Chalcopyrite dissolution rate law from pH 1 to 3
Keywords:
Acid Mine Drainage, Kinetics, Flow-through, SulfidesAbstract
Chalcopyrite dissolution kinetics in the pH range of 1 to 3 were studied by means of long-term flow-through experiments to obtain a dissolution rate law which can be coupled with reactive transport models to forecast Acid Rock Drainage. In the range of conditions under study, the rate of chalcopyrite dissolution is only slightly dependent on hydrogen ion activity, increasing with decreasing pH. The steady-state dissolution rates obtained in the present study were combined with earlier results presented by Acero et al. (2007a) to obtain the following expression for chalcopyrite dissolution rate law: where Rchalcopyrite is the chalcopyrite dissolution rate (mol m-2 s-1), aH+ is the activity of hydrogen ion in solution, R is the gas constant (kJ mol-1 K-1) and T is the temperature (K). This expression can applied through a wide range of environmental conditions similar to the ones found in systems affected by acid drainage. In agreement with earlier chalcopyrite kinetic studies, iron was released to solution preferentially over copper and sulfur, compared with the stoichiometry of the pristine mineral. Consistently, XPS examination of the samples showed that reacted surfaces were enriched in sulfur and copper (relative to iron) compared with the initial, pristine chalcopyrite surface. However, this surface layer does not exert any passivating effect on chalcolpyrite dissolution and the kinetics of the overall process in the long term seems to be surface-controlled.Downloads
Published
Issue
Section
License
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same license or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.