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Introduction

The relative concentration of strontium to calcium (Sr/
Ca) in mammalian bioapatite has proven to be an effective 

indicator of trophic level, dietary behavior, and habitat 
use in both modern and ancient ecosystems (Elias et al., 
1982; Sillen, 1986; Sealy and Sillen, 1988; Sillen et al., 
1992; Gilbert et al., 1994; Burton et al., 1999; Blum et 
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The early Late Miocene vertebrate locality of Rudabánya II (R. II) in northeastern Hungary preserves an 
abundance of forest-adapted ungulate species. To better understand the ecological relationships within this ancient 
ecosystem, we used analysis of enamel strontium/calcium (Sr/Ca) ratios to infer dietary preferences. The goals of 
the analysis were to: i) determine whether these ungulate species specialized in specific plants or plant parts; ii) 
discern whether the Sr/Ca ratios support what was previously suggested about the ecology of these species and iii) 
evaluate the factors that may have acted to promote coexistence within this diverse community of predominantly 
browsing herbivores. Results show significant differences in the diets of the sampled species. The highest Sr/Ca 
ratios were displayed by the suids Parachleuastochoerus kretzoii (fortelius et al., 2005) and Propotamochoerus 
palaeochoerus (pilgrim, 1926) implying a preference for Sr-rich underground plant parts. Elevated Sr/Ca ratios 
yielded by the cervid Lucentia aff. pierensis (thomas, 1951) and equid Hippotherium intrans (kretzoi, 1983) are 
indicative of intermediate feeding. The bovid Miotragocerus sp. (stromer, 1928) showed higher Sr/Ca ratios than 
the gomphothere Tetralophodon longirostris (kaup, 1832), which is incongruent with morphological and stable 
isotope data, and suggested browsing by both taxa. This finding is likely the result of a difference in digestive 
physiology (ruminant vs. monogastric) rather than a difference in dietary behaviour. The lowest Sr/Ca ratios were 
displayed by the traguild Dorcatherium naui (kaup and scholl, 1834) and moschid Micromeryx flourensianus 
(lartet, 1851) suggesting a preference for Sr-poor fruits. Resource specialization and partitioning within the 
local environment likely acted to decrease interspecific competition and promote coexistence within the diverse 
ungulate community at R. II.
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al., 2000; Balter et al., 2002; 2012; Palmqvist et al., 2003; 
Lee-Thorp et al., 2003; Balter, 2004; Sponheimer et al., 
2005; Sponheimer and Lee-Thorp, 2006; Domingo et al., 
2012; Peek and Clementz, 2012; Qu et al., 2013; de Winter 
et al., 2016). Strontium is a non-essential trace element, 
which mammals discriminate against relative to Ca in 
their intestines, kidneys, sites of bioapatite formation, 
and across the placenta and mammary glands (Taylor et 
al., 1962; Lengemann, 1963; Walser and Robinson, 1963; 
Underwood, 1977; Sasaki and Garant, 1986; Avioli, 1988; 
Rossipal et al., 2000; Chattopadhyay et al., 2007). This 
results in herbivore tissues having lower Sr/Ca ratios than 
the plants they consume and carnivores having lower Sr/Ca 
ratios than their prey (Elias et al., 1982; Burton et al., 1999; 
Blum et al., 2000). Systematic variations in Sr/Ca ratios 
also occur within trophic levels and can be used to assess the 
relative dietary contribution of certain plants and plant parts 
(Rao, 1979; Runia, 1987; Burton et al., 1999; Sponheimer 
et al., 2005; Sponheimer and Lee-Thorp, 2006; Domingo 
et al., 2012). Due to a decrease in Sr concentration that 
occurs during xylem transport (centripetal accumulation) 
plant roots and stems have higher Sr/Ca ratios than leaves 
and fruits (Bowen and Dymond, 1955; Runia, 1987; 
Sillen, 1992; Burton et al., 1999; Sponheimer et al., 2005; 
Drouet and Herbauts, 2008). Grasses have been shown 
to have higher concentrations of Sr than the leaves of 
dicotyledonous plants (Sponheimer and Lee-Thorp, 2006). 
By analyzing the Sr/Ca ratios of sympatric mammalian 
herbivores it is possible to evaluate differences in dietary 
resource use and gain a better understanding of the factors 
that act to promote species coexistence. Here we use Sr/Ca 
ratios of fossil tooth enamel to evaluate dietary resource 
use within the ungulate community at Rudabánya II (R. II), 
an early Late Miocene (early Vallesian; ~10Ma) vertebrate 
locality in northeastern Hungary. The faunal assemblage 
at R. II preserves an abundance of forest-adapted fauna 
and presents a unique opportunity to examine species 
coexistence during a dynamic period in the evolution of 
terrestrial ecosystems in Europe.

During the early Vallesian (11.2–9.7Ma), mammalian 
communities in central and western Europe achieved 
exceptionally high levels of species diversity (Agustí et al., 
1997, 2003, 2013; Franzen and Stroch, 1999; Daxner-Höck, 
2004; Bernor et al., 2004; Casanovas-Vilar et al., 2014, 
2016). The entry of new woodland-adapted immigrant 
taxa (hipparione horses, giraffids, and boselaphine bovids) 
during this time is not associated with the local extinction 
of forest-adapted faunas (Agustí et al., 1997; Franzen and 
Stroch, 1999), suggesting low levels of competition. This 
period of optimum diversity was followed by the decline 
of forest-dwelling browsers and rise of woodland-adapted 
mixed-feeders and grazers (Fortelius et al., 2002). It was 
traditionally hypothesized that the diversity of forest-
adapted taxa decreased abruptly at the early/late Vallesian 

boundary (~9.7Ma) in a faunal turnover event termed the 
Vallesian Crisis (Agustí and Moyà-Solà, 1990; Agustí et 
al., 1997, 1999, 2003, 2013; Fortelius et al., 1996; Fortelius 
and Hokkanen, 2001). However, more recent analysis 
suggests that the demise of forest-dwelling communities 
occurred gradually through a series of extinction events 
that began in the late Vallesian/early Turolian (Franzen 
et al., 2013; Casanovas-Vilar et al., 2014, 2016; Daxner-
Höck et al., 2016). 

To better understand how early Vallesian ecosystem 
functioned it is necessary to examine the complex 
ecological relationships that occurred within each trophic 
level. In this study, we use Sr/Ca ratios to evaluate the diets 
of early Vallesian ungulates with the aim of determining: i) 
whether the sampled ungulate species show specialization 
for specific plants or plant parts, ii) whether Sr/Ca ratios 
support what is known about the ecology of these particular 
ungulate species from other methods, and iii) what factors 
may have acted to maintain coexistence within this diverse 
community of predominantly browsing herbivores.

Geological setting

Rudabánya is an early Late Miocene (early Vallesian) 
vertebrate paleontological locality situated within the 
Pannonian Basin, on the western flank of the northern 
Carpathian Mountains, in northeastern Hungary 
(N48º22’48.13”, E20º37’43.57”; Fig. 1). There are several 
vertebrate localities within the Rudabánya complex; the 
current study analyzes fauna from the R. II locality. The 
fossiliferous deposits at Rudabánya accumulated near the 
shoreline of Lake Pannon, which formed at approximately 
11.6Ma (Kázmér, 1990; Rögl, 1998; Magyar et al., 1999; 
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FIGURE 1. The Pannonian Basin with estimated maximum extension of 
Lake Pannon at ca. 10Ma indicated by white shading. Black diamond 
marks position of Rudabánya (N48°22’48.13”, E20°37’43.57”). 
Black circles indicate position of Belgrade, Bucharest, Budapest, 
Vienna, and Zagreb for reference (modified from Rögl, 1998; Magyar 
et al., 1999; Popov et al., 2004).
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Popov et al., 2004). Lake Pannon reached its maximum 
extent (c 290,000km2) between 10.5–10Ma, during a 
period of high precipitation and humidity (Magyar et al., 
1999; Harzhauser and Mandic, 2004; Harzhauser, 2007; 
Harzhauser et al., 2008; Utescher et al., 2017). During 
this period coastal environments were characterized by 
extensive marshes grading into forested-wetlands, and 
mixed evergreen and deciduous forest (Kretzoi et al., 
1976; Erdei et al., 2007; Harzhauser et al., 2008; Halby 
and Erdei, 2013; Utescher et al., 2017). Palaeobotanical 
remains from R. II reflect a swamp association dominated 
by deciduous taxa (Kretzoi et al., 1976; Halby and Erdei, 
2013). Stable isotope analysis of 10 species of ungulates 
from R. II indicates a variable forest environment, which 
included both open and closed canopy habitats (Eastham 
et al., 2016).

The depositional sequence at R. II is comprised of 
cyclic layers of clay, mud, and lignite totaling 8-12 meters. 
While the sequence is too short to tie into the geomagnetic 
timescale, the evolutionary stage of the fauna suggests it 
belongs near the top of the MN9 land mammal zone (10–
9.8Ma) (Kordos, 1991; Andrews et al., 1996; Bernor et al., 
2003; Andrews and Cameron, 2010; Casanovas-Vilar et 
al., 2011). The current study analyzes fauna from the black 
mud and gray marl depositional layers as one community. 
A lack of faunistic difference has been observed between 
these depositional layers suggesting that they sample 
overlapping communities (Kordos and Begun, 2002). 
Stable isotope analysis showed no significant difference 
in the values of fauna from the black mud and gray marl 
indicating little, if any, change in environmental conditions 
(Eastham et al., 2011). 

With 112 vertebrate species, including 69 species 
of mammals, R. II represents one of the richest early 
Vallesian palaeontological sites in Europe. The majority of 
the ungulate taxa are morphologically inferred as browsers 
including Dorcatherium naui (Tragulidae; kaup and 
scholl, 1834), Micromeryx flourensianus (Moschidae; 

lartet, 1851), Miotragocerus sp. (Bovidae; stromer, 
1928), Tapirus cf. priscus (Tapiridae; kaup, 1833), 
Chalicotherium aff. goldfussi (Chalioctheriidae; kaup, 
1833), Hoploaceratherium belvederense (Wang, 1929), 
Aceratherium incisivum (kaup, 1832) and Lartetotherium 
aff. sansaniensis (lartet, 1851) (Rhinocerotidae), and 
Tetralophodon longirostris (Gomphotheriidae; kaup, 
1832). Suid taxa include a suine, Propotamochoerus 
palaeochoerus (pilgrim, 1926), first known from 
the Middle Miocene, and a primitive tetraconodont, 
Parachleuastochoerus kretzoii (fortelius et al., 2005). 
The equid Hippotherium intrans (kretzoi, 1983), a 
derived member of the Hippotherium lineage, shows 
morphological adaptations suggestive of more cursorial 
behaviour (Bernor et al., 2003, 2004; Scott et al., 2005). 
Patterns of meso- and microwear, as well as and stable 
isotope values indicate that the equid was an intermediate 
feeder (engaged in both browsing and grazing; Merceron 
et al., 2007; Tütken et al., 2013; Eastham et al., 2016). 
Intermediate feeding has also been interpreted for the 
cervid Lucentia aff. pierensis on the basis of meso- and 
microwear and stable isotopes (Merceron et al., 2007; 
Eastham et al., 2016). R. II is one of the very few Late 
Miocene sites in Eurasia that preserves extensive samples 
of both a hominoid and pliopithecoid (Andrews et al., 
1997: Harrison, 2002; Kordos and Begun, 2002; Armour-
Chelu et al., 2005). Rudapithecus hungaricus (kretzoi, 
1969) and Anapithecus hernyaki (kretzoi, 1975) have been 
recovered from the same depositional layers supporting the 
assumption of sympatry in these fossil primates (Andrews 
et al., 1997; Kordos and Begun, 2002; Armour-Chelu et 
al., 2005).

materials and methods

All of the faunas sampled in the current study were 
recovered from the R. II locality within the Rudabánya 
complex. A total of 45 enamel samples from eight genera 
of medium to large-bodied mammals were analyzed 

Taxon Family N Sr/Ca x 1000 
Mean SD Range 

Dorcatherium naui Tragulidae 4 0.52 0.13 0.45 To 0.70
Hippotherium intrans Equidae 8 0.89 0.23 0.62 To 1.21
Lucentia aff. pierensis Cervidae 9 0.92 0.27 0.60 To 1.26
Micromeryx flourensianus Moschidae 6 0.57 0.16 0.31 To 0.73
Miotragocerus sp. Bovidae 8 0.82 0.22 0.58 To 1.20
Parachleuastochoerus kretzoii Suidae 4 1.54 0.38 1.25 To 2.08
Propotamochoerus palaeochoerus Suidae 4 1.22 0.19 0.98 To 1.42
Tetralophodon longirostris Gomphotheriidae 2 0.77 0.05 0.73 To 0.80

TABLE 1. Descriptive statistics for the R. II ungulate species analyzed in this study.

TABLE 1. Descriptive statistics for the R. II ungulate species analyzed in this study. SD indicates the standard deviation
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(Table 1). Bedrock geology controls groundwater and 
soil trace element concentrations, making the direct 
comparison of trace element ratios from plants and 
animals living in different regions quite difficult (Sillen 
and Kavanagh, 1982; Sealy and Sillen, 1988; Sponheimer 
and Lee-Thorp, 2006; Kohn et al., 2013). There has been 
extensive work examining the post mortem incorporation 
of trace elements into mammalian bones and teeth (Kyle, 
1986; Price et al., 1992; Trueman and Tuross, 2002). In 
fact, trace element ratios of fossil bone have been proposed 
as a proxy for fossil provenance based upon the presumed 
prominent incorporation of trace elements through 
diagenesis (Trueman and Benton, 1997; Ségalen et al., 
2008; Tutken et al., 2011; Herwartz et al., 2013; Kohn and 
Moses, 2013). Enamel was chosen for analysis over bone or 
dentine in this study because of its resistance to diagenetic 
alteration, due in part to its greater mineral content and lack 
of natural pores, and because it repeatedly has been shown 
to reliably reflect originally incorporated geochemical 
values (Lee-Thorp and van der Merwe, 1987, 1991; Wang 
and Cerling, 1994; Kohn et al., 1999; Sponheimer and 
Lee-Thorp, 1999; 2006; Fourie et al., 2008; Tutken et al., 
2008; Domingo et al., 2009, 2012; Brügmann et al., 2012). 
The exact mechanisms controlling trace element uptake in 
mammalian bioapatites are not completely understood and 
are thought to vary per element (Burton and Price, 2002; 
Kohn et al., 2013). However, the uptake of trace elements 
through drinking water is generally thought to be too low 
to account for the concentrations found in teeth and bone, 
and instead it is suggested that diet and the ingestion of soil 
and dust account for in vivo trace element incorporation 
(Underwood, 1977; Sillen, 1992; Sponheimer et al., 2005; 
Sponheimer and Lee-Thorp, 2006; Kohn et al., 2013). 
While the majority of previous trace element studies have 
focused on Plio-Pleistocene and Holocene fossil material, 
works by Domingo et al. (2009, 2012) and Eberle et al. 
(2009) have shown the preservation of biogenic signals in 
Middle Miocene and Early Oligocene mammalian tooth 
enamel. Because the goal of our analysis was to examine 
variation in the feeding behaviour of adult animals, we 
preferentially sampled teeth that are among the last to 
develop, mineralize, and erupt (Hillson, 2005). Enamel 
(~10mg) was removed using a low speed FOREDOMTM 
drill and carbide dental burs. 2-3mm wide samples were 
taken along the non-occlusal surface parallel to the growth 
axis across the entire length of the tooth, which provides 
average values of resource use during tooth development, 
typically representing many months to a few years. 

Samples were chemically pretreated with hydrogen 
peroxide (30%, H2O2) to remove organics and weak acetic 
acid (0.1N, CH3CO2H) to remove secondary carbonates 
(Koch et al., 1997). Samples were centrifuged at a high 
speed and rinsed in distilled water to neutral pH before 
proceeding with the next solution. The remaining sample 
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P. kretzoii - 
P. palaeochoerus 0.06 
L. aff. pierensis 0.00* 0.04* 
Miotragocerus sp. 0.00* 0.01* 0.32 
H. intrans 0.00* 0.03* 0.81 0.46 
T. longirostris 0.00* 0.03* 0.40 0.83 0.50 
M. flourensianus 0.00* 0.00* 0.00* 0.03* 0.01* 0.21 
D. naui 0.00* 0.00* 0.02* 0.11 0.03* 0.34 0.74 

(~5mg) was then dissolved in 1ml of HNO3 in closed 
teflon beakers. After complete dissolution the beakers 
were opened and the samples evaporated to dryness on a 
hotplate. The residue was then dissolved in 0.5ml of 6N 
HNO3 and evaporated to dryness, then dissolved again 
0.5ml of 2.5N HNO3 and evaporated to dryness. Prior to 
analysis the samples were dissolved in 1ml of 2% HNO3 
solution. Sr and Ca concentrations were analyzed by 
using an Element XRTM inductively coupled plasma-mass 
spectrometer (ICP-MS) at the University of California, 
Santa Cruz. The precision of the ICP-MS is better than 
+/-2-4%. Sr and Ca data are presented here as ratios 
multiplied by 1000 (e g. Sr/Ca x 1000) (Sillen 1992; Balter 
et al., 2002; Palmqvist et al., 2003; Lee-Thorp et al., 2003; 
Sponheimer et al., 2005; Spomheimer and Lee-Thorp, 
2006; Domingo et al., 2009, 2012). Sr/Ca ratios were 
compared among taxa using both parametric (ANOVA, 
Fisher’s LSD) and non-parametric (Kruskal-Wallis) tests 
where appropriate. Statistical analyses were run on SPSS 
22.0, with significance set at p<0.05.

rESuLtS

The Sr/Ca ratios of the R. II fauna (Table 1; Fig. 1; 
Table I in the Appendix) are comparable with those 
reported for both modern (Elias et al., 1982; Gilbert 
et al., 1994; Burton et al., 1999; Peek and Clementz, 
2012; Martin et al., 2015) and fossil mammals (Balter 
et al., 2002, 2012; Lee-Thorp et al., 2003; Palmqvist et 
al., 2003; Sponheimer et al., 2005; Sponheimer and 
Lee-Thorp, 2006; Domingo et al., 2012). Statistically 
significant differences in Sr/Ca ratios among taxa (Table 
2) indicates that diagenesis has not obscured the original 
ecological signal. Sympatric suids, Parachleuastochoerus 
kretzoii (=0.54±0.38, n=4) and Propotamochoerus 
palaeochoerus (=1.22±0.19, n= 4), displayed the highest 
Sr/Ca ratios of the sampled fauna. The Sr/Ca ratios of the 
smaller tetraconodont suid P. kretzoii were higher than those

TabLE 2. Significant differences in Sr/Ca ratios among the sampled R. 
II ungulate species. Values shown with asterisks indicate significance 
for α ≤ 0.05 using Fisher’s least significant difference test
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of the larger suine P. palaeochoerus, but not significantly 
different (p=0.06, Fisher’s LSD). The cervid Lucentia 
aff. pierensis (=0.92±0.27, n=9), bovid Miotragocerus 
sp. (=0.82±0.22, n=8), equid Hippotherium intrans 
(=0.89±0.23, n=8), and gomphothere Tetralophodon 
longirostris (=0.77±0.05, n=2), showed intermediate 
Sr/Ca ratios. Large-bodied ruminants L. aff. pierensis and 
Miotragocerus sp. yielded higher, but not significantly 
different (p=0.989, Fisher’s LSD), Sr/Ca ratios than 
monogastric H. intrans and T. longirostris. The tragulid 
Dorcatherium naui (=0.52±0.13, n=4) and moschid 
Micromeryx flourensianus (=0.57±0.16, n=6) displayed 
the lowest Sr/Ca ratios of the sampled fauna. The Sr/Ca 
ratios of the small-bodied ruminant M. flourensianus were 
significantly lower than those of the large-bodied 
ruminant Miotragocerus sp. (p=0.03, Fisher’s LSD). 

dIScuSSIon

We found significant differences in the Sr/Ca ratios of 
the R. II fauna indicative of differential dietary 
resource use (Fig. 2; Table 2). Taxonomic differences in 
Sr/Ca ratios are generally concordant with those 
previously inferred on the basis of enamel oxygen and 
carbon stable isotope ratios (Eastham et al., 2016; Fig. 3 
of this paper). Both the heterogeneous taxonomic 
distribution of Sr/Ca values and 

correlations between the patterning of Sr/Ca and stable 
isotope ratios (Eastham et al., 2016) indicate that original 
biogenic signals are reflected in the enamel. To stress, we 
are not arguing that the enamel of the R. II fauna has not 
undergone any post mortem alteration, but rather that the 
ecological patterning of concern to this study has not been 
obscured by diagenesis. 

Plant roots, rhizomes, and stems preferentially 
accumulate heavier alkaline-earth elements resulting in 
higher Sr concentrations than leaves, flowers, and fruits 
(Runia, 1987; Sillen et al., 1995; Burton et al., 1999). 
Several authors have linked elevated Sr/Ca ratios in 
modern and fossil mammals with the consumption of Sr-
rich underground plant parts (Sealy and Sillen, 1988; Sillen 
et al., 1995; Burton et al., 1999; Lee-Thorp et al., 2003; 
Sponheimer et al., 2005; Sponheimer and Lee-Thorp, 2006; 
Fourie et al., 2008). The suids showed the highest Sr/Ca 
ratios of the sampled fauna (Fig. 2) suggesting diets rich 
in roots and rhizomes, which would have been abundant in 
the soft substrates along the margin of Lake Pannon. This 
interpretation is concordant with the higher carbon and 
lower oxygen isotope values reported for the R. II suids 
(Eastham et al., 2016; Fig. 3). However, an omnivorous 
diet similar to that of the modern bush pig (Potamochoerus 
porcus) could also account for elevated Sr/Ca ratios 
(Balter et al., 2002; Sponheimer et al., 2005; Domingo et 

FIGURE 2. Mean value ±1 standard deviation plots of Sr/Ca enamel ratios of the R. II ungulates. Mammal reconstructions are not to scale.
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al., 2012). Patterns of molar emergence and wear indicate 
that the R. II suids had similar diets, with some degree of 
niche separation (Bernor et al., 2003). Bernor et al. (2003) 
suggested that the R. II locality was situated within the core 
habitat of the larger suine Propotamochoerus 
palaeochoerus and marginal to the preferred habitat of the 
smaller tetraconodont suid Parachleuastochoerus kretzoii. 
Stable isotope analysis also indicates differential dietary 
resource use, with P. palaeochoerus displaying significantly 
higher carbon isotope values than Parachleuastochoerus 
kretzoii (Eastham et al., 2016; Fig. 3). Sr/Ca ratios support 
the interpretation of niche separation with P. kretzoii (= 
1.54±0.38) showing comparatively higher Sr/Ca ratios than 
P. palaeochoerus (= 1.22±0.19). While it is likely that 
both of the R. II suids were engaged in rooting the lower Sr/
Ca ratios of P. palaeochoerus could indicate an increased 
dependence on Sr-poor resources, such as fruit. The higher 
and more varied Sr/Ca ratios of P. kretzoii could suggest a 
more omnivorous diet and/or an increased dependence on 
underground plant parts. An omnivorous diet has been 
interpreted for the Middle Miocene tetraconodont suid 
Conohyus simorrensis (lartet, 1851) on the basis of 
heterogeneous Sr/Ca ratios (Domingo et al., 2012).

The cervid Lucentia aff. pierensis (= 0.92±0.27) 
and equid Hippotherium intrans (= 0.89±0.23) share 
relatively higher Sr/Ca ratios, which could indicate 

intermediate feeding including some intake of C3 
graminoids. Grazing herbivores have been shown to 
reflect higher Sr/Ca ratios than coexisting browsers 
(Sponheimer et al., 2005; Sponheimer and Lee-
Thorp, 2006), as grasses are more enriched in Sr than 
dicotyledonous plants (Runia, 1987; Burton et al., 
1999). A flexible feeding strategy that included the 
consumption of grasses, leaves, and possibly fruits has 
been interpreted for Late Miocene Hippotherium on the 
basis of stable isotope and meso- and microwear data 
(Merceron et al., 2007; Merceron, 2009; Tütken et al., 
2013; Eastham et al., 2016). Meso- and microwear and 
stable isotope analysis of L. aff. pierensis also indicates 
intermediate feeding (Merceron et al., 2007; Eastham et 
al., 2016; Fig. 3). Domingo et al. (2009, 2012) analyzed 
the stable isotope, Sr/Ca, and barium/calcium (Ba/Ca) 
ratios of the Middle Miocene equid Anchitherium cf. 
A. cursor (sánchez et al., 1998) from the Somosaguas 
site in Spain, and interpreted that equinid population as 
being intermediate feeding.  Here, the Sr/Ca ratios of 
Anchitherium were higher than those of the coexisting 
gomphothere, but slightly lower than those of the large-
bodied ruminants (Domingo et al., 2012). At R. II, the 
Sr/Ca ratios of H. intrans are higher than those of the 
gomphothere Tetralophodon longirostris (= 0.77±0.05), 
and fall between those of the two large-bodied ruminants 
(L. aff. pierensis and Miotragocerus sp.).

FIGURE 3. Scatter plot of mean values and total ranges of enamel Sr/Ca ratios and carbon stable isotope (δ13C) values of the R. II fauna. δ13C enamel 
values are taken from Eastham et al., 2016.
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Unlike the cervid (Lucentia aff. piernesis) and 
equid (Hippotherium intrans), the elevated Sr/Ca ratios 
of the bovid Miotragocerus sp. are incongruent with 
morphological and stable isotope data, which suggest a 
diet dominated by leaves with a small fruit component 
(Solounias and Dawson-Saunders, 1988; Spassov and 
Geraads, 2004; Merceron et al., 2007; Merceron, 2009; 
Eastham et al., 2016). This type of diet would typically 
be associated with relatively low Sr/Ca ratios (Burton 
et al., 1999; Lee-Thorp et al., 2003; Sponheimer et al., 
2005; Drouet and Herbauts, 2008). The discrepancy 
between morphological and trace element data could be 
accounted for by differences in the gastrointestinal tract 
of ruminant vs. monogastric ungulates. Balter et al. (2002) 
found that ruminants were enriched in Ba compared to 
contemporaneous monogastric mammoths, rhinoceroses, 
and equids. Barium is chemically very similar to strontium 
and shows a comparable metabolic behavior (Burton, 
2008). In fact, several studies have shown that Ba/Ca and 
Sr/Ca ratios reflect similar dietary information (Burton 
and Wright, 1995; Burton et al., 1999; Burton, 2008). 
These authors suggest that the prolonged retention of 
digesta in ruminant bodies, in addition to more efficient 
cellulose digestion, results in a greater concentration of 
non-essential trace elements in the bones and teeth. Deer 
and antelope have been shown to yield significantly higher 
Ba/Ca ratios than other non-ruminant herbivores (Gilbert 
et al., 1994; Burton et al., 1999). Domingo et al. (2009, 
2012) found the highest Sr/Ca and Ba/Ca ratios in the 
large-bodied ruminants at the Somosaguas site. At R. 
II, the Sr/Ca ratios of Miotragocerus sp. are higher than 
those of the gomphothere T. longirostris (= 0.77±0.05) 
and comparable with those of the cervid and equid.  
While limited by sample size (n= 2), the Sr/Ca ratios 
of T. longirostris are congruent with morphological and 
stable isotope data indicating a browsing diet (Agustí and 
Antón, 2002; Domingo et al., 2013; Eastham et al., 
2016). It is likely that the comparatively higher Sr/Ca 
ratios of the bovid reflect a different digestive 
physiology (ruminant vs. monogastric) rather than a 
significant difference in diet. 

Dorcatherium naui (= 0.52±0.13; Tragulidae) and 
Micromeryx ourensianus (= 0.57±0.16; Moschidae) 
displayed the lowest Sr/Ca ratios of the sampled fauna 
(Table 2; Fig. 2) indicating a preference for Sr-poor plants 
or plant parts. Trace element concentrations are unevenly 
distributed in plants, with the highest concentrations in the 
roots and lowest concentrations in the fruits (Rao, 1979; 
Runia, 1987; Burton et al., 1999; Drouet and Herbauts, 
2008). For example, an early study of chicku (Achras 
sapota) and mango (Mangifera indica) trees revealed 
lower Sr concentrations in fruits as compared to leaves 
(Rao, 1979). The low Sr/Ca ratios of D. naui and M. 

ourensianus are in accordance with morphological and 
stable isotope data indicating a dietary preference for fruit 

(Tütken et al., 2006; Merceron et al., 2007; Merceron, 
2009; Aiglstorfer et al., 2014; Eastham et al., 2016; Fig 3.). 
The presence of species dependent on fruit is consistent 
with the abundance of endocarps recovered from R. II 
(Kordos and Begun, 2002; Hably and Erdei, 2013). D. 
naui and M. flourensianus are suggested to have occupied 
a similar niche to extant duikers (Cephalophus sp.; smith, 
1827) and water chevrotains (Hyemoschus aquaticus; 
ogilby, 1841), which inhabit the forest floors of tropical 
Africa and selectively feed on fruits and seeds fallen from 
the canopy (Nowak, 1991; Cerling et al., 2004; Merceron 
et al., 2007; 2009; Rössner, 2007; Alba et al., 2011).

Interestingly, the Sr/Ca ratios of M. flourensianus were 
significantly lower (p= 0.03, Fisher’s LSD) than those of 
the bovid Miotragocerus sp. (Fig. 2; Table 2). The results 
are unexpected given that both species were ruminants 
thought to have browsed on leaves and fruits (Tütken et al., 
2006; Merceron et al., 2007; Merceron, 2009; Aiglstorfer 
et al., 2014; Eastham et al., 2016), which are Sr-poor plant 
resources. As far as we know, the behavior of Sr in the 
gastrointestinal tracts of small vs. large-bodied ruminants 
has not yet been studied, so no conclusive remarks can be 
made. However, it is possible that the unique digestive 
adaptations of extant small-bodied ruminant frugivores 
could help to clarify this finding. Rumination is a relatively 
inefficient way to obtain energy from low fiber foods, 
like most fruits (Cork, 1996). Despite this, many small-
bodied ruminants living in tropical forests throughout 
the world depend on fruit for energy and nutrients. The 
success of small-bodied ruminant frugivores has been 
related to several adaptations in their digestive process. 
Their small rumen and fermentation capacity relative to 
energy requirements requires that they eat more readily 
fermentable carbohydrates and subsequently pass plant 
fiber more rapidly through the digestive tract (Demment and 
Van Soest, 1985). They also tend to have a larger reticulo-
omasal orifice, which allows some digesta to escape rumen 
fermentation (Hofmann, 1973). If the prolonged retention 
of digesta by large-bodied ruminants is associated with an 
increase in the uptake of non-essential trace elements, it 
seems plausible that the rapid passage of digesta by small-
bodied ruminant frugivores could result in a decrease in 
trace element uptake. Testing this hypothesis, however, 
requires further baseline work with modern ruminants 
examining the behaviour of Sr under different digestive 
strategies. 

Determining ecological relationships within trophic 
levels is important for understanding how ecosystems 
function. The niche partitioning hypothesis predicts 
that ecologically similar species can coexist by 
partitioning their resources in one or more of the three 
primary niche dimensions (diet, habitat and time; 
Hardin, 1960; Schoener, 1974; DiBitetti et al., 2009), 
with diet being the most commonly segregated axis 
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among herbivores (Stewart et al., 2002). The trace element 
analysis shows significant differences in dietary resource 
use within the early Late Miocene ungulate community at 
R. II, implying that the different analyzed ungulate species
did partition resources by selecting different plants and/or
plant parts, which would diminish competition. However,
the overlapping ranges of Sr/Ca values displayed by the two
suids, the cervid and equid, and the tragulid and moschid
indicate some degree of dietary niche overlap. Studies of
modern herbivore communities have demonstrated increased
dietary niche overlap during periods of resource abundance.
The low levels of feeding competition that occur during
these periods promote the coexistence of ecologically similar
species (Pyke et al., 1977; Gordon and Illius, 1989; Stevenson
et al., 2000; Levine and Hille Ris Lambers, 2009; Singh et al.,
2011; Djagoun et al., 2013; Landman et al., 2013; Kartzinel
et al., 2015). A local abundance of plant resources in addition
to dietary resource partitioning likely acted as the primary
factors promoting species coexistence within the ungulate
community at R. II.

While the fossil record at R. II provides important 
information for understanding the factors that acted to promote 
the assembly and coexistence of early Vallesian mammalian 
communities, it lacks the depth of time required to evaluate 
changes in faunal diversity through time. Recent analysis of 
small mammal diversity in the Vallès-Penedès Basin in Spain 
indicates a slow decline in taxonomic richness occurring since 
the late Vallesian (Casanovas-Vilar et al., 2014, 2016). These 
findings are contrary to previous studies, which reported an 
abrupt extinction event at the early/late Vallesian boundary 
(the Vallesian Crisis; Agustí and Moyà-Solà, 1990; Agustí et 
al., 1997, 1999, 2003, 2013). Casanovas-Vilar et al. (2014, 
2016) suggested that the decline of forest-dwelling taxa 
occurred gradually through a series of extinction events 
beginning in the late Vallesian. These authors asserted that 
the abrupt pattern of extinctions interpreted as the “Vallesian 
Crisis” resulted from uneven sampling. In central Europe, 
studies by Franzen et al. (2013) and Daxner-Höck et al. (2016) 
have demonstrated the persistence of some forest-adapted 
fauna (chalicotheres, moschids, and certain rodents) well into 
the early Turolian. Environmental changes associated with the 
Late Miocene cooling are not well expressed in the Pannonian 
Basin (Ivanov et al., 2011; Hably, 2013; Utescher et al., 
2017), due to the buffering effect of Lake Pannon. A recent 
palaeoclimatic study utilizing Plant Functional Types (PFTs) 
indicated constantly humid conditions along the northern 
margin of the lake throughout the early and middle Turolian 
(9-6.5Ma; Utescher et al., 2017). 

conclusions

Examination of tooth enamel Sr/Ca ratios in early 
Late Miocene ungulates from R. II showed significant 

differences in dietary resource use. In general, the Sr/Ca 
ratios of the sampled species support previous ecological 
determinations made on the basis of morphological and 
stable isotope data. The suids Parachleuastochoerus kretzoii 
and Propotamochoerus palaeochoerus displayed the highest 
Sr/Ca ratios suggesting a preference for Sr-rich roots and 
rhizomes. Parachleuastochoerus kretzoii yielded higher and 
more heterogeneous Sr/Ca ratios than Propotamochoerus 
palaeochoerus, which could be indicative of a more 
omnivorous diet. Elevated Sr/Ca ratios exhibited by the 
cervid Lucentia aff. pierensis and equid Hippotherium 
intrans suggest intermediate feeding, which included the 
intake of C3 graminoids. The bovid Miotragocerus sp. 
displayed higher Sr/Ca ratios, suggesting intermediate 
feeding, than the gomphothere Tetralophodon longirostris. 
The implication for Miotragocerus sp. as an intermediate 
feeder is incongruent with morphological and stable isotope 
data, which identifies it as a browser. This discrepancy likely 
reflects a difference in digestive physiology (ruminant vs. 
monogastric) as opposed to a difference in dietary behavior. 
The traguild Dorcatherium naui and moschid Micromeryx 
flourensianus showed the lowest Sr/Ca ratios of the sampled 
R. II fauna suggesting a preference for Sr-poor fruit. A similar
range of Sr/Ca values were found in several of the sampled
species implying some degree of interspecific competition.
To diminish potential competition it is likely that the
different ungulate species partitioned plant resources within
the local environment, which would have acted to promote
coexistence within this diverse community of predominantly
browsing herbivores. This study further highlights the utility
of trace element ratios to discern the complex ecological
relationships of species in ancient ecosystems.
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Specimen No. Species Family Tooth position Sr/Ca x 1000 

RUD1026 P. kretozii Suidae M2 1.25 

RUD1673 P. kretozii Suidae M3 1.31 

RUD668 P. kretozii Suidae p4 1.52 

RUD543 P. kretozii Suidae P3 2.08 

RUD1355 P. palaeochoerus Suidae M2 1.42 

RUD1021 P. palaeochoerus Suidae M3 1.19 

RUD1331 P. palaeochoerus Suidae P3 1.28 

RUD1343 P. palaeochoerus Suidae M1 0.98 

RUD1851 L. aff. pierensis Cervidae P3 1.26 

RUD279 L. aff. pierensis Cervidae m2 1.15 

RUD486 L. aff. pierensis Cervidae m3 0.67 

RUD1547 L. aff. pierensis Cervidae M1 0.7 

RUD695 L. aff. pierensis Cervidae m2 0.71 

RUD579 L. aff. pierensis Cervidae m1 1.21 

RUD1513 L. aff. pierensis Cervidae M3 0.6 

RUD1011 L. aff. pierensis Cervidae M2 1.17 

RUD154 L. aff. pierensis Cervidae M2 0.8 

RUD1611 Miotragocerus sp. Bovidae m2 0.77 

RUD1530 Miotragocerus sp. Bovidae M3 0.68 

RUD167 Miotragocerus sp. Bovidae M1 0.6 

RUD176 Miotragocerus sp. Bovidae M2 0.58 

RUD377 Miotragocerus sp. Bovidae m3 1.13 

RUD391 Miotragocerus sp. Bovidae m2 0.69 

RUD699 Miotragocerus sp. Bovidae M3 1.2 

RUD693 Miotragocerus sp. Bovidae m1 0.88 

RUD1014 H. intrans Equidae m3 0.63 

RUD804 H. intrans Equidae M2 0.62 

RUD794 H. intrans Equidae m2 1.03 

RUD139 H. intrans Equidae M3 0.84 

RUD429 H. intrans Equidae m3 0.7 

RUD628 H. intrans Equidae m2 0.94 

RUD721 H. intrans Equidae M3 1.21 

RUD728 H. intrans Equidae M3 1.06 

MAFI6 T. longirostris Gomphotheriidae M3 0.73 

MAFI7 T. longirostris Gomphotheriidae m2 0.8 

RUD181 D. naui Tragulidae p2 0.45 

RUD1133 D. naui Tragulidae M3 0.38 

RUD1624 D. naui Tragulidae m2 0.64 

RUD1691 D. naui Tragulidae M2 0.31 

RUD130 M. flourensianus Moschidae m2 0.73 

RUD1844 M. flourensianus Moschidae M3 0.58 

RUD692 M. flourensianus Moschidae M2 0.46 

RUD1613 M. flourensianus Moschidae P3 0.7 

RUD1760 M. flourensianus Moschidae m2 0.67 

RUD563 M. flourensianus Moschidae M3 0.48 

	

APPENDIX I

TABLE I. Sr/Ca ratios of the ungulate dental enamel samples from R. II




