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INTRODUCTION

Active tectonism has an important role in geomorphic 
processes, which in turn controls the density, pattern and 
geometry of the drainage system in the basin (Strahler, 
1964) along with climate and lithology. Tectonically 
uplifted regions experience rejuvenation processes such 

as erosion, upward stream growing and existing channel 
incision (e.g. Jackson and Leeder, 1994; Keller and Pinter, 
2002; Ouchi, 1985; Pérez-Peña et al., 2010, 2015). The 
interplay between tectonics and drainage network geometry 
creates quantitatively measurable morphological features 
which help to determine the relative tectonic activity 
among the fault segments (Bull, 1977; Bull and McFadden, 
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1977; Keller, 1986; Keller and Pinter, 2002; Rockwell et 
al., 1984). Morphological features such as mountain-front 
sinuosity, drainage basin shape and asymmetry of river 
channels are prominent and reliable tools to analyze the 
tectonic activity in continental extensional areas (Bull, 
1977; Bull and McFadden, 1977; Keller, 1986; Keller and 
Pinter, 2002; Ramirez-Herrera, 1998; Silva et al., 2003; 
Wells et al., 1988).

The Western Anatolian Extensional Province 
(WAEP) is one of the world’s most seismically active 
areas experiencing continental extension since the Early 
Miocene (McKenzie, 1978; Papazachos and Comninakis, 
1971; Şengör and Yılmaz, 1981). The southern part of the 
WAEP is dominated by the E-W trending, few hundreds 
kilometer-scale Büyük Menderes Graben (BMG), along 
with less-pronounced, grossly N-S oriented cross-grabens 
such as Söke, Çine, Bozdoğan, Karacasu and Denizli (e.g. 
Kaymakcı, 2006; Ocakoğlu et al., 2007; Sümer et al., 
2013) (Fig. 1A, B). This region has registered devastating 
historical earthquakes (Ergin et al., 1967; Ocakoğlu et al., 
2013; Soysal et al., 1981; Yönlü et al., 2010). 

The WAEP is a perfect natural laboratory for 
understanding the interaction between active tectonics and 
related morphological features such as linear mountain-
fronts, deeply-incised valleys and migrated river channels. 
The Bozdoğan (BG) and Karacasu (KG) grabens are such 
depressions with active boundary faults (Duman et al., 
2011; Emre et al., 2011) and associated morphological 
features. Although, several morphometry studies have been 
carried out in the region (e.g. Özkaymak, 2014; Özkaymak 
and Sözbilir, 2012; Özsayın, 2016; Topal, 2019a), only 
Topal (2019b) deals with the western margin of the 
Karacasu graben.  

The aim of this study is to i) evaluate the fault segments 
of the BG and KG as a whole in terms of geomorphic 
indices, ii) assess the relative activity potential among the 
fault segments and iii) discuss the seismicity of the BG and 
KG in a regional perspective. For this aim, we mapped the 
boundary faults and juxtaposing rock units in the field and we 
performed morphotectonic and drainage analysis using GIS 
based software which comprise asymmetry factor, mountain-
front sinuosity, valley-floor to valley-height ratio and channel 
normalized steepness index, for a better understanding the 
tectonic activity along the two cross-grabens.

GEOLOGICAL SETTING

Western Anatolia

The south/southwestwards movement of the 
Anatolian plate over the African plate along the Aegean-

Cyprian subduction zone led to the formation of the 
WAEP, characterized by a NNW-SSE tensional stress 
regime (McKenzie, 1978; Papazachos and Comninakis, 
1971; Şengör and Yılmaz, 1981) (Fig. 1A). The 
approximately E–W trending Gediz, Küçük Menderes 
and Büyük Menderes grabens and the intervening horsts, 
are the main structures formed under this stress regime 
(Fig. 1B). Geodetic velocity measurements along with 
structural and seismic studies show that the WAEP 
is deformed by high strain rates by the active faults, 
generating dense seismicity in the region (e.g. Barka and 
Reilinger, 1997; Doğru et al., 2014; Kahle et al., 1998; 
Kurt et al., 1999; Özener et al., 2013). The earthquakes 
1933 Çivril (Denizli) (M: 5.7), 1939 Dikili (İzmir) (M: 
6.6), 1941 Muğla (M: 6.0), 1949 Karaburun (İzmir) (M: 
6.6), 1955 Söke (Aydın) (M: 6.8), 1965 Denizli (M: 5.7) 
and 2020 Samos (M: 6.9) are the largest recorded events 
of the instrumental era (earthquake magnitudes are 
obtained from www.koeri.boun.edu.tr) while numerous 
devastating historical earthquakes have also been 
documented for the historical period (e.g. Altunel et al., 
2003; Ocakoğlu et al., 2013).

Bozdoğan and Karacasu Grabens

The BG and KG are two depressions, located at the 
central part of the Büyük Menderes Graben and orthogonally 
cross-cut by it (Fig. 1C). The BG is approximately 40km 
long and 5–10km wide. The northern to central part of 
this graben has N–S-trending margins, whereas the central 
to southern parts display a southeasterly curvature. The 
average altitude of the central part of the graben is 85m 
while the highest peak reaches up to 1725m (Mt. Madran) 
at the SW of Bozdoğan village. The main drainage in the 
graben is the Akçay River. 

The KG is approximately 35km long and 5–7km wide, 
and is located at the east of the BG; it is separated from 
it by the Karıncalıdağ horst. The graben has a NNW-SSE 
orientation at the junction point with the BMG where a 
smoother southeasterly curvature appears at the east of 
Karacasu village. The NNE-SSW trend gradually changes 
to an E-W trend at the southernmost part of the graben. The 
average altitude of the central part of the graben is 250m 
and the highest part is about 1500m (Mt. Karıncalıdağ). 
The Dandalas River constitutes the main drainage system 
of the KG. 

The rock units exposed along the BG and KG are: 
basement units, Miocene clastic deposits and modern 
graben infill. Basement units are composed of Precambrian 
migmatite/gneiss, Paleozoic marble/quartz-schist and 
Mesozoic marble/schist (Bozkurt and Oberhansli, 2001; 
Konak and Göktaş, 2004). In both grabens, Miocene clastic 
deposits occur near the margins, unconformably overlying 
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the basement units. These clastic deposits interfinger with 
lacustrine mudstone-limestone alternations towards the 
center of the grabens (Açıkalın, 2005; Alçiçek, 2010; 
Alçiçek and Jiménez-Moreno, 2013; Becker-Platen, 1971; 
Kastelli, 1972; Nebert, 1955; Ocakoğlu et al., 2014). 
Axial fluvial system deposits and alluvial fans of the 
modern graben infill cover the older units with a regional 
unconformity, which are deeply incised by the drainage 
system (Ocakoğlu et al., 2015).

MATERIAL AND METHODS

In order to quantitatively evaluate the topographic 
response to active tectonics in the study area, we used several 
geomorphic indices, along with our field data. To calculate 
the geomorphic indices for the BG and KG, 1:25.000 scale 
topographic maps and the 30-m ASTER GDEM (Global 
Digital Elevation Model) data (available at http://www.
gdem.aster.ersdac.or.jp) were used. ArcGIS (ver. 10.8) 
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Figure 1. A) Simplified map of Turkey and surrounding area showing major neotectonic structures (simplified from Bozkurt, 2001). B) Simplified 
geological map of western Turkey showing the major grabens (adapted from Bozkurt and Mittwede, 2005). C) Geological map of the study area on 
a digital elevation model showing the segments of the boundary faults of Bozdoğan and Karacasu grabens (adapted from Ocakoğlu et al., 2014).
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and TecDEM toolbox with Matlab™ (ver. 2014b) software 
were used for computing the stream network and related 
calculations. Selby’s (1980) rock strength classification 
and a 1:25.000 scale geological map of the study area 
(Ocakoğlu et al., 2014) were used to estimate the effect 
of lithological variations. According to this classification, 

metamorphic basement (Precambrian migmatite/gneiss, 
Paleozoic marble/quartz-schist and Mesozoic marble/
schist) have very high strength, whereas Miocene 
continental clastic rocks and lacustrine deposits have high 
and moderate strength, respectively. Pliocene terrestrial 
clastic rocks have low strength, and recent alluvial deposits 

Morphometric parameter Mathematical derivation a Measurement procedure Explanation Source

Smf , Mountain front
sinuosity

(1, 2,
3, 4,
5, 6)

(2, 3, 4)

(3)

(9, 10)

(3, 5,
7, 8 )

Smf = Lmf/Ls Reflect a balance between
the tendency of stream and
slope processes to produce
irregular (sinuous) mountain
front and vertical active
tectonics that tend to
produce a prominent straight
front. >1.4‒most tectonic
activity; >1.4‒less
tectonic activity
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Vf

SL , Stream length-gradient
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T, Transverse topographic
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T = Da/Dd
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is related to the slope of the
water channel. Sudden changes
in values along the stream
channel indicate lithological
differences and/or possible
tectonic activity

SL
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Migration direction of stream from
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segment(s) of the basin bounding
faults.

T
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respect to its drainage area.
Normally, the channel slope
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and/or tectonic uplift.
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Ksn, Normalized channel
steepness index

S = Ks A-.

SL= ( H/ L)  L.Δ Δ 

Vf= 2Vfw/[(E ld- Esc) + (Erd- Esc)]

 Δ

 Δ

Sources: (1) Bull (1977); (2) Bull and McFadden (1977); (3) Keller and Pinter (2002); (4) Silva et al. (2003); (5) El Hamdouni et al. (2008); 
(6) Rockwell et al. (1984); (7) Hack (1973); (8) Alipoor et al. (2011); (9) Kirby and Whipple (2012); (10) Boulton et al. (2014). Symbols: 
Lm: length of mountain front along the mountain-piedmont junction; s: straight-line length of the front; Vfw: width of valley floor; Eld and
Erd: respective elevations of the left and right valley divides; Esc: elevation of the valley floor; ΔL: length of the reach; ΔH: height of reach;
L: total channel length from the point of interest where the index is being calculated upstream to the highest point on the channel; Da: distance
from the basin midline to the midline of the meander belt; Dd: distance from the basin midline to the basin divide.  

Table 1. Summary of the morphometric parameters used in this study (modified from Özkaymak, 2014)



G e o l o g i c a  A c t a ,  2 1 . 1 ,  1 - 1 4  ( 2 0 2 3 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 3 . 2 1 . 1

E .  Ö z s a y i n  e t  a l . Tectonic geomorphology of Bozdoğan and Karacasu grabens

5

have likely very low strength. The fault segments of both 
grabens are numbered and investigated separately based on 
their orientations and step over zones (Fig. 1C).

The geomorphic indices used in this study include the 
transverse topographic symmetry factor (T), mountain-
front sinuosity (Smf), valley-floor width to valley 
height ratio (Vf), stream-length gradient index (SL) and 
normalized channel steepness index (Ksn). T determines 
the migration of the river channel due to tectonic activity 
along the drainage basin. For perfectly symmetrical basins 
T=0, which represents negligible influence of fault activity. 
In asymmetrical basins T values reach up to 1, which 
means the main river channel migrated towards the active 
fault segment bounding the basin (Keller and Pinter, 2002) 
(Table 1). 

Mountain-front sinuosity (Smf) is a useful tool 
for evaluating and comparing active fault segments, 
reflecting the balance between tectonic activity and 
erosional forces. High tectonic activity and related 
uplift prevail over erosional processes, creating straight 
mountain-fronts (low Smf values). When tectonic activity 
is reduced erosional processes  make mountain-fronts 
more sinuous (high Smf values) (Keller and Pinter, 2002) 
(Table 1). Vf is a geomorphic tool for estimating valley 
incision between fault segments. Higher tectonic activity 
and uplift rates will bring out deeply incised, V-shaped 
valleys with lower Vf values. But in erosion-dominated 
areas, the valleys are broad-floored and U-shaped with 
higher Vf values (Bull and McFadden, 1977; Keller and 
Pinter, 2002) (Table 1). SL describes the stream channel 
slope along the river bed, identifying sudden slope 
changes due to erosional differences among lithological 
boundaries and/or fault activity. Low SL values indicate 
gentle slope along the channel whereas high values 
correspond to sudden drops (Keller and Pinter, 2002) 
(Table 1). Ksn determines slope gradient anomalies 
along the river profiles (Ouimet et al., 2009; Whittaker, 
2012). Normally, in a typical drainage basin, the slope 
of the river channel gradually decreases downward. 
This can be modified by lithological boundaries where 
rock resistance to erosion differs or by active faulting, 
creating a vertical displacement. The exponential 
relationship between channel slope (S) and upstream 
area (A) in graded rivers are defined as power-law (Hack, 
1957), which is expressed by:

S=KsA-θ

where Ks is the channel steepness-index and θ the 
concavity index (Flint, 1974). Variations such as active 
tectonics, climate and river bed lithology directly affects 
the slope of the channel and upstream area, changing 
the Ks and θ in the equation (Kirby and Whipple, 2012; 

Wobus et al., 2006). For the determination of Ks and θ 
in a river profile is to execute regressions in logarithmic 
slope-area plots (Ferrater et al., 2015) where these plots 
can be used to locate the knickpoints and distinct areas 
with different uplift (Burbank and Anderson, 2013; Kirby 
and Whipple, 2012; Whipple et al., 2013; Wobus et al., 
2006). These knickpoints arise when constant changes 
take place in boundary conditions like base-level fall 
due to uplift rate changes or diversification in climatic 
conditions (Bishop et al., 2005; Kirby and Whipple, 
2012; Snyder et al., 2003). Previous studies indicate 
that the concavity index (θ) range between 0.4 and 0.6 
in most cases and is relatively unaffected by tectonism, 
lithological changes and/or climate (Kirby and Whipple, 
2012; Whipple et al., 2013). “Normalized” steepness 
index (Ksn) method is used for river reaches with fixed 
“reference” concavity (Wobus et al., 2006) which has 
been used in morphometric studies (e.g. Camafort et al., 
2020; Ferrater et al., 2015; Kirby and Whipple, 2012; 
Sağlam-Selçuk and Kul, 2021; Whipple et al., 2013; 
Wobus et al., 2006). Thus, the θ value is taken as 0.5 
during the calculations on TecDEM toolbox analysis 
(Table 1). 

RESULTS

Transverse topographic symmetry factor (T)

T values in the BG range from 0.07 to 0.69. Low T 
values are found along the B1 segment (NW of the graben) 
whereas high values are found in the B2 segment (SW of 
the graben). These results suggest that the BG is tilted to the 
southwest (Fig. 2). In the KG, T values vary between 0.14 
and 0.53. K1 and K4 segments (NW and NE of the graben 
respectively) display relatively high T values, indicating 
northeastern tilting. K2 and K3 segments (SE and S of 
the graben respectively) have low T values, indicating 
southwestern tilting (Fig. 2).

Mountain-front sinuosity (Smf)

Smf values in the BG vary between 1.41 and 2.07 (Fig. 
3; Table 2). The lower values are found in the B1 and B2 
segments. In the KG, Smf values range from 1.43 to 2.59 
(Fig. 3; Table 2). Western and southern segments (K1, K2 
and K3) present the lower values. 

Ratio of valley-floor width to valley height index (Vf)

Mean and median Vf values were calculated for all 
valleys in the BG and KG. In the BG, Vf (mean) values 
vary between 0.30 and 0.60 (Fig. 3; Table 2). Low values 
are found in the B1 and B2 segments, indicating V-shaped 
valleys, whereas in the B3, B4 and B5 segments values are 
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high, indicating U-shaped valleys. In the KG, Vf (mean) 
values vary between 0.18 and 0.75 (Fig. 3; Table 2), the 
lower values are found in the K1 segment, suggesting 
V-shaped valleys, whereas in the K2, K3 and K5 segments 
(V- and U-shaped valleys) have similar values. 

Stream length-gradient index (SL)

SL values of streams cutting the fault segments range 
between 0.9 and 1875. Low SL values are found in the main 
drainage of the BG and upstream ends of the drainage 
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Figure 2. Schematic map of the study area showing the values of the transverse topographic symmetry factor (T). Striped areas are the western-
southwestern part of Bozdoğan and Karacasu grabens. Numbers on red lines indicate T values along the line.

Figure 3. Schematic watershed map of the study area showing the Smf and Vf lines used for the calculation.
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basins. In the BG, SL values gradually increase along 
the B1 and B2 segments (Fig. 4), probably indicating a 
change in rock strength where basement units and basinfill 
deposits juxtapose. Maximum SL values are found at the 
northwestern part of the B2 segment. SL values along the 
B3 segment are also high, particularly at the central part 
of the segment. B4 and B5 segments show relatively low 
values, which is typical of lithological changes (Fig. 4). SL 
values in the KG are higher than those obtained in the BG. 
Highest values are found at the northern part of the graben, 

mostly in the K1 segment. Here, high SL values reflect both 
lithological changes and normal faulting (Fig. 4). Central 
to southeastern part of the K4 segment (where K4 and K5 
segments overlap) also exhibits relatively high SL values. 
SL values in the K2, K3 and K5 segments are relatively low 
and variation in values are mostly related to the change in 
rock strength. Only easternmost parts of K3 and K5 locally 
show faulting-related changes.

Normalized Channel Steepness Index (Ksn)

Highest Ksn values (Ksn >400) are found in the 
southwestern part of the BG (western and southwestern part 
of B2) and western part of the KG (western part of K1). 
Ksn values are high on the western blocks of both grabens 
and medium values are found in their footwalls (Fig. 5A). 
Additionally, Ksn values increase (>400) at the southern part 
of the study area. Medium Ksn values are mostly obtained 
from the footwalls of the fault segments in both grabens 
while lower values are located at the hanging walls (Fig. 5A).

DISCUSSION

Interpretation of geomorphic indices and relative 
tectonic activity assessment of segments

In this study, five morphometric indices, including 
transverse topographic symmetry factor (T), mountain-front 
sinuosity (Smf), ratio of valley-floor width to valley height 

Segment no Smf Vf  (mean) Standart Deviation (Vf )

B1 1.41 0.30 0.11
B2 1.57 0.33 0.13
B3 2.07 0.56 0.30
B4 1.67 0.57 0.27
B5 1.80 0.60 0.22

K1 1.62 0.18 0.08
K2 1.56 0.40 0.22
K3 1.43 0.45 0.27
K4 2.59 0.75 0.58
K5 1.92 0.43 0.13
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Table 2. Morphological properties of the main segments and basins of 
the Bozdoğan and Karacasu grabens, showing Smf (mountain front 
sinuosity ratio) and Vf (valley floor width-to-height ratio)

Figure 4. Simplified map of the study area showing the SL index values along the drainage of Bozdoğan and Karacasu grabens. Selby’s (1980) rock 
strength classification was used to classify the rock units.



E .  Ö z s a y i n  e t  a l . 

G e o l o g i c a  A c t a ,  2 1 . 1 ,  1 - 1 4  ( 2 0 2 3 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 3 . 2 1 . 1

Tectonic geomorphology of Bozdoğan and Karacasu grabens

8

(Vf), stream-length gradient index (SL) and normalized 
channel steepness index (Ksn) are applied to the boundary 
faults of the BG and KG. 

T values in the BG represent westward/southwestward 
tilting which suggests relatively higher activity on B1 and 

B2. Similarly, in the KG, T values suggest southwestern 
tilting along K1, K2 and K3 segments. This fact may 
be related to reactivation of the boundary faults of both 
grabens. In previous studies, these grabens were called 
“cross-grabens” which initiated as half-grabens with 
active western margins and latter evolved to grabens with 

N

B1

B2

B3

B4

B5

K1

K2 K3

K4

K5

B1

B2

B3

B4

B5

K1

K2 K3

K4

K5

620856

41
85

72
9

41
77

57
0

41
69

41
0

41
61

25
1

633790 646724 659658

620856

41
85

72
9

41
77

57
0

41
69

41
0

41
61

25
1

633790 646724 659658

B

A N

Figure 5. A) Sensitivity map of the normalized channel steepness index (Ksn) of the study area to tectonic activity. B) Simplified map of the study 
area showing the calculated uplift rates.



G e o l o g i c a  A c t a ,  2 1 . 1 ,  1 - 1 4  ( 2 0 2 3 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 3 . 2 1 . 1

E .  Ö z s a y i n  e t  a l . Tectonic geomorphology of Bozdoğan and Karacasu grabens

9

relatively less active eastern margins (Alçiçek, 2010; 
Yılmaz et al., 2000).

Low Smf values, that represent high tectonic activity, 
were found in the western and southwestern segments of 
both grabens. These segments present relatively straight 
mountain fronts. High Smf values, that indicate low 
tectonic activity, were mostly found in the eastern and 
southern segments of the BG and KG. Vf values were 
similar in both grabens, demonstrate similar results with 
Smf, referring that B1 and B2 segments of the BG and, 
K1, K2 and K3 segments of the KG have relatively higher 
activity. 

SL values support the results of other geomorphic 
indices. High SL values obtained in the B1 and B2 segments 
suggest high activity in the western/southwestern margin 
of the BG. In the KG, dominating segment is K1 and 
displays highest SL values. Additionally, the overlapping 
part between K4 and K5 has the same properties. 
Although, the two grabens have the same lithology and 
display similar boundary morphologies, SL indices were 
higher in the KG. These results are compatible with those 
of Topal (2019a) and Ocakoğlu et al. (2007) indicating 
western/southwestern margins of the basins representing 
relatively higher activity based on field studies and 
morphological interpretations.

Ksn results indicate three major areas with high Ksn 
values. Two of these areas are located in the western footwalls 
of both grabens and the third one in the southern part. As 
high Ksn values indicate high tectonic activity it can be 
inferred that the western margins have relatively higher 
tectonic activity, consistent with remaining morphometric 
analyses. The high values found in the southern part are 
thought to have generated from the rotational deformation 
of the area which created southeastern curvature of the BG 
and KG. 

A relative uplift rate map was generated from the 
knickpoints, concavity and Ksn values (Fig. 5B). Relatively 
high uplift rate values were located at the footwall of the B2, 
B3, B4 and K1 segments (Fig. 5B). Uplift rates of these areas 
are greater than 0.4mm/yr. The high erosion rates  observed 
in the western blocks of both grabens may show that the 
deformation changes along the fault segments are related 
with the strike of the segments forming the southeastern 
curvature. These uplift rates are compatible with the middle-
late Pliocene uplift rates (0.2-0.3mm/yr) suggested for the 
Western Anatolian Extensional Province (Demir et al., 
2004), the Pliocene-Quaternary uplift rates in the Büyük 
Menderes region (0.1-0.2mm/yr, Westaway et al., 2003), 
and the uplift rates in the southern part of Denizli Graben 
(0.15-0.38mm/yr, Özkaymak, 2014), Çameli Basin (0.05-
0.5mm/yr, Özsayın, 2016), Kemalpaşa Basin (0.1–0.5mm/
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Figure 6. Simplified map of the study area showing the main segmentation of the grabens. Color codes of the faults indicate relative tectonic activity 
classes.
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yr, Tepe and Sözbilir, 2017), Priene-Sazlı Fault of Söke Basin 
(0.05-0.5mm/yr, Topal, 2019a) and in the Çamköy and Yazır 
segments of the KG (0.05-0.5mm/yr, Topal, 2019a). 

In summary, the results of the calculated geomorphic 
indices mentioned above indicate that high tectonic activity 
should be expected in the B1 and B2 segments of the 
BG and in the K1 and K2 segments of the KG (Fig. 6). 
Moderate activity should be expected in the B5 segment 
of the BG and in the K3 and K5 segments of the KG. Low 
activity should be expected in the B3 and B4 segments 
of the BG and in the K4 segment of the KG. The highest 
relative activities are obtained from B1 segment of the BG 
and K1 segment of the KG, which are the closest segments 
and are both crosscut by the seismically active southern 
margin of the Büyük Menderes Graben. 

Regional significance of the results and implications 
on seismic hazard

The Western Anatolia Extensional Province is one 
of the most seismically active regions in the world. The 

Kandilli Observatory and Earthquake Research Institute 
(KOERI) recorded 10.921 earthquakes with magnitude 
≥3.0 in the Gediz, Küçük Menderes and Büyük Menderes 
grabens from the year 1901 to 2022 (Fig. 7). In addition, 
several historical earthquakes have also been recorded and 
documented in the BMG region (e.g. Altunel et al., 2003; 
Ocakoğlu et al., 2013; Soysal et al., 1981; Yönlü et al., 
2010). Typically, the seismic activity is located along the 
Gediz and Büyük Menderes grabens, particularly at the 
eastern and western ends. Previous studies showed that 
the western margins of these grabens are terminated at the 
İzmir-Balıkesir Transfer Zone (Uzel et al., 2013; Uzel and 
Sözbilir, 2008) where eastern margins are cut by the Uşak-
Muğla Transfer Zone (Gessner et al., 2017; Karaoğlu, 
2014; Karaoğlu and Helvacı, 2014). As these zones are 
known to be the interconnecting structures, higher and 
complex activity is expected along these zones (Faulds and 
Varga, 1998). 

Beside these junction points, the epicenters of the 
earthquakes are also concentrated along the margins of 
the main E-W trending grabens, predominantly at the 
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intersection areas with the cross-cutting smaller grabens, 
such as the BG and KG. The epicenter distribution at the 
intersection of the KG and BG with the BMG and also 
along these smaller depressions are good examples of the 
relative activity due to the movements on the BMG. Similar 
activity can be observed in the Söke, Çine, Denizli, Uşak-
Güre, Selendi and Gördes grabens that are terminated by 
the Büyük Menderes and Gediz grabens (Fig. 7). Some of 
the focal mechanism solutions differ from the dominant 
view (especially along the Gediz graben). This might be 
a consequence of reactivation of fault planes which were 
formed before neotectonic period. 

Earthquakes magnitudes, located in BG and KG, range 
between 3.0 and 5.9. Topal (2019a) indicates that the 
Çamköy and Yazır segments of the KG have potential to 
produce earthquakes of magnitude M ≥6. But, taken into 
account the length of segments in the BG and KG, only the 
B1 and B2 segments of the BG have earthquake capacities 
with maximum magnitude M. 6.3 while remaining 
segments have M <6.0 according to Wells and Coppersmith 
(1994).

CONCLUSION

In this study, five geomorphic indices were analyzed 
in the Bozdoğan and Karacasu grabens, which are cross-
cut by the active BMG. The morphometric analysis clearly 
indicated that, in both grabens, tectonic activity was higher 
in the western/southwestern margins than in the eastern 
boundary fault segments. Moderate activity was detected 
in the southeastern segments. The activity along the 
southeastern segments is probably related to the regional 
extension, as their orientation is very similar to that of the 
boundary fault segments of the BMG. The lowest activity 
was found in the almost N-S trending eastern segments of 
the grabens. In the eastern margin of the BG, valleys are 
U-shaped and mountain-fronts sinuous, which indicate low 
tectonic activity. The eastern margin of the KG, is defined 
by a buried fault dominated by v- to u-shaped valleys and 
low relief, pointing to intense erosion and low tectonic 
activity. As neighboring cross-grabens (e.g. Çine, Söke and 
Denizli grabens in the BMG; Gördes, Demirci, Selendi and 
Uşak-Güre grabens in the Gediz Graben) have quite similar 
geodynamic history to that experienced byf the BG and KG, 
it can be inferred that relatively higher activity should be 
expected from the similar segments of these depressions. 
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