Tourmaline <sup>40</sup>Ar/<sup>39</sup>Ar chronology of tourmaline-rich rocks from Central Iberia dates the main Variscan deformation phases
Keywords:
Tourmaline, 40Ar/39Ar dating, Deformation, Iberia, Boron, MetasomatismAbstract
During crustal thickening, metapelites taken to depth release boron-bearing hydrothermal fluids because of progressive heating and dehydration. These fluids swiftly percolate upwards, especially if the crust is being actively deformed, to form tourmaline where the PT conditions and the chemical composition of the host-rock are favorable. The age of the so-formed tourmaline would record the age of the upward admittance of B-bearing fluids and, presumably, the age of the deformation. This process has been documented in the Martinamor Antiform of Central Iberia, a region where tourmaline-bearing rocks are particularly abundant. Metasomatic tourmaline from the Late Cambrian San Pelayo orthogneisses (zircon U-Pb age of 496 ± 5 Ma) yielded 4039</sup)Ar plateau ages at 370 ± 5 Ma and 342 ± 5 Ma. The first value represents the crystallization age of the tourmaline and is so far the most precise estimation of the age of crustal thickening in Central Iberia (D1). The second value reflects a partial loss of Ar caused by the second deformation phase (D2). Tourmaline from mylonitized and folded tourmalinites developed above D2 shear zones yield perturbed spectra with mean “plateau” ages of 347 ± 9 Ma and 342 ± 9 Ma which may represent either the resetting of older tourmaline or the formation of new tourmaline by focused boron metasomatism. After the metamorphic peak and simultaneously with the emplacement of the main granitoids of the Avila Batholith (310-315 Ma), another episode of boron metasomatism precipitated a new generation of tourmaline, which appears either concentrated in fine-layered tourmalinites (318 ± 2 Ma) or disseminated within Ediacaran-Cambrian metasediments (316 ± 2 Ma). The source of boron was the breakdown of previously formed tourmaline during melting reactions. Lastly, tourmaline from a leucogranitic body yielded a saddle-shaped age spectrum with a minimum age of ca. 296 Ma, roughly coeval with the youngest leucogranites. Although further work is required, our results suggest that tourmaline can be a useful chronological marker for dating deformation and magmatism.Downloads
Published
Issue
Section
License
Copyright
The commercial rights of the printed and online versions of Geologica Acta are property of the UB, ICTJA, IDAEA and UAB, and Geologica Acta must be cited for any partial or full reproduction.
The opinions and conclusions stated in each article are the exclusive responsability of the authors and do not necessarily coincide with those of the above mentioned institutions UB, ICTJA, IDAEA and UAB.
Author Rights
Authors retain the copyright on their papers (accepted manuscript, uncorrected proof and published paper) and are authorized to post them on their own Web page or their institutional repositories. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission of Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.
Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows others to alter, remix or build upon a paper and the resulting work may be distributed under the same or similar license to this one.