8 ± 2.3 82.2 ± 2.5 81.6 ± 2.7 345 ± 10 0.1 / 3
Pwr: laser power in Watts applied to release argon; t age of individual fraction, it does not include the uncertainty in J; ti integrated age; tp plateau age calculated with the weighted mean of the fractions 
selected; tc isochron age; § fractions used to calculate the plateau age; † fractions ignored in the isochron age calculation; all errors are given to 1σ level. Corresponding J for all the samples: 0.003157 ± 
0.000050. Preferred age is highlighted in bold typeface.

40Ar-39Ar data for white micas from two eclogite samples. The preferred age is highlighted in bold typeface TABLE 2
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independent of fabric and metamorphic retrogression. 
REEs are largely more than 10 times that of chondrite. The 
samples have slightly enriched LREE patterns, with La/Yb 
between 1.7 and 2.48. The high heavy rare earth elements 
(HREE) concentrations and relatively low La/Yb ratios 
indicate a lack of residual garnet in the source, therefore 
suggesting that melting in the spinel-lherzolite stability 
field is more likely.

The alkali-basalt sample MJ- 043 (Fig. 9B) shows the 
most LREE enriched pattern with a La/Yb ratio of 7.59. 
HREE values overlap those of the other eclogite samples, 
also indicating that the source region does not contain relic 
garnet.

In contrast, sample MJ-007B is the only LREE depleted 
example, with a La/Yb ratio <1. The high chondrite-

Zr vs. selected major and trace elements. Zr is considered to be an immobile element, unmodified by alteration. Filled symbols are Group I 
eclogites and white symbols are Group II eclogites.
FIGURE 5
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normalized HREE concentration is possibly due to a 
cumulate origin within a layered magmatic protolith.

Caribbean realm

Within the Caribbean realm, metabasic rocks generally 
underwent various degrees of metamorphism, mainly during 
subduction and/or accretion processes which were driven 
by tectonic forces related to the west to east migration of 
the Caribbean during the Cretaceous, the passage of which 
left behind fragments accreted onto continental margins 
(Burke, 1988). Primary basaltic rocks within the Caribbean 
realm are considered to have originated from four igneous 
sources (Donnelly and Rogers, 1980; Donnelly et al., 
1990): 1) N-MORB that formed during the North America-
South America plate separation after their break-up in the 
Jurassic 2) Ocean plateau-type rocks which originated as 
part of the Colombian Caribbean Plateau in Albian-Aptian 
times 3) Primitive intra-oceanic island-arc or island-arc 
tholeiites (IAT) forming first in the Early Cretaceous and 
4) More evolved calc-alkaline volcanic rocks formed as 
the island-arcs evolved in the Late Cretaceous (Albian-
Campanian) to Early Oligocene. The two later arc building 
phases have been related to the growth of a single great 
Caribbean arc (Burke, 1988; Pindell, 1993), although this 
concept has been questioned recently by various authors 
(Iturralde-Vinent and Lidiak, 2006; Wright and Wyld, in 
press).

The geochemical characteristics from most of the 
Guajira eclogites, such as the negative Nb-Ta anomalies 
and LREE enrichment relative to HREE, indicate that 
most of these rocks are more likely to have been formed 
in an island-arc tectonic setting, and therefore preclude 
formation from N-MORB sources or the Colombian-

Caribbean plateau. In addition, the concentrations of Nb 
below 5.5ppm, Zr below 75ppm and TiO2 below 1.5wt% 
support the interpretation that these rocks are derived from 
an island-arc protolith (e.g. Verma, 2006).

LILE are tracers of either slab components, as they 
mobilize during dehydration of the subducting slab, or 
crustal contamination (e.g. Verma, 2006). Their slight 
enrichment or depletion in the Guajira rocks precludes 
large influence of continental contamination and slab-
induced fluids. Furthermore, the depletion in LILE 
relative to MORB is inconsistent with a simplistic island-
arc model. The subducted oceanic plate, that dehydrated 
and triggered magma genesis, must have been extremely 
depleted in LILE.

Of the Caribbean island-arc series, the calc-alkaline 
series basalts are characterized by the high LILE compared 
to High Field Strength Elements (HFSE), as well as 
high values of K2O, Ba, Rb and Sr. Also present is an 
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enrichment of LREE compared to HREE. In contrast, 
basalts from the Cretaceous primitive intra-oceanic 
island-arc series are only slightly enriched in LILE 
relative to high field strength elements, and the REE 
patterns are rather flat compared to the calc-alkaline. 
Figure 10A shows a comparative MORB-normalized 

multi-element geochemical plot between the Guajira 
data and the Cretaceous Washikemba Formation of 
Bonaire, believed to be an Aptian (~96Ma) intra-
oceanic arc sequence (Beets et al., 1984; Thompson et 
al., 2004). Also shown is data from the Aruba Batholith 
(White et al., 1999), which represents a major calc-
alkaline intrusion emplaced in the Late Cretaceous. 
The relatively flat patterns of the Guajira samples are 
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similar to the Washikemba Formation, whereas the 
Aruba Batolith rocks have a higher LREE/HREE ratio.

These considerations indicate that most of the Guajira 
eclogites belong to a primitive intra-oceanic island-arc 
type series. The primitive intra-oceanic island-arc series 
has been considered to have been confined to the Aptian-
Albian times (Donnelly and Rogers, 1980; Donnelly et al., 
1990), but it is now realised that primitive intra-oceanic 
island-arc rock sources were still active during most of 
the Cretaceous (Iturralde-Vinent and Lidiak, 2006 and 
references therein). Examples are the Téneme Formation in 
Cuba (Proenza et al., 2006), active in the Late Cretaceous, 
and the Cabo de la Vela rocks in the Guajira Peninsula, 
which have K-Ar whole rock ages of 74Ma (Weber et 
al., 2009). Comparison with the Cabo de la Vela samples 
is shown in Figure 10C, and it is evident that both have 
similar REE and multielement patterns, indicating that 

they might have formed from similar magma sources and 
processes, linked to comparable tectonic scenarios. 

Hawkesworth et al. (1993a, b), subdivided island-
arc basalts into two groups on the basis of LREE/HREE, 
using La-Yb ratios to discriminate between predominantly 
intra-oceanic arcs (La/Yb>5) and arcs developed in the 
proximity of continental margins (La-Yb>5). On the La-
Yb variation diagram (Fig. 11) the Guajira eclogites fall 
within the low-LREE/Yb island-arc basalt field and are 
similar to the Central Puerto Rican phase I lavas (Jolly et 
al., 2001, Jolly et al., 2006) and the Late Cretaceous Cabo 
de la Vela basaltic units (Weber et al., 2009). Data from the 
Téneme Formation in eastern Cuba (Proenza et al., 2006) 
are also shown for comparison.

The different geochemical characteristics of sample 
MJ-043 indicate that, although the primitive intra-
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oceanic island-arc-like source predominates in the Guajira 
eclogites, other mafic protoliths were also integrated 
into the subduction zones and underwent high-pressure 
metamorphism.

ETPANA TERRANE

The Cretaceous Etpana Terrane crops out on the 
northwestern part of the Guajira Peninsula (Fig. 2). 
First described as the Etpana Formation, Lockwood 
(1965) divided this unit into six lithologic varieties: 
finely laminated phyllites, coarsely laminated quartzose 
phyllites, coarsely bedded quartzites, albite-epidote-
chlorite schists, albite-epidote-biotite schists and 
“complex” zones of mixed phyllite and serpentinite. 
Recently, this latter unit has been described as a mélange 
comprising a metapelite-matrix that contains exotic 
blocks of serpentinite and microgabbro (Zuluaga et al., 
2008). 

The maximum age of the Etpana Terrane is constrained 
by zircon provenance analyses at 116.1±7.6Ma (U-Pb in 
zircon) (Weber et al., 2010). The upper limit is defined 
by the Parashi Stock, a hornblende-biotite granodiorite 
intrusive that has been dated at ca. 45-48Ma (K/Ar in 
hornblende and biotite) (Lockwood, 1965; Cardona et al., 
2007).

The assemblage of the two analysed samples of the 
Etpana Terrane consists of Ep+Alb+Act+Ttn. One of 
the samples (GUA 24A) is foliated, the schistosity being 
defined by actinolite and chlorite, with epidote and 
feldspar porphyroblasts (Fig. 12A). Inclusion trails in the 
porphyroclasts indicate syntectonic growth. The unfoliated 
sample is more albite and chlorite rich. The euhedral shape 
of these minerals seen in some samples suggests that they 
might represent phenocrystal pseudomorphs, relict from an 
original igneous rock (Fig. 12B).

Geochemistry 

Two samples from greenschists of the Etpana Terrane 
were analysed for major and trace element geochemistry. 
Analyses are presented in Table 8. Selected elements 
versus Zr are plotted in Figure 5. In the compatible element 
diagrams, the two samples overlap in the first group of 
eclogites, whereas there is a considerable scatter among 
incompatible elements.

Figure 6 shows that both samples are classified as 
basaltic andesites in the Winchester and Floyd (1977) 
volcanic rock classification diagram, and plot within the 
destructive plate-margin basalt field in the Th-Hf-Nb 
discrimination diagram.

In the V-Ti discrimination diagram (Fig. 7B) of 
Shervais (1982) these samples fall in the MORB-BABB 
field, similar to most of the Guajira eclogites.

Multi-element diagrams

The two samples from the Etpana Terrane are plotted 
in a N-MORB normalized multi-element diagram (Fig. 
8C). Both samples are enriched in Sr, K2O, Rb and 
Ba, compared to N-MORB and have a pronounced Nb 
and a slightly less pronounced TiO2 negative anomaly. 
The overall High Field Strength Elements pattern is 
similar to MORB. La/Nb ratios are 3.30 and 3.93. The 
Etpana Terrane pattern overlaps that of the Guajira 
eclogite samples, except for notable differences in the 
abundance of mobile elements. 

REE-diagrams

The two samples from the Etpana Terrane (Fig. 9C) 
are somewhat LREE enriched, with La/Yb ratios of 1.64 
and 2.03. Both are slightly (10 times) more enriched 
than chondrite, and in general have similar patterns to 
those shown by the Guajira eclogite samples. However, 
the Etpana Terrane samples exhibit a slight negative 
Eu-anomaly not seen in the Guajira eclogite samples, 
indicating probable plagioclase fractionation during the 
crystallization of the protolith.

Comparison between the geochemical characteristics 
of the geenschists from the Etpana Terrane and the eclogite 
boulders suggests that both have protoliths that formed in 
similar tectonic scenarios. There are some differences in 
mobile elements such as K2O, Ba and Rb, but these can be 
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explained by mobility during alteration and metamorphism 
(Aguirre, 1988; Volkova et al., 2009). 

TECTONOMETAMORPHIC RECORD

Within the most accepted plate tectonic model for 
the evolution of the circum-Caribbean, the migration of 
the Caribbean during the Cretaceous took place after the 
Triassic-Jurassic breakup of Pangea and the formation of 
an oceanic rift that formed the proto-Caribbean ocean floor, 
between the separating North and South American plates 
(Pindell, 1994; Pindell et al., 2005; Pindell and Keenan, 
2009). Plate motion during the mid- to Late Cretaceous 
resulted in the subduction of the proto-Caribbean 
beneath the east-west migrating Caribbean plate, and the 
formation of a complex island-arc setting. Parts of these 
island-arcs interacted with the South American continent, 
which resulted in the formation of subduction-accretion 
complexes at the Caribbean-South American and North 
American plate boundaries.

In the Guajira region, the distribution of high-pressure 
boulders is limited to the basal conglomerate of a Tertiary 
sedimentary sequence to the north-west of the Serranía de 
Jarara (Lockwood, 1965) (Fig. 2). Their eroded source has 
been shown to be in the adjacent Etpana Terrane (Zapata 
et al., 2010). This suggests that the in-situ high-pressure 
rocks were located towards the Caribbean plate, whereas 
the lower grade greenschist-facies rocks are located to 
the south, towards the South American continent. Farther 
northwest, the unmetamorphosed dikes of the ca. 77Ma 
Cabo de la Vela mafic-ultramafic complex have similar 
geochemical patterns to the Guajira eclogites and the 
greenschists of the Etpana Terrane. Associated with the 

Cabo de la Vela complex is the presence of a positive 
Bouguer anomaly, extending 100km offshore to the 
northwest and 30km, onshore to the southeast, but with no 
continuity into the Serranía de Jarara (Kellogg et al., 1991). 

In addition, previous studies have argued that the 
deposition of the associated high-pressure metasedimentary 
rocks from within the Tertiary conglomerate and the 
Etpana Terrane metasediments occurred in a common 
paleogeographic configuration, due to the virtually identical 
provenance of zircon populations in their sedimentary 
protolith (Weber et al., 2010). 

The spatial relationship between the eclogites and 
greenschists of the Etpana Terrane, geological and 
gravimetric constraints, the similarities of their geochemical 
characteristics and their common paleogeographic 
configuration are strong evidence that the volcano-
sedimentary sequence that formed the Etpana Terrane also 
formed high-pressure rocks found in conglomerate, and 
that these rocks are remnants of an allocthonous island-arc 
of a primitive nature. This arc was partially metamorphosed 
to eclogite facies conditions, whereas other parts attained 
greenschist-facies metamorphism.

According to the models proposed, the subduction of the 
proto-Caribbean beneath the migrating Caribbean resulted 
in the formation of a multistage single volcanic arc on the 
front of the moving plate. However, other models suggest 
the existence of a multiple-arc and microplate setting in 
Late Cretaceous times (Iturralde-Vinent and Lidiak, 2006 
and references therein), including the formation of a 
major arc in the southern margin of the Caribbean plate 
(Wright and Wyld, in press). Although it is still necessary 
to determine the protolith ages of the Guajira eclogites, the 

Microphotographs from samples of the Etpana Terrane. A) Foliated sample where the epidote and albite porphyroclasts are shown. PPL. 
B) Unfoliated sample, note the euhedral feldspar crystal in the centre of the photograph. PPL. Abbreviations (after Kretz, 1983); Act: actinolite, Chl: 
chlorite, Ep: epidote, Fld: feldspar.

FIGURE 12
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data presented here and the existence of the Cabo de La 
Vela in the Guajira region (Weber et al., 2009) suggest that 
the scenario of a multiple-arc system is very likely.

The 82.2±2.5 and 79.2±1.1Ma ages obtained from one 
of the Guajira eclogites, plus a 75.88±0.15Ma Ar-Ar age 
obtained from a high-pressure white mica schist boulder in 
the same conglomerate (Tobón et al., 2009), suggest that 
subduction was active before and during the formation of 
the Cabo de la Vela island-arc. Furthermore, sedimentary 
provenance studies of these high-pressure metasedimentary 
rocks and the Etpana Terrane also suggest that this arc was 
already approaching the continental margin, and material 
with South American and arc sources was deposited and 
continued to be incorporated into the collisional wedge 
until up to ~71Ma (Cardona et al., 2009; Weber et al., 
2009). 

The presence of Turonian to Maastrichtian fossils in the 
Etpana Terrane (Lockwood, 1965) also confirms that the 
sediments forming the accretionary wedge were deposited 
and metamorphosed during its advance. Throughout 
the convergence of this arc, it is probable that the upper 
plate was incorporated into the subduction zone due to 
subduction-erosion, and continental subduction may have 
started until the final continental arc collision. Due to the 
presence of a significant amount of continental material, 
the high-pressure rocks followed an alpine-type P-T-t path 
that indicates the involvement of a continental margin, 
triggering the final collision (Cloos et al., 2005; Agard et 
al., 2009, Guillot et al., 2009).

Other high-pressure locations in the southern 
Caribbean include the Villa de Cura Group and Cordillera 
de la Costa-Margarita high-pressure belts. The high-
pressure metamorphism event of the Juan Griego Group 
in Margarita is constrained by the intrusion of the non-
metamorphosed El Salado granite, dated at 86Ma (U-Pb 
in zircon). Phengites from the Juan Griego high-pressure 
schists that yield ages between 90-80Ma (Stöckhert et 
al., 1995). Ar-Ar ages of 92.4±0.5Ma in amphibole and 
86.5±0.2Ma on mica were obtained by Sisson et al. (2005), 
which are interpreted as the Late Cretaceous cooling age 
for this belt. In the same study, an Ar-Ar age of 88.5Ma 
on white mica was obtained for the nearby low-grade Los 
Robles Formation.

Estimated ages range from 96.3±0.4Ma on amphibole 
to 79.8±0.4Ma on mica (Smith et al., 1999) in the high-
pressure Villa de Cura belt, thought to represent a 
metamorphosed primitive intra-oceanic island-arc (Unger 
et al., 2005). Sisson et al. (2005) suggested that due to 
the similar metamorphic peak ages of both belts, the Villa 
de Cura and Los Robles may have formed in the same 
subduction system, but from different protoliths.

Although correlation between the Guajira and 
Venezuela occurrences remains to be determined, their 
timing, nature of the protolith and in some instances type of 
metamorphism indicate that they are all part of a regional 
scale convergent system that put the Caribbean arc close 
to the continental margin (Pindell et al., 2005). A major 
question that remains open is whether these high-pressure 
belts represent a continuous subduction zone through time, 
or are part of multiple subduction zones that were modified 
by a strike slip system during their approach to the margin 
(Maresch et al., 2009).
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