Insights on geochemical characteristics, microthermometry of hydrothermal fluids, and sulfur isotope systematics of the Daralu porphyry Cu deposit, SE Iran

Zahra Jalali Kahnouj, Majid H. Tangestani*, Sina Asadi

Department of Earth Sciences, Faculty of Sciences, Shiraz University
Adabyat Square, P.O. Box. 71454 Shiraz, Iran. Kahnouj E-mail: z.jalali@shirazu.ac.ir. Tangestani E-mail: tangstan@shirazu.ac.ir. Asadi E-mail: sinaasadi@shirazu.ac.ir

*Corresponding author

ABSTRACT

The Miocene Daralu Porphyry Copper Deposits (PCDs) is found associated with other porphyries such as Sarcheshmeh and Meiduk in the Kerman Cenozoic Magmatic Arc (KCMA), southern Iran. In this research, we provided whole-rock geochemical data, characteristics of hydrothermal fluid and sulfur isotope composition of the Daralu intrusive body, and discussed the nature, tectonic setting and fluid evolution of this deposit aiming to investigate its fertility.

The Daralu porphyry shows adakites affinity, that is, high Sr/Y and La/Yb ratios and positive Eu anomalies. The REEs patterns indicate a strong fractionation ([La/Yb]n= 28.73). High La/Sm and Dy/Yb ratios suggest enrichment of amphibole and garnet as residual phases in melt source, whereas partial melting of plagioclase increases Eu and Sr in the parent magma. The presence of garnet implies a pressure equivalent to the thickness of more than 40km of crust.

To elucidate the evolutionary history of fluids and the origin of the Daralu deposit, we focused on the origin and composition of the fluid through petrography, Raman spectroscopy, and microthermometry studies of fluid inclusions. The fluid inclusions have been divided into four types: vapor (type I), aqueous-vapor (type II), CO2-bearing (type III), and multiphase (type IV). The Raman shifts included 1284 and 1388 cm⁻¹ for CO2 and 2750–3900 cm⁻¹ for H2O. The events such as NaCl supersaturation, exhausting of CO2-rich components, high oxygen fugacity and temperature decreasing through mineralization stages were critical in controlling the fertility of the Daralu PCD. The obtained δ34S data for sulfides yielded an average of +5.5‰. Based on the observed features, it was concluded that Daralu porphyry shares formation conditions with other productive porphyries of the KCMA.

KEYWORDS

© Z.J. Khnouj, M.H Tangestani, S. Asadi, 2023 CC BY-SA
INTRODUCTION

The Daralu Porphyry Copper Deposits (PCDs) are defined as high-tonnage, low- to medium-grade deposits (Sinclair, 2007), and they are globally the most important reserves of copper (Richards, 2015; Sillitoe, 2010). These deposits were formed by the evolution of high temperature (300−700ºC) magmatic-hydrothermal fluids (Li et al., 2012; Richards, 2011). The composition of hydrothermal ore-bearing fluids and their evolution are important parameters for defining the mineralization potential of an intrusive body (Li et al., 2012).

It is considered that PCDs formed in arc settings related to subduction zones (Guilbert and Park, 1986; Hofmann, 1997; Wang et al., 2006). Recently, it has been proposed that PCDs could be associated with continental collision margins (e.g. Asadi, 2018; Asadi et al., 2014; Atapour and Aftabi, 2021; Haschke et al., 2010; Richards, 2009; Topuz et al., 2011).

A wide variety of igneous rocks have been reported responsible for PCDs formation (Singer et al., 2008). An adakite-related genesis has been suggested for PCDs in post-collisional margins (e.g. southern Tibet: Hou et al., 2015; Mao et al., 2014; Yang et al., 2008, and western Asia: Hezarkhani and Williams-Jones, 1998; Richards, 2015; Shafiei et al., 2009). The adakitic magmas which have high potential for forming the major PCDs (Hollings et al., 2005), show high ratios of La/Yb and Sr/Y, coupled with low Yb and Y, with no Eu anomalies (Eu/Eu* ≥1). These characteristics are attributed to garnet (or amphibole) fractionation in the parental magma (Defant and Drummond, 1990; Richards et al., 2012).

The Urmieh-Dokhtar Magmatic Arc (UDMA, Fig. 1A) is a well-known Cu-bearing region, where a wide range of world class porphyry copper systems have been reported and studied (e.g. Asadi, 2018; Atapour and Aftabi, 2021; Hassanzadeh, 1993; Hezarkhani and Williams-Jones, 1998; Khosvetti et al., 2019; Mohammaddoost et al., 2017; Richards et al., 2012; Richards, 2015; Shafiei et al., 2009; Zarasvandi et al., 2019). According to Zarasvandi et al. (2015) this is one of the best examples, in the world, of prolonged continental arcs, where the Neo-Tethys oceanic plate was subducted beneath the central Iran continental plate. There is a general consensus that, this Andean type magmatic arc (Alavi, 2004; Berberian et al., 1982) was generated in response to a prolonged stage of the Neo-Tethys closure during Paleogene followed by a continental collision in Paleogene-Neogene times (Berberian et al., 1982; Mohajjel et al., 2003).
This magmatic arc, with a length of >2000km, extends from the northwest to the southeast of Iran, as part of the western Tethyan orogenic belt (Atapour, 2017; Wang et al., 2020; Zurcher et al., 2019), and comprises a series of volcanic and pyroclastic Eocene rocks and Miocene–Pliocene intrusive bodies (Berberian et al., 1982; Moradian, 1997).

The Cenozoic magmatic activity and the mineralization of PCDs along the UDMA are typically distributed in three main episodes: Eocene–Oligocene (Ahmadian et al., 2009), middle–late Oligocene (McInnes et al., 2005) and middle–late Miocene (Richards et al., 2012). The major mineralization phase of porphyry systems corresponds with the southeast part of the UDMA, the Kerman Cenozoic (McInnes et al., 2005). The copper mineralizations along the KCMA are mostly identified at late–stage Miocene granodiorite that has adakitic affinity, compared to that of Eocene–Oligocene intrusions (Afshooni et al., 2013; Asadi et al., 2014). The three main PCDs of Miocene granodiorite in the KCMA are Sarcheshmeh, Meiduk and Daralu (Mohammadzadeh et al., 2017; Fig. 1B).

The Daralu PCD with 186Mt of ore at 0.36% Cu (Mineral Resources Data System of United States Geological Survey, 2015), occurs in the central part of the KCMA, 150km southeast of the Sarcheshmeh supergiant deposit (Fig. 1B). The first exploratory study in the Daralu area was carried out by Charter (1971), which was recently followed by the Company of National Iranian Copper Industries (NICICO).

The tectonics, magmatism, petrology and geochemistry of KCMA have been studied by several authors (Asadi et al., 2014; Atapour and Aftabi, 2021; Bomeri et al., 2010; Dimitrijevic, 1973; Mohammadzadeh et al., 2017; Richards et al., 2012; Shahabpour, 2005; Shafiei et al., 2008, 2009, 2010; Zaravandi et al., 2015). Most of these studies were focused on its northwestern area, where two important PCDs, Sarcheshmeh, Meiduk and Daralu (Mohammadzadeh et al., 2017; Fig. 1B).

The Cenozoic magmatic activity and the mineralization of PCDs along the UDMA are typically distributed in three main episodes: Eocene–Oligocene (Ahmadian et al., 2009), middle–late Oligocene (McInnes et al., 2005) and middle–late Miocene (Richards et al., 2012). The major mineralization phase of porphyry systems corresponds with the southeast part of the UDMA, the Kerman Cenozoic (McInnes et al., 2005). The copper mineralizations along the KCMA are mostly identified at late–stage Miocene granodiorite that has adakitic affinity, compared to that of Eocene–Oligocene intrusions (Afshooni et al., 2013; Asadi et al., 2014). The three main PCDs of Miocene granodiorite in the KCMA are Sarcheshmeh, Meiduk and Daralu (Mohammadzadeh et al., 2017; Fig. 1B).

Recently, NICICO (2021), based on new drilling cores, has reported 194Mt of ore at 0.38% Cu for the Daralu deposit in the central part of KCMA. The major objective of the present work was to investigate the geochemistry and characteristics of the magmatic hydrothermal fluid that led to the fertility of this deposit.

GEOLOGY

Shahabpour (2005) suggested that the subduction of the Neo-Tethys oceanic slab under the Central Iran microcontinent during the Eocene (before the collision) originated a magmatic arc of calc-alkaline to tholeiitic nature. Ghasemi and Talbot (2006) stated that the increase of convergence rate of Eurasian and Arabian plates as a result of the opening of the Red Sea from the Middle Oligocene affected the convergence and final collision of the Arabian plate with the Central Iran microcontinent. The termination of the continental collision during the Paleogene was followed by the tension, magmatic activity and over thrusting of the KCMA (McClay et al., 2004). Rb-Sr dating in combination with the geochemical data of the KCMA granitoids indicate an age of 33Ma (Dargahi et al., 2010), which matches the beginning of the collision between the Arabian plate and the Central Iran microcontinent.

The KCMA consists of several magmatic complexes of different nature such as the Bahr-e-Asman complex (77.5±0.81Ma; ~7km in thickness) composed of basaltic andesite and andesitic lava flows and intermediate-felsic plutons (Hosseini et al., 2017); the Razak complex (37.5±1.4Ma; ~7.5km in thickness) composed mainly of basaltic-rhyolitic volcanoclastics displaying calc-alkaline/tholeiitic signatures (Ahmad and Posht Kuhi, 1993; Hassanzadeh, 1993); and the Hezar complex (32.7±6.3Ma; ~1.4km in thickness) made up of trachyandesite and trachybasalt with calc-alkaline intrusions (Hassanzadeh, 1993; Shafiei et al., 2009). These complexes were formed during the 60-million-year history of the arc during the Cenozoic (Shafiei et al., 2009). The intensity and spread of mineralization in the KCMA correspond to the incidence rate and distribution intensity of intrusive bodies. The central and southwestern segments of the arc contain Miocene adakitic-oriented granitoids associated with economic porphyry copper mineralization regionally recognized as Kuh Panj-type (KP) (Shafiei et al., 2009). In contrast, the southeastern segment of this arc contains calc-alkaline granitoids associated with barren or subeconomic porphyry copper mineralization regionally recognized as Jebal Barez-type (JB) (Shafiei et al., 2009). Asadi et al. (2014) and Shafiei et al. (2009) estimated that the thickness of the crust is >40 to 50km in the KP and 30 to 40km in the JB, suggesting that the adakitic features have a connection with the thickened lower crust.
There are three main clusters of porphyry copper systems in the KCMA, from northwest to the southeast: Meiduk (e.g. Meiduk, Kader, Iju, Chah-Firouzej, Serenu, Parkam), Sarcheshmeh (e.g. Sarcheshmeh, Nochoon, Darreh Zar) and Daralu (e.g. Daralu, Babshamil, Sarmeshk, Bondar Hanza, Gorouh) (Mohammaddoost et al., 2017; Fig. 1B). The major PCDs are Sarcheshmeh (13.20Ma), Meiduk (11.58Ma) and Daralu (12.96Ma) (Aghazadeh et al., 2015).

The Daralu area is outlined in the 1:100,000 geological map of the Sarduiyeh area (Hosseinjani Zadeh and Tangestani, 2011). The dominant lithological units in the Daralu area are the Eocene andesites and tuffs of the Razak Formation (Atapour, 2007), typically intruded by Miocene granodiorites (Mohammaddoost et al., 2017; Fig. 2A). Another common geological feature of the study area is the occurrence of fracturing systems intruded by late barren diabasic and andesitic dykes, already reported around other mineralized stocks of the KCMA (Hassanzadeh, 1993; Shahabpour, 1992; Taghipour et al., 2008).

The mineralized and altered stock at Daralu is visible on a surface of approximately 0.7km², which is elongated within 1.2km long NW−SE trending corridor. Several types of hydrothermal alterations based on drillhole logs, outcrop observations, and thin sections and polished samples have been observed (Fig. 2B). They are grouped into three distinct types of mineralization, including hypogene, supergene and leached (Habibi and Hezarkhani, 2012): i) hypogene zone: the highest Cu values occur at depths of 120m to at least 240m below the present erosional surface, that is the boundary between the potassic and phyllic alterations; ii) supergene zone: this zone is not well-distributed in the area and its thickness is variable; iii) leached zone: the thickness of the oxidized-leached zone is 2−25m with about 0.2% Cu on average (Habibi and Hezarkhani, 2012). The hydrothermal alterations in the area are: i) potassic, with potassium feldspar and biotite as predominant minerals; ii) phyllic, characterized by pyrite veins and alteration of biotite and feldspar into sericite (Fig. 3A); iii) argillic, characterized by alteration of feldspar into kaolinite or smectite; and iv) propylitic, with dominant epidote, chlorite and calcite.

The hypogene zone is comprised of pyrite, chalcopyrite, magnetite, bornite and tetrahedrite, mostly in the stockwork and replacement forms (Fig. 3G). The undeveloped supergene zone consists of covellite, chalcocite, hematite, goethite, malachite, azurite, chalcantite and pyromorphite. The mineral assemblage of leached zone mainly consists of Fe−oxides and hydroxides (goethite, hematite and limonite). The copper mineralization occurs mainly at the boundary of potassic and phyllic alterations (Habibi and Hezarkhani, 2012).

ANALYTICAL METHODS

Forty samples from outcrops and bore holes from the Daralu deposit were collected for microthermometry, isotopic, and major and trace elements analyses.

Polished thin sections of altered and fresh samples were prepared for microscope studies. Fresh samples were also selected for whole-rock geochemical analysis.

FIGURE 2. A) 1:1,000 Geological map and B) alteration map of the Daralu PCD, modified after NICICO (2010).
For geochemical analysis, samples of large particle size were jaw crushed to a nominal 6mm size before being puerized in a ring-and-punch mill to a nominal minus 75μm grind-size.

Alkaline fusion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), advanced functional materials (AFMS) package were used to analyze major and trace elements, and Rare Earth Elements (REEs) at the Zarazma Mineral Studies Company, Iran.

Nine pyrite and chalcopyrite samples, separated manually from crushed samples using a binocular microscope, were analyzed in the Stable Isotopes Research Laboratory, Arak University, Iran, to measure the sulfur isotopes. After combustion of a sulfide sample in an elemental analyzer at 1150°C, the generated SO₂ gas was passed through the system which was stripped of water and SO₂. The adsorption column was then heated to 220°C to release any accumulated SO₂. This gas was ultimately exerted into the Isotope-Ratio Mass Spectrometer (IRMS). During the spectrometry, mass ratio of 66/64 was determined to evaluate the ratio of $^{34}\text{S}/^{32}\text{S}$.

![Figure 3](image_url)

FIGURE 3. A) Field photograph of Daralu alteration zones in the volcanic rocks of the Razak Complex (view to north). B) Hand specimen of granodiorite from the Daralu intrusive body. Photomicrographs of C) potassic alteration with replacement of plagioclase by hydrothermal biotite Crossed Polarized Light (XPL), D) phyllic alteration consisting of quartz, sericite and pyrite (XPL), E) argillic alteration which show plagioclase replaced by clay minerals Plain Polarized Light (PPL), F) chloritization in the propylitic alteration (PPL) and G) replacement of pyrite by chalcopyrite in reflected light. Mineral abbreviations (Whitney and Evans, 2010): Amp= amphibole, Anh= anhydrite, Bt= biotite, Cal= calcite, Ccp= chalcopyrite, Chl= chlorite, Mag= magnetite, Pl= plagioclase, Py= pyrite, Qz= quartz, Ser= sericite.
of the sample. To verify the whole procedure and to calibrate the reference gas, repetitive measurements were performed on the basis of reference material of International Atomic Energy Agency (IAEA-S-4) and a secondary standard. The certified δ^{34}S (‰) value for IAEA-S-4 standard is +16.9±0.2 vs Vienna-Canyon Diablo Troilite (VCDT) and the accepted δ^{34}S (‰) value for the secondary standard is -6.3±0.16 vs VCDT. The accepted instrumental value for δ^{34}S standard deviation (1σ) is 0.20‰.

The Daralu PCD hydrothermal veins were considered suitable for the study of Fluid Inclusions (FIs). Thirteen quartz samples showing early, main and late stages of mineralization were collected for petrography, Raman spectroscopy and microthermometry.

Microthermometric analyses were conducted on THMSG600 model of Linkam stage attached to a Leica petrographical microscope at -190 freezing temperature to 600°C heating temperature in the Iran Mineral Processing Research Center (IMPRC). The heating rates were 1°C/ min for measurements of homogenization temperatures (T_h total). The accuracy of temperature measurements was ±2°C during heating and ±0.2°C during freezing. Vapor volumetric percent within FIs was estimated at ~25°C (room temperature) using standard graphical charts (Shepherd et al., 1985). The last melting temperature of ice (T_m (Ice)) was used to calculate the salinities as wt.% NaCl equivalent (equiv.) for the two-phase aqueous inclusions (Bodnar, 1993), dissolution temperatures of daughter minerals (Hall et al., 1988) and final melting temperatures of CO$_2$-rich phases (T_m (Clath)) for the multiphase-bearing inclusions (Hall et al., 1988) and final melting temperatures of CO$_2$-rich phases (T_m (Clath)) for the clathrate-bearing inclusions (Collins, 1979). The pressure and bulk fluids (pb) were computed in the FLUIDS program (Bakker, 2003). Calculations of pressure range, homogenization conditions and density of mixed aqueous-carbonic phase were made using published Equations Of State (EOS): Bowers and Helgeson (1983) for H$_2$O-CO$_2$-NaCl FIs, and Zhang and Frantz (1987) for H$_2$O-NaCl FIs in the FLUIDS based on FIs volumetric data (P-V-T-X). The representative fluid inclusions were examined to confirm the vapor and liquid compositions of single inclusions using a LabRAM HR Evolution laser Raman spectroscopy system with a laser source of 532.2nm at Shiraz University, Central Laboratory. The spectral region starts from 50cm$^{-1}$, with a spatial resolution of ±2μm, applying the method of Burke (2001).

RESULTS

Petrography

The composition of the Daralu granodiorite was determined based on the study of polished thin sections prepared from logs of 152 drill holes. Results showed a porphyritic rock with anhedral quartz, euhedral plagioclase and subhedral K-feldspar as dominant felsic minerals and biotite and amphibole as mafic constituents (Fig. 3B). The plagioclase clearly shows normal zoning and polysynthetic twinning, while the K-feldspar reveals carlsbad twinning. Magnetite, apatite, zircon and titanite are present as accessory minerals.

Potassic alteration, the early hydrothermal alteration, is associated with mineralization, and is observed in small patches in the center of the deposit and in deep drill cores. This alteration consists of secondary biotite, orthoclase, magnetite, anhydrite and quartz as major phases, and tremolite-actinolite and opaque minerals as minor minerals (Fig. 3C). The phyllic alteration is widespread in the Daralu district, specified by the presence of sericite, quartz, pyrite and disseminated chalcopyrite in deep regions. Sericite replaces plagioclase and amphibole (Fig. 3D). The argillic alteration, clay minerals that replace K-feldspar and plagioclase (Fig. 3E), occurs as small patches at the northwestern part of the district. X-Ray Diffraction (XRD) analysis indicates that the argillic alteration minerals are, in an order of frequency, kaolinite, illite, muscovite, albite, montmorillonite and jarosite. The propylitic alteration is the more extensive alteration and is present in deep regions of the northern drill cores. Propylitic assemblage includes epidote, chlorite, albite and calcite (calcite and chlorite have replaced the biotite) (Fig. 3F).

Post-mineralization dykes of predominant dacite composition, cut intrusive phases in the northwest of the area. These rocks display sub-aphanitic texture and are mainly composed of fine crystals and a few phenocrysts and are altered with variable intensity. A few occurrences of Fe hydroxides are observed in the fractured rocks. Plagioclase and clinopyroxene are the major phenocrysts in the dyke rocks. The clinopyroxene crystals are generally euhedral and sometimes altered to epidote, chlorite and quartz and rarely to tremolite–actinolite. Recrystallization is dominant in mafic minerals, while argillic and silicic alterations are no significant.

Examination of samples from 152 drilling cores by the NICICO shows that the highest hypogene mineralization (chalcopyrite, pyrite and bornite) occurs at depths of 110m to <230m at the potassic alteration zone (about 0.15wt.% Cu) and at the boundary of potassic and phyllic alterations (about 1.8wt.% Cu). Mineralization has occurred in stockwork and dissemination forms.

According to Sillitoe (2010) and crosscutting relationships between early, main and late mineral phases, four major types of veins are distinguished in the Daralu deposit. i) M-type veins: they formed during
the pre-ore (early) stage, occur in the deep regions of the potassic alteration zone, and consist of quartz, magnetite, anhydrite and sporadic chalcopyrite (Fig. 4A). ii) A-type veins: as the main ore-stage indicators, they are found in the potassic-phyllitic alteration zone and in the interior of the propylitic alteration zone, and consist of quartz, chalcopyrite, K-feldspar, pyrite and traces of molybdenite (Fig. 4B). iii) D-type veins: they are thick and the most abundant veins observed in the phyllic alteration zone, characterized by quartz and pyrite with minor sericite and chalcopyrite (Fig. 4C), early and main quartz veins/ veinlets being intruded by D-type late veins/ veinlets (Fig. 4E); iv) L-type veins: they consist of quartz and calcite free of mineralization and evidence the ultimate hydrothermal activity. They are generally observed in the near-surface areas of the propylitic and phyllic alteration zones where they crossed older veins (Fig. 4D). Table 1 displays the characteristics of vein types in the Daralu deposit.

Geochemical composition

To determine the petrogenesis and geochemical affinity of the Daralu porphyry, the whole-rock compositions of 13 samples collected from the intrusive body were analyzed. The abundances of major oxides and trace elements along with the significant ratios and indexes are listed in Table 1, Appendix.

The scheme of major element oxides on the Alkali vs. SiO₂ diagram (Middlemost, 1994) shows that they could be categorized in granodiorite and quartz monzonite rock types (Fig. 5A).

The Daralu porphyry stock samples are located in the calc-alkaline field of the AFM diagram of Irvine and Baragar (1971) (Fig. 5B). On the K₂O vs. SiO₂ diagram of Peccerillo and Taylor (1976), the Daralu rocks are within the high-K calc-alkaline series field (Fig. 6A). Moreover, all samples show high Alumina Saturation Indices (ASI) with average of 1.01 which corresponds to the field of peraluminous and I-type in the diagram of SiO₂ vs. ASI (Maniar and Piccoli, 1989; Fig. 6B).

Sulfur isotopes

The δ³⁴S values measured for pyrite (n= 7) of D-type veins show a range of 4.7 to 6.8‰, and for chalcopyrite (n= 2) of A-type veins a narrow range from 5.7 to 6.0‰. Results revealed that the δ³⁴S average is 5.5‰ (Table 2). There is not significant difference between sulfur isotopic compositions of sulfides in samples of A- and D-type veins (Table 2).

FIGURE 4. Vein types in the photographs of core crosscutting. A) M-type vein as the early vein in the potassic alteration. B) A-type vein as the main sulfide mineralization vein in inner propylitic alteration. C) D-type vein as the thick late vein in the phyllic alteration. D) L-type carbonate vein. E) relationships of the various veins crosscutting. The A-type vein cut by the D-type but crosscut the M-type vein. Abbreviations as in Figure 3.
Fluid inclusions

Petrography and classification

The FIs petrography was examined for 13 double polishing sections of quartz vein types M, A and D, and the FIs were classified based on the phase's frequency at ~25°C using Van den Kerkhof and Hein (2001) method. FIs are divided into vapor (type I), aqueous-vapor (type II), aqueous-carbonic (CO₂-bearing, type III) and multiphase (type IV) types (Fig. 7), according to petrographic and microthermometric studies.

Type I FIs are mono phase gaseous inclusions with a mono phase of vapor (V); these are relatively common in vein type A and are mostly observed in spherical and irregular shapes from 2 to 15 microns in dark color (Fig. 7A).

Type II FIs are two phases, liquid rich (LV, Fig 7B) and vapor rich (VL) inclusions among which, the LV type is dominant in all the vein types occurring as primary individual and cumulative inclusions. The vapor phase occupies about 10 to 30% of the inclusions and predominantly homogenizes to the liquid phase. These inclusions have elliptical and irregular shapes with a size of 5 to 30 microns. The coexistence of the LV and V inclusion types indicates the boiling process (Simmons et al., 2000) (Fig. 7A). The VL type inclusions, with a frequency less than liquid-rich inclusions, were observed in vein types A and D, as well. Moreover, the water vapor phase involves about 70% to 95% of the volume of inclusion. These inclusions show similar shape and size to the LV type.

Type III FIs consist of immiscible H₂O and CO₂ phases along with vapor (L₁V), rarely occurring (Fig. 7C, D). Type IV are multi-phase liquid-vapor-
halite-solid (LVHS) FIs consisting of liquid, vapor and variable proportions of daughter-solid phases. Halite and sylvite are predominant, and occasionally accompanied with daughter phase; therefore, halite-rich FIs are almost all FIs measured. The solid phases (e.g. hematite and chalcopyrite) and some unidentified opaque phases rarely constitute >1% volume of an inclusion and therefore, do not affect T_h. These inclusions are observed individually in all veins with sizes of about 10 to 15 microns. The association of LVHS and VL inclusions (Fig. 7E, F) offers two immiscible fluids with one primary origin.

Microthermometric and laser Raman results

Microthermometric analyses were performed on 70 primary and pseudosecondary FIs approximately >7 microns in size. Microthermometric characteristics of type II, type III and type IV inclusions from early, main and late ore stages are listed in Table 3.

The type IIA inclusions yield first ice-melting temperatures (T_e(Ice)) varied from -30 to -21ºC. The range of homogenization temperatures (T_h) of type II (LV) FIs varied from 451ºC to 580ºC in the early stage, and from 210ºC to 310ºC in the late stage, whereas T_h values of type III (L1L2V) varied from 370ºC to 529ºC and 246ºC to 302ºC in the early and main stages respectively, and from 217ºC to 395ºC in type IV (LVH±S) in the main stage. The type II FIs yield last ice melting temperatures (T_m(Ice)) from -19ºC to -5ºC and from -16ºC to -4ºC in early and late stages of mineralization, respectively. The type IV yields final halite dissolution temperatures (T_m(Halite)) from 180ºC to 340ºC in the main stage. These temperature values indicate salinity range of 7.9 to 21.7, 35.9 to 55.9 and 5.7 to 18.9wt.% NaCl eqv. for FIs in early, main and late ore stages, respectively.

Bulk densities of FIs are calculated for the mentioned stages ranging from 0.97 and 1.07, from 1.04 and 1.36, and finally from 0.95 and 1.03g/cm3. The range of CO$_2$ melting temperatures (T_m(CO$_2$)) in the type III inclusions (L1L2V) varied from -61ºC to -59ºC and -58ºC to -50ºC in early and main stages, respectively. The clathrate melting (T_m(Cla)) range is from 3ºC to 8ºC, and corresponding salinities are 2.9 to 11wt.% NaCl eqv. in the early type III of FIs. Moreover, the T_m(Cla) range is from 2ºC to 10ºC, and corresponding salinities are 3 to 12.2 wt.% NaCl eqv. in the main type III of FIs.

TABLE 2. Sulfur isotope data for pyrite (Py) and chalcopyrite (Ccp) samples collected from Daralu deposit

<table>
<thead>
<tr>
<th>Sample no (Sample Analyzed Name)</th>
<th>Mineralogy</th>
<th>δ^{34}S (‰) V–CDT (‰) ±1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Dau187−116)</td>
<td>Py</td>
<td>+4.79 ± 0.12</td>
</tr>
<tr>
<td>2 (B 16−120)</td>
<td>Py</td>
<td>+4.76 ± 0.11</td>
</tr>
<tr>
<td>3 (B2−170)</td>
<td>Py</td>
<td>+6.06 ± 0.08</td>
</tr>
<tr>
<td>4 (Ash−30)</td>
<td>Py</td>
<td>+5.11 ± 0.15</td>
</tr>
<tr>
<td>5 (B18−108)</td>
<td>Py</td>
<td>+6.00 ± 0.19</td>
</tr>
<tr>
<td>6 (B3−280)</td>
<td>Py</td>
<td>+6.75 ± 0.14</td>
</tr>
<tr>
<td>7 (Dau (p)−286)</td>
<td>Ccp</td>
<td>+5.71 ± 0.20</td>
</tr>
<tr>
<td>8 (Dau 172−114)</td>
<td>Py</td>
<td>+4.69 ± 0.06</td>
</tr>
<tr>
<td>9 (Dau (p)−45)</td>
<td>Ccp</td>
<td>+6.02 ± 0.11</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td>+5.54</td>
</tr>
</tbody>
</table>

Isotopic data of sulphides (or sulfides). See Table 1 for abbreviations.
homogenization temperatures of CO$_2$ (T_h(CO$_2$)) in the type III FIs of early stage are between 21ºC and 30ºC. The bulk densities of aqueous-carbonic FIs range from 0.82−0.88 and 0.89−0.93g/cm3 in early and main stages, respectively.

According to the microthermometric data in quartz veins, three groups of FIs were defined: group 1, with high homogenization temperature (T_h) (451ºC−580ºC) and low to moderate salinity (7.9−21.7wt.% NaCl equivalent); group 2, with moderate to high T_h (217ºC−395ºC) and high salinity (35.9−55.9wt.% NaCl equivalent), and group 3, with low T_h (210ºC−310ºC) and low salinity (5.7−18.9wt.% NaCl equivalent). Therefore, the main stage of copper mineralization is related to the group 2.

Laser Raman Spectroscopy (LRS) was used as a non-destructive method for qualitative detection of gaseous phases in type III FIs of veins type A that were likely to contain CO$_2$ according to petrographic studies. The main recorded Raman shifts (Frezzotti et al., 2012) included 1284 and 1388cm$^{-1}$ for CO$_2$, 2750–3900cm$^{-1}$ for H$_2$O liquid and 3657−3756 cm $^{-1}$ for H$_2$O vapor (Fig. 8). This feature is according to the T_m(CO$_2$) results (-61 to -59 and -58 to -50ºC, Table 3).

According to microthermometric studies and Raman spectroscopy analyses, in the late-stage H$_2$O is the major phase of type II FIs, indicating that an aqueous solution was responsible for the waning stage of Daralu PCD.

Laser Raman spectroscopy indicates (Fig. 8) overlapping bands in the 2750 to 3900cm$^{-1}$ of OH stretching region. As depicted by Sun (2009), this feature shows interplay of water molecules with the neighbor molecules. According to Frezzotti (2012), chlorine ions break hydrogen bonds in aqueous phases, which effects the variation of OH stretching bands.
TABLE 3. Measurement microthermometric parameters of 70 fluid inclusions

<table>
<thead>
<tr>
<th>Stage</th>
<th>Phases</th>
<th>T_h(ice) ($^{°}$C)</th>
<th>T_m(Cl) ($^{°}$C)</th>
<th>T_m(CO$_2$) ($^{°}$C)</th>
<th>T_m(H$_2$O) ($^{°}$C)</th>
<th>wt. % NaCl equiv.</th>
<th>T_h(°C)</th>
<th>(pbulk) (g/cm3)</th>
<th>Pressure (bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>LV</td>
<td>-30 to -21</td>
<td>-19 to -5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.9-21.7</td>
<td>451-580</td>
<td>0.97-1.07</td>
</tr>
<tr>
<td>Early</td>
<td>L-L$_2$V</td>
<td>-</td>
<td>-</td>
<td>3 to 8</td>
<td>-61 to -59</td>
<td>21-30</td>
<td>2.9 to 11</td>
<td>370 to 529</td>
<td>1053-1450</td>
</tr>
<tr>
<td>Main</td>
<td>L-L$_2$V</td>
<td>-</td>
<td>2 to 10</td>
<td>-58 to -50</td>
<td>-</td>
<td>3 to 12.2</td>
<td>246-302</td>
<td>0.89-0.93</td>
<td>980-1235</td>
</tr>
<tr>
<td>Main</td>
<td>LVH$_2$S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180-340</td>
<td>35.9-55.9</td>
<td>217-395</td>
<td>1.04-1.36</td>
</tr>
<tr>
<td>Late</td>
<td>LV</td>
<td>-30 to -21</td>
<td>-16 to -4</td>
<td>-</td>
<td>-</td>
<td>5.7-18.9</td>
<td>210-310</td>
<td>0.95-1.03</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: T_h(ice): eutectic temperature; T_m(Cl): final ice melting temperature; T_m(CO$_2$): melting temperature of CO$_2$ clathrate; T_m(H$_2$O): homogenization temperature of CO$_2$ phase into the carbonic vapour phases; T_h: homogenization temperature; L$_1$: H$_2$O-liquid; L$_2$: CO$_2$-liquid; V: vapour; S: solid phases and H: halite. Fluid inclusion terminology and symbols according to Diamond (2003).

DISCUSSION

Geochemical affinity

In terms of geochemical characteristics, the Daralu samples show adakitic-like compositional affinities (Richards and Kerrich, 2007) with high concentrations of Sr (>400ppm), Na$_2$O (>3.5wt.%), Al$_2$O$_3$ (>15wt.%), Sr/Y ratio >20, La/Yb ratio >20, and low concentration of Y (<18ppm, Table 4). All samples are located in the adakitic range in Sr/Y vs. Y diagram (Defant and Drummont, 1990; Fig. 9C) showing the partial melting trend of a source containing garnet. Moreover, according to the Y vs. SiO$_2$ and La/Yb vs. SiO$_2$ diagrams (Richards and Kerrich, 2007; Richards et al., 2012; Fig. 9A, B), most studied samples are plotted in the adakite field.

High La/Yb (>37) and Sr/Y (>78) ratios of the Daralu PCD indicate Light Rare Earth Elements (LREEs) enrichment comparative to Middle and Heavy Rare Earth Elements (MREEs and HREEs, respectively) (Table 1, Appendix 5) due to the garnet, clinopyroxene and hornblende occurrences in the melt source (Castillo, 2012; Martin et al., 2005; Peacock et al., 1994). Apparently, the Daralu granitoid is the product of partial melting of mafic rocks with garnet presence (low HREEs+Y) and the plagioclase absence (high Sr) which commonly intrudes in a post-collisional setting (Richards et al., 2012). Depending on the geodynamic context, these conditions usually prevail at depths of more than 30km (Castillo, 2012).

The (La/Yb)$_n$ vs. (Yb)$_n$ diagram of numerical batch-melting modeling (Drummont et al., 1996) indicates that the Daralu adakitic-like porphyry can be derived by >10% melting of the heavy minerals source (e.g. garnet and amphibolite; Rapp et al., 1991) and lack of plagioclase residual phase (Fig. 10).

The REEs patterns show strongly fractionated La$_n$/Yb$_n$ (avg. of 28.73) in the chondrite normalized plot (Fig. 11A). High chondrite-normalized La/Sm and Dy/Yb ratios can show enrichment of amphibole and garnet as residual phases in melt source for the Daralu porphyry. Also, lack of negative Eu anomalies (Eu$_n$/Eu$^{*}=1$) and LREEs enrichments, but flat to concave-downward MREEs-HREEs patterns, reflected in [Dy/Yb]$_{n}=0.71-2.22$ and [La/Sm]$_{n}=4.81-15.27$ can provide evidence supporting the amphibole involvement with minor garnet as a residual phase in the melt source.

These samples were depleted in Nb, Ta, Th, Zr, Hf and Ti as High-Field Strength Elements (HFSEs) and enriched in Cs, Rb, Ba and Pb as Large-Ion Lithophile Elements (LILEs) in primitive mantel-normalized spider plot (Fig. 11B).

The high values of LREEs indicate enrichment of mobile elements in magma during the dehydration process in melting temperature of the magma source (Rollinson, 1993) and thus confirm the hydration of these magmas. However, the low values of Yb indicate the presence of garnet and amphibole in the residual magma due to the preferential entrance of HREEs in these minerals (Yan et al., 2007). The distinct negative HFSEs anomalies (e.g. Ta, Nb and Ti) of the Daralu porphyry also suggest that the source rocks could have melted under high pressure (≥15Kbars) physical status (Xiong et al., 2006) in the
presence of heavy minerals (Defant and Kepezhinskas, 2001). This evidence indicates that the KCMA formed in continental arcs with thickened crust during the Tertiary (Shafiei et al., 2009).

The values of normalized LREEs/MREEs ([La/Sm]n) and normalized MREEs/HREEs ([Dy/Yb]n) ratios are reported in Table I, Appendix. All of the samples show moderate LREE enrichments ([La/Sm]n = 4.81–15.27) but only weak enrichment of MREEs relative to HREEs ([Dy/Yb]n = 0.71–2.22). According to Richards et al. (2012), these features can be used for discriminating the contribution of hornblende vs. garnet. The high [Dy/Yb]n values represent garnet fractionation and/or the presence of residual garnet in primary magmas, because as mentioned above, garnet has high partition coefficients for HREE.

The lack of negative europium anomaly (Table I, Appendix) in the Daralu is due to the fact that its source magma has originated from an environment in which plagioclase is not stable due to the presence of abundant water. Meanwhile, partial melting of plagioclase increases Eu and Sr in the remaining magma, which is typically pursued by formation of a productive magma (Kelemen et al., 2003). The preferential fractionation

| TABLE 4. Comparison of Daralu stock geochemical features with an adakitic magma |
|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | SiO2 (wt.%) | Na2O (wt.%) | Al2O3 (wt.%) | K2O (wt.%) | MgO (wt.%) | Rb (ppm) | Yb (ppm) | Y (ppm) | Sr/Y | Eu/Eu* | Zr/Sm | La/Yb |
| Adakite-like rocks | >56 | >3.5 | >15 | <3 | <3 | 51.9 | 518 | ≥400 | ≥20 | ≥1 | >30 | ≥20 |
| Daralu granitoid (average values) | 62.48 | 4.38 | 15.56 | 2.74 | 1.36 | 50.53 | 0.66 | 6.46 | 400.77 | 78.0 | 1.35 | 52.31 | 37.31 |
| Ref. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 |

of hornblende than plagioclase accumulation for the europium anomaly increases in the productive porphyries (Richards et al., 2012) such as Daralu porphyry system.

Geodynamic setting

The change of tectonic regime from pre- to post-collision between the Afro-Arabian and Eurasian plates in the KCMA led to transition from normal calc-alkaline arc magmatism in the Eocene–Oligocene (JB-type) to adakite-like magmatism (KP-type) in the mid–late Miocene–Pliocene (Asadi et al., 2014; Richards et al., 2012; Shafiei et al., 2009). This is attributed to transpressive crustal shortening and thickening (Asadi et al., 2014; Shafiei et al., 2009). In several previous regional studies of the KCMA, there are possible links between adakite-like porphyry and mineralization (Aghazadeh et al., 2015; Asadi, 2018; Atapour and Aftabi, 2021; Zaravandi et al., 2019).

Several scenarios have already been proposed for the development of adakitic or adakitic-like melts: i) melting of the thickened continental crust at arc or post-collision continental crusts (e.g. Topuz et al., 2011); ii) partial melting of subducted basaltic oceanic slab (e.g. Defant and Derummond, 1990; Delavari et al., 2014); iii) low-grade melting of the metasomatized mantle (e.g. Gao et al., 2007) and iv) high-pressure crystallization with garnet partnership (e.g. Macpherson et al., 2006).

In the case of the Daralu deposit, the adakitic-like feature is explained by high thickness of the continental crust and melting equilibrium at pressures greater than 10 kbar and outside the stability range of stable plagioclase, similar to the adakitic-like melts of active continental margins with high thickness (Topuz et al., 2011). Asadi et al. (2014) proposed a petrogenetic model based on partial melting of a mafic lower crust for the adakitic melts of the KP granitoids of the KCMA. Referring to the diagram of Figure 9C, the Daralu samples show similar partial melting trend (dashed line).

The Daralu samples plotted on the Th/Yb vs. La/Yb diagram (Condie, 1989; Fig. 12A) show the tectonic setting of continental arc margin within high arc maturity. In addition, as shown in Figure 12B, the tectonic setting of the Daralu deposit is mainly post-collisional within the normal continental arc in the R$_{2}$=6Ca+2Mg+Al diagram (De la Roche et al., 1980).

This environment in the KCMA is consistent with the Alpine-Himalayan collision and crustal thickening arising from magmatic arc evolution. The Neo-Tethys Ocean was closed at early Cenozoic (Dargahi et al., 2010)
and the subsequent collisional orogeny occurred during the tectonic evolution. The dating results confirm that the Daralu porphyry deposit with middle Miocene age (12.96Ma; Aghazadeh et al., 2015) is associated with the subsequent collisional regime.

According to Xiao and Clemens (2007), partial melting of mafic rocks at pressures equivalent to 40–50km crustal thickness (1.2–1.5GPa) can lead to the generation of adakitic melts. The La/Yb ratio content can be a proxy for the crustal thickness (Profeta et al., 2015). This ratio for the analyzed samples indicates a probable 40–55km crustal thickness in the Daralu suite (Fig. 13A). Lack of Ni and MgO contents in the adakitic magma from the thickened lower continental crust is due to the fact that magma does not pass through the mantle wedge. The Daralu samples have low Mg# numbers (<41.90) and MgO content (<2.77wt.%); therefore, they are plotted in the field of adakitic rocks formed by melting of the thickened lower crust (Figs. 13B; 14B), which is consistent with the Eocene adakitic magmas formed by the Central Iranian adakitic melts. The La/Yb ratio content can be a proxy for the crustal thickness (Profeta et al., 2015). This ratio for the analyzed samples indicates a probable 40–55km crustal thickness (1.2–1.5GPa) can lead to the generation of mafic rocks at pressures equivalent to 40−50km crustal thickness (Rapp et al., 2002).

Moreover, the samples with relatively high K2O are in the range of adakite in the Fe2O3−K2O−MgO ternary diagram (Aguillón-Robles et al., 2001; Fig. 14A); therefore, it can be concluded that the source materials of the Daralu intrusive body originated from lower thickened crust, where the garnet-bearing amphibolitic materials contain relatively high K2O (Fig. 14C, D).

Fluid evolution

The fluid evolution derived from fluid compositions and P−T evaluations shows an initial trend of decreasing pressure and salinity, further fluid cooling and boiling, and mixing with meteoric water, leading to sulfide precipitation in the Daralu deposit.

The spatial and temporal relationships between quartz veins and mineralization in the Daralu PCD, and the occurrence of various types of FIs (Table 3) indicate that the early forming and the main metallocgenic fluid was derived from relatively CO2-rich to CO2-poor aqueous phases due to the input of meteoric fluids. The values of Te (Ice) offer various amounts of cations Na+, K+, Ca2+, Mg2+ and Fe2+ in the type II FIs (Shepherd et al., 1985).

The Ts of fluid inclusions decreased from 451–580°C during the early ore-forming stage, to 217–395°C in the main stage, and finally to 210–310°C in the late stage. The FIs salinities evolved from 7.9–21.7wt.% NaCl eqv. in the early stage, with two clusters 3–12.2 and 35.9–55.9wt.% NaCl eqv. in the main stage, and 5.7–18.9wt.% NaCl eqv. in the late stage. The FIs salinities in the main ore stage are clearly higher than in the early and late ore stages, and show two different clusters (Fig. 15), which can be interpreted by escape of volatile phases (brine-vapor boiling) and fluid immiscibility (e.g. Dugdale and Hagemann, 2001; Hao et al., 2015).

As shown in Figure 15, the temperature of fluids in the Daralu deposit decreases from the early stage to the final stage, whereas salinity increases from the early stage to the main stage, and then decreases in the final stage. This indicates the primary magmatic origin of the mineralized fluids, subsequent development of the hydraulic fractures, and mixture of primary magmatic fluids with the meteoric fluids. These occurrences are responsible for the evolution of hydrothermal system towards low temperatures and salinity (Canet et al., 2011). The events such as NaCl supersaturation, exhaustion of CO2-rich components during hydrothermal system evolution in the primitive fluids, high oxygen fugacity (based on the aqueous inclusions containing hematite), and temperature decreasing through mineralization stages could be observed in the PCDs
repressing anomalously high mineralization (Pirajno, 2009).

The microthermometric results of this study showed that the FIs containing halite crystals in early veins were dominantly homogenized with halite melting. This feature is compatible with the behavior of halite-saturated FIs in economic porphyry systems (Bouzari and Clark, 2006). This compatibility could be attributed to supersaturation of halite before trapping or inhomogeneous trapping of halite-saturated fluids. These supersaturated fluids that are the sources of copper-bearing minerals tolerate the boiling process (Rusk et al., 2008). The coexistence of multiphase with vapor-rich FIs may display immiscibility or boiling during the trapping of these fluids.

The occurrence of CO₂-bearing FIs has been reported in porphyry systems that are related to collision settings (Li et al., 2007). The presence of CO₂ in the melts would result in early and deep magma degassing (Wallace, 2005). Significantly, removal of CO₂ from the system can be considered as a reducing factor which can play a main

![FIGURE 13. Plots of Daralu samples. A) MgO vs. La/Yb diagrame. The crustal thickness data after Ahmadian et al. (2009). Fields reference: adakites field from Richards and Kerrich (2007), and KP and JB fields after Shafiei et al. (2009). B) Mg# ([Mg numbers= 100×MgO/(MgO+0.9FeOtot)] vs. SiO₂ diagram. The thick lower crust derived adakite-like field based on Wang et al. (2006).](image)

![FIGURE 14. A) Fe₂O₃–K₂O–MgO ternary diagram. B) SiO₂ vs. MgO diagram, designated fields are from Karsli et al. (2011) and references therein. C) K₂O/Na₂O vs. Th. D) K₂O/Na₂O vs. Rb. C and D diagrams after Delavari et al. (2014), indicating that the Daralu rocks generated by partial melting of thickened mafic lower crust.](image)
role in the abundances of metals, and thus promoting the mineralization (Liang et al., 2009). This is due to the transported metal complexes and sulfur in the reduction conditions and stability of complexes until the final stages of mineralization (Pokrovski et al., 2008). The main ore-forming stage of copper occurred by advanced H₂O+CO₂ boiling and subsequent early-stage cooling of ore-forming fluid in the Daralu PCD.

The trapping pressures of H₂O−CO₂−NaCl system, measured by the FLUIDS software (Bakker, 2003), were between 145 to 980MPa, which is equivalent to depths between 3.6 and 5.3 kilometers (assuming ~27MPa per 1km of pressure gradient). These depths coincide with the 1−5km mineralization depth of porphyry deposits (Pirajno, 2009). The decrease in trapping pressure of the fluid inclusions is like the Alpine–Himalayan magmatic−hydrothermal systems (Li et al., 2012).

According to Table 3, in the late-stage, the pressure decreases with salinity and temperature, showing fluids dilution and cooling during the late stage. Kreuzer (2005) proposed that events such as the decrease in pressure, temperature and salinity from early toward late stages can be attributed to the mixing process of hydrothermal fluid with meteoric water. It is concluded that the fluid system evolution followed by input of meteoric water considerably reduces the salinity and temperature of magmatic fluid in the Daralu PCD.

The magmatic-hydrothermal fluids of porphyry systems that originated from lower thickened juvenile continental crust in collisional settings, show relatively high CO₂/H₂O ratios (Yang et al., 2013). Asadi et al. (2013) and Zaravandi et al. (2019) suggested that the CO₂−bearing fluid inclusions could be the indicative markers for porphyry systems in collisional settings. Therefore, it is suggested that the moderate activity of NaCl as a result of high CO₂ content in ore-forming fluids (Robb, 2005), and the increase of H₂S/HS activity (S') due to the CO₂ effervescence (Asadi, et al, 2013) possibly lead to precipitation of chalcopyrite and other sulfide minerals in the Daralu porphyry system.

The sulfur isotope data of pyrite and chalcopyrite of all types of veins in the Daralu porphyry system show an average of δ³⁴S=5.5‰ (Table 2) which is close to the values analyzed for other KP-type deposits in the KCMA central part such as; δ³⁴S= 2.4‰ for Dareh Zar (Aghazadeh et al., 2015), δ³⁴S= 0.9‰ for Sarcheshmeh (McInnes et al., 2003), and δ³⁴S= 2.7‰ for Sarkuh (Mirnejad et al., 2013). This feature of the Daralu deposit complies with values analyzed for granitic rocks (Hoefs, 2009), and is similar to many porphyry systems with an average range of 0 to 5‰, which confirms their magmatic origin (Shanks, 2014).

Sulfur isotope composition in magmatic-hydrothermal systems is determined by factors such as temperature, pH and oxygen fugacity (fO₂), the total sulfur isotopic composition of fluid (Σδ³⁴S), and the oxidized sulfur species versus reduced species (SO₄/H₂S ratio) of hydrothermal fluid (Ohimoto and Ray, 1979). High values of ³⁴S may be related to the interaction between the magmatic sulfur and an enriched source of ³⁴S (evaporative units) and/or the wall rock assimilation (Hoefs, 2009) or may be related to the dissolution and mobility of pre-deposited ores. No high evaporation and sedimentary sulfides with heavier isotope composition of sulfur have been reported from the Daralu area.

Wagner et al. (2004) and Li et al. (2012) proposed that magmas with high CO₂ content have undergone significant amounts of crustal fusion, which are observed typically in intercontinental hydrothermal systems such as porphyry, skarn, and Iron Oxide Copper-Gold (IOCG) deposits. Since CO₂ was detected in the FIs of the Daralu deposit, they suggested that the parent magma of this porphyry was significantly impregnated with the crustal material. Taghipour (2007) indicated that the fluids of relatively oxidized I-type granitoids will tend to be δ³⁴S ~4‰ more enriched than their source magma.

Implications for economic potential

The main aspects of a productive porphyry are MnO <0.1wt.%, Y <18ppm, and the concentrations of <100ppm for HFSEs (Lang and Titley, 1998). Accordingly, the Daralu samples are plotted on the productive field of the Y vs. MnO diagram (Fig. 16A).

FIGURE 15. Diagram of homogenization temperature vs. salinity for 70 fluid inclusions in quartz from three different quartz veins (M-type, A-type and D-type) of the Daralu PCD. The critical point and halite saturation curves showing densities (g/cm³) of fluid inclusions (after Wilkinson, 2001). Daralu hydrothermal fluid evolution is mainly controlled by decreasing in homogenization temperature and salinity trend from stages 1 to 3. Evolutionary paths (Surface fluid dilution, Boiling [low salinity, CO₂−bearing], Cooling and Boiling) after Wilkinson (2001).
The positive anomaly of europium observed in the Daralu deposit (Fig. 16B) can be attributed to the availability of large amounts of water and high oxygen fugacity in the lower crustal sources of magma (Richards et al., 2012), leading to an oxidative hydrous magma. The magmas formed under oxidant conditions can result in the separation of sulfide phases and carrying the sulfur and copper to the final stages of crystallization, which eventually can give rise to the porphyry copper mineralization (Mungall, 2002).

The connection between adakitic stocks and the PCDs has already been suggested by some authors (e.g., Conly et al., 2006; Hattori and Keith, 2001; Richards and Kerrich, 2007). In the UDMA, most of the economic PCDs (Kuh Panj-type) are associated with adakitic intrusions (Asadi et al., 2014). Hollings et al. (2005) stated that only those adakites that are formed by melting of the lower mafic crust or by the fractional crystallization of the hydrous basaltic magmas contain the key factors for Cu mineralization. Dehydration of magma during its evolution is a dominant factor that leads to entrance of chalcophile elements (e.g., Cu and Mo) into the adakitic magmas (Liu et al., 2010).

The fluid inclusion data of the Daralu porphyry including NaCl supersaturation, CO$_2$ presence in the ore-forming fluids, temperature decrease in the main stage of mineralization with signs of boiling, and high oxygen fugacity (presence of hematite) suggest that the mineralization potential has increased during the evolution of a hydrothermal system.

According to the microthermometric data in quartz veins, the fluid system evolved from high-temperature, medium-salinity, high-pressure and CO$_2$-rich to low-temperature, low-pressure, high-salinity and CO$_2$-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. The scape of CO$_2$ may have been a factor in increasing the activities of NaCl in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulfides and trapping of multi–phase solid inclusions in hydrothermal quartz veins.

CONCLUSIONS

Based on geochemical data, the Daralu system is a highly mineralized economic PCD. Evaluating the attributes of the magmatic-hydrothermal systems and its progress from early to main, and late stages, led us to a better understanding of fertility signatures in the Daralu collisional PCD. The key signatures could be predicted by the following conclusions:

i) Similar to other productive porphyry granitoids of KP-type in the KCMA, the Daralu porphyry intrusive is a peraluminous I-type granodiorite with high-K calc-alkaline nature that shows adakitic-like affinity by high Sr, and low Y and Yb. These features, along with the high LREE, low HREE, and absence of europium anomaly, indicate that the Daralu magmatic suite has originated from a hydrous-oxidant magma with the plagioclase-free environment in which the amphibole and garnet play the main role of REE distribution/separation in the residual melting.

ii) The Daralu deposit is characterized by negative anomalies of Nb, Ti, and Ta, and high Sm/Yb values, representing the high assimilation of a thickened crust which indicates the garnet contribution in a high-pressure condition during the evolution of Daralu intrusion. This deposit was formed in a post-collisional tectonic setting and can be considered as one of the Miocene intrusions of the UDMA.

iii) La/Sm and Sm/Yb ratios of the Daralu samples show an increasing trend of the crustal thickening similar to the Andean orogenic belt which is also confirmed by the La/Yb ratio that presumably indicates 40–55km crustal thickness in the Daralu suite. Based on this evidence and the Mg number (Mg#), we concluded that Daralu adakitic magma was originated from melting of a thickened mafic lower crust.

\[\text{La/Sm} \text{ and } \text{Sm/Yb ratios of the Daralu samples show an increasing trend of the crustal thickening similar to the Andean orogenic belt.} \]
iv) Homogenization temperature decreases and salinity of fluid inclusions increases from the pre- to main ore stages during hydrothermal fluid evolution. Most of the fluid inclusions in the primitive hydrothermal fluids represented NaCl supersaturation (35.98−55.95wt.% NaCl eqv.) in the Daralu deposit. CO₂ is present in the fluid inclusions of early-stage and losses in the late stage during magmatic-hydrothermal transition. The hematite and magnetite occurrence in fluid inclusions of the pre-ore stage indicated high oxygen fugacity and is of critical importance for sulphate reduction and copper mineralization. Integration of these factors indicates a magmatic-hydrothermal fluid favor with high contents of metal and sulfur for generation of an economic deposit in the Daralu area.

v) The positive content of δ³⁴S (avg. +5.5‰) at the Daralu deposit can be described by the contribution originating from crustal sources through the sulfurization process.

vi) In contrast to the previous arguments (e.g. Asadi et al., 2014; Khosravi et al., 2019; Shafiei et al., 2009; Zarasvandi et al., 2015), geochemical data of this work suggested that Daralu is associated with an adakitic intrusion originating from partial melting of a garnet-bearing mafic source of thickened lower crust in a collisional setting.

v) Based on the results presented here, the intimate relationship between the adakitic magmas and fertile metallogenic environment, as well as orogenic arc crust evolution for porphyry deposits in the economic KP type, the Daralu could be considered as an economic PCD. It can be explained by high Cu grade (~0.4%) and tonnage (~200Mt) data in the Daralu.

ACKNOWLEDGMENTS

The Research and Development Center of National Iranian Copper Industries Company (NICICo) funded this work. Authors are sincerely grateful to the Daralu mine staff for providing the facilities during field works.

REFERENCES

Asadi, S., 2018. Triggers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: new constraints from elemental and isotopic (Sr-Nd-Hf-O) data. Gondwana Research, 64, 97-121. DOI: https://doi.org/10.1016/j.gr.2018.06.008

Asadi, S., Moore, E., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Science Reviews, 138, 25-46. DOI: https://doi.org/10.1016/j.earscirev.2014.08.001

Investigating geochemical features of the Daralu porphyry copper

Richards, JR., Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4), 537-576. DOI: https://doi.org/10.2113/gsecongeo.102.4.537

Manuscript received October 2022; revision accepted October 2023; published Online December 2023.
APPENDIX I

TABLE I. Characteristics of vein groups in the Daralu deposit

<table>
<thead>
<tr>
<th>Samples code</th>
<th>Dau 32</th>
<th>Dau 39</th>
<th>Dau 42</th>
<th>Dau 251</th>
<th>Dau 379</th>
<th>Dau 98</th>
<th>Dau 113</th>
<th>Dau 116</th>
<th>Dau 156</th>
<th>Dau 186</th>
<th>Dau 214</th>
<th>Dau 217</th>
<th>Dau 230</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.9</td>
<td>61.37</td>
<td>59.44</td>
<td>70.75</td>
<td>69.76</td>
<td>56.78</td>
<td>67.65</td>
<td>58.9</td>
<td>61.73</td>
<td>59.44</td>
<td>68.66</td>
<td>59.13</td>
<td>62.82</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.59</td>
<td>0.47</td>
<td>0.59</td>
<td>0.17</td>
<td>0.31</td>
<td>0.67</td>
<td>0.32</td>
<td>0.59</td>
<td>0.47</td>
<td>0.59</td>
<td>0.23</td>
<td>0.64</td>
<td>0.42</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.47</td>
<td>16.52</td>
<td>17.35</td>
<td>10.48</td>
<td>9.73</td>
<td>16.76</td>
<td>14.13</td>
<td>18.47</td>
<td>16.52</td>
<td>17.35</td>
<td>14.11</td>
<td>16.82</td>
<td>16.4</td>
</tr>
<tr>
<td>FeO</td>
<td>4.84</td>
<td>5.17</td>
<td>4.45</td>
<td>6.56</td>
<td>7.07</td>
<td>5.96</td>
<td>4.21</td>
<td>5.58</td>
<td>6.04</td>
<td>5.84</td>
<td>3.96</td>
<td>5.81</td>
<td>4.25</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.04</td>
<td>0.13</td>
<td>0.03</td>
<td>0.02</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.13</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>1.17</td>
<td>1.13</td>
<td>2.77</td>
<td>0.46</td>
<td>1.26</td>
<td>1.73</td>
<td>2.11</td>
<td>1.17</td>
<td>2.77</td>
<td>0.67</td>
<td>1.47</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>5.05</td>
<td>4.07</td>
<td>4.06</td>
<td>1.53</td>
<td>3.47</td>
<td>5.73</td>
<td>4.1</td>
<td>5.05</td>
<td>4.07</td>
<td>4.06</td>
<td>2.29</td>
<td>4.5</td>
<td>4.07</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.25</td>
<td>3.74</td>
<td>4.6</td>
<td>2.98</td>
<td>3.36</td>
<td>4.59</td>
<td>4.44</td>
<td>5.25</td>
<td>3.74</td>
<td>4.6</td>
<td>4.91</td>
<td>4.27</td>
<td>3.55</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.02</td>
<td>3.12</td>
<td>2.99</td>
<td>2.69</td>
<td>1.55</td>
<td>2.13</td>
<td>1.87</td>
<td>3.02</td>
<td>3.12</td>
<td>2.99</td>
<td>3.37</td>
<td>3.08</td>
<td>3.11</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
<td>0.08</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.04</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>97.48</td>
<td>95.78</td>
<td>96.53</td>
<td>95.69</td>
<td>96.6</td>
<td>94.58</td>
<td>98.04</td>
<td>98.23</td>
<td>97.02</td>
<td>97.93</td>
<td>98.31</td>
<td>95.94</td>
<td>95.61</td>
</tr>
<tr>
<td>Mg#</td>
<td>34.15</td>
<td>24.20</td>
<td>26.26</td>
<td>22.85</td>
<td>37.36</td>
<td>30.40</td>
<td>35.38</td>
<td>35.40</td>
<td>41.90</td>
<td>49.75</td>
<td>27.84</td>
<td>26.71</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>1.09</td>
<td>1</td>
<td>1.07</td>
<td>1.02</td>
<td>1.01</td>
<td>1.02</td>
<td>1</td>
<td>0.91</td>
<td>1</td>
<td>1.02</td>
<td>0.93</td>
<td>0.93</td>
<td>1.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>1.5</td>
</tr>
<tr>
<td>Sc</td>
<td>4.3</td>
</tr>
<tr>
<td>V</td>
<td>67</td>
</tr>
<tr>
<td>Cr</td>
<td>4</td>
</tr>
<tr>
<td>Co</td>
<td>5.5</td>
</tr>
<tr>
<td>Ni</td>
<td>2</td>
</tr>
<tr>
<td>Zn</td>
<td>55</td>
</tr>
<tr>
<td>Rb</td>
<td>68</td>
</tr>
<tr>
<td>Sr</td>
<td>479</td>
</tr>
<tr>
<td>Y</td>
<td>2.6</td>
</tr>
<tr>
<td>Yb</td>
<td>0.4</td>
</tr>
<tr>
<td>Zr</td>
<td>82</td>
</tr>
<tr>
<td>Nb</td>
<td>5.4</td>
</tr>
<tr>
<td>Cs</td>
<td>38.1</td>
</tr>
<tr>
<td>Ba</td>
<td>526</td>
</tr>
<tr>
<td>La</td>
<td>28</td>
</tr>
<tr>
<td>Ce</td>
<td>47</td>
</tr>
<tr>
<td>Pr</td>
<td>4.18</td>
</tr>
<tr>
<td>Nd</td>
<td>15.6</td>
</tr>
<tr>
<td>Sm</td>
<td>1.92</td>
</tr>
<tr>
<td>Eu</td>
<td>0.79</td>
</tr>
<tr>
<td>Gd</td>
<td>1.42</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>0.74</td>
</tr>
<tr>
<td>Er</td>
<td>0.22</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.4</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
</tr>
<tr>
<td>Hf</td>
<td>2.49</td>
</tr>
<tr>
<td>Ta</td>
<td>0.45</td>
</tr>
<tr>
<td>Pb</td>
<td>17</td>
</tr>
<tr>
<td>Ti</td>
<td>3053</td>
</tr>
<tr>
<td>Th</td>
<td>6.69</td>
</tr>
</tbody>
</table>

Notes: ppm = parts per million.
Investigating geochemical features of the Daralu porphyry copper

<table>
<thead>
<tr>
<th>Samples code</th>
<th>Dau 32</th>
<th>Dau 39</th>
<th>Dau 42</th>
<th>Dau 251</th>
<th>Dau 379</th>
<th>Dau 98</th>
<th>Dau 113</th>
<th>Dau 116</th>
<th>Dau 156</th>
<th>Dau 186</th>
<th>Dau 214</th>
<th>Dau 217</th>
<th>Dau 230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt.%</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>1.7</td>
<td>1.9</td>
<td>1.1</td>
<td>0.3</td>
<td>1.48</td>
<td>0.4</td>
<td>1.8</td>
<td>1.5</td>
<td>1.1</td>
<td>0.4</td>
<td>1.0</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>1.41</td>
<td>1.78</td>
<td>1.06</td>
<td>0.76</td>
<td>1.39</td>
<td>1.22</td>
<td>2.25</td>
<td>1.6</td>
<td>1.3</td>
<td>1.09</td>
<td>1.21</td>
<td>1.18</td>
<td>1.36</td>
</tr>
<tr>
<td>Nb/Ta</td>
<td>12.54</td>
<td>10.34</td>
<td>12.34</td>
<td>3.1</td>
<td>4</td>
<td>7.6</td>
<td>4.9</td>
<td>7.1</td>
<td>7.5</td>
<td>6.4</td>
<td>5.5</td>
<td>7.77</td>
<td>7.31</td>
</tr>
<tr>
<td>Sr/Y</td>
<td>184.03</td>
<td>129.34</td>
<td>51.87</td>
<td>48.19</td>
<td>56.50</td>
<td>77.84</td>
<td>113.91</td>
<td>162.16</td>
<td>32.57</td>
<td>17.83</td>
<td>52.64</td>
<td>185.20</td>
<td></td>
</tr>
<tr>
<td>La/Yb</td>
<td>70.35</td>
<td>35.19</td>
<td>12.22</td>
<td>24</td>
<td>24.4</td>
<td>45</td>
<td>33.33</td>
<td>130</td>
<td>16</td>
<td>20</td>
<td>18.88</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Zr/Sr</td>
<td>42.70</td>
<td>67.52</td>
<td>29.01</td>
<td>3.49</td>
<td>25</td>
<td>45.09</td>
<td>22.72</td>
<td>76</td>
<td>41.60</td>
<td>4.03</td>
<td>3.9</td>
<td>41.66</td>
<td>21.77</td>
</tr>
<tr>
<td>La/Sr</td>
<td>14.58</td>
<td>17.94</td>
<td>7.45</td>
<td>7.69</td>
<td>60</td>
<td>19.7</td>
<td>41.81</td>
<td>20</td>
<td>18.97</td>
<td>12.90</td>
<td>15.74</td>
<td>10.89</td>
<td>16.93</td>
</tr>
<tr>
<td>Sm/Yb</td>
<td>10.95</td>
<td>1.58</td>
<td>1.58</td>
<td>0.4</td>
<td>1.7</td>
<td>0.55</td>
<td>1.66</td>
<td>6.85</td>
<td>1.24</td>
<td>1.27</td>
<td>1.73</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>(La/Sm)_n</td>
<td>9.41</td>
<td>11.58</td>
<td>4.81</td>
<td>4.96</td>
<td>37.2</td>
<td>9.38</td>
<td>15.27</td>
<td>12.91</td>
<td>12.25</td>
<td>8.32</td>
<td>10.16</td>
<td>7.03</td>
<td>10.93</td>
</tr>
<tr>
<td>(Dy/Yb)_n</td>
<td>1.23</td>
<td>1.09</td>
<td>0.91</td>
<td>1.14</td>
<td>2.22</td>
<td>0.89</td>
<td>1.05</td>
<td>0.85</td>
<td>1.47</td>
<td>1.03</td>
<td>1.09</td>
<td>1.05</td>
<td>0.71</td>
</tr>
</tbody>
</table>

ASI = molar Al₂O₃/(CaO+K₂O+Na₂O), Mg# numbers = (100 × MgO / (MgO + 0.9 FeO)), Eu*/ Eu = √Sm/√Gd