Arsenic, fluoride and other trace elements in the Argentina Pampean plain

Authors

  • R.S. BARRANQUERO Centro de Investigaciones y Estudios Ambientales, Facultad de Ciencias Humanas, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN) Paraje Arroyo Seco s/n Campus Universitario Tandil, Tandil, 7000, Buenos Aires, Argentina.
  • M. VARNI Instituto de Hidrología de Llanuras ‘Dr Eduardo J. Usunoff’, UNICEN República de Italia 780, Azul, B7300, Buenos Aires, Argentina.
  • M. VEGA Departamento de Química Analítica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, Valladolid, E-47011, España.
  • R. PARDO Departamento de Química Analítica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, Valladolid, E-47011, España.
  • A. RUIZ DE GALARRETA Centro de Investigaciones y Estudios Ambientales, Facultad de Ciencias Humanas, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN) Paraje Arroyo Seco s/n Campus Universitario Tandil, Tandil, 7000, Buenos Aires, Argentina.

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.3.3

Keywords:

Water quality, Trace elements, Sedimentary basin, Langueyú creek basin, Argentina Pampean plain, Groundwater quality

Abstract

The contents of arsenic (As), fluoride (F) and other trace elements (B, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn, Ba, Si and Sr) have been determined in groundwater samples from the Langueyú creek basin, in the Argentina Pampean plain. This research aims to establish the baseline concentration and geographical distribution of trace elements in this basin. This aim has particular interest to public health in the city of Tandil where groundwater is the principal source of water for human supply. The baseline concentrations of elements in the Langueyú creek basin are in good agreement with published data from other locations of the Pampean aquifer. The arsenic limit of 10mg/l, established as provisional limit by the World Health Organization (WHO), was exceeded in 78% of the sampled wells, with As concentration increasing in the direction of groundwater flow. Concentrations of B, Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn regulated by the Argentinian Food Code (CAA) do not exceed the maximum limit for drinking water, although concentrations of Ni, Zn or Pb peaked up at some wells, probably due to pipeline corrosion. The strong correlation observed between As, F, V, Cr and B has been related to their anionic character at the groundwater natural alkaline pH that is likely associated with similar mobilization (adsorption/desorption) processes. Worst consequences for human health have arisen in areas with the highest arsenic concentration in drinking water. The conclusions of this study contribute to understand the provenance and mobilization processes of some trace elements in groundwater. It enables the decision making regarding the public health priorities and the technological treatments of water resources in urban and rural areas.

Author Biography

R.S. BARRANQUERO, Centro de Investigaciones y Estudios Ambientales, Facultad de Ciencias Humanas, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN) Paraje Arroyo Seco s/n Campus Universitario Tandil, Tandil, 7000, Buenos Aires, Argentina.

Investigadora Asistente Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

References

Argentinian Food Code, CAA. Código Alimentario Argentino, Ley 18.284, reglamentada por el Decreto 2126/741 del Poder

Ejecutivo Nacional. Last access: 2016/12/22. Website: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XII.pdf

Alarcon-Herrera, M.T., Bundschuh, J., Nath, B., Nicolli, H., Gutierrez, M., Reyes-Gomez, V.M., Nuñez, D., MartínDominguez, I.R., Sracek, O., 2013. Cooccurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. Journal of Hazardous Materials, 262, 960-969.

Barranquero, R.S., Pardo, R., Varni, M., Ruiz de Galarreta, A., Vega, M., 2014. Modelling of the groundwater hydrological behaviour of the Langueyú creek basin by using N-way multivariate methods. Hydrological Processes, 28, 4743-4755.

Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R.A., Storniolo, A.R., Thir, J.M., 2006. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97-120.

Blanco, M.del C., Paoloni, J.D., Morra’s, H.J.M., Fiorentino, C.E., Sequeira, M, 2006. Content and Distribution of Arsenic in Soils, Sediments and Groundwater Environments of the Southern Pampa Region, Argentina. Environmental Toxicology, 21(6), 561-574.

Bocanegra, O. C., Bocanegra, E. M., Alvarez, A. A., 2002. Arsénico en las aguas subterráneas: su impacto en la salud. In: Bocanegra, E., Martínez, D., Massone, H., (eds.). XXXII Congreso AIH y VI Congreso ALHSUD “Aguas Subterráneas y Desarrollo Humano”. AIH-ALSHUD, Mar del Plata, 21-27.

Bonorino, A.G., Limbozzi, F., Albouy, R., Lexow, C., 2008. Movilidad de metales pesados y otros elementos en el acuífero loéssico regional del suroeste bonaerense. Geoacta, 33, 31-42.

Bundschuh, J., Litter, M.I., Parvez, F., Román-Ross, G., Nicolli, H.B., Jean, J-S., Liu, C-W., López, D., Armienta, M.A., Guilherme, L.R.G., Gómez Cuevas, A., Cornejo, L., Cumbal, L., Toujaguez, R., 2012. Review. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2-35.

Carretero, M.C., 2016. Hidrogeoquímica de aguas subterráneas de un sector de la Cuenca del Duero con altos niveles de

arsénico. PhD Thesis. University of Valladolid, Spain, 279pp.

Dietrich, S., Bea, S.A., Weinzettel, P., Torres, E., Ayora, C., 2016. Occurrence and distribution of arsenic in the sediments of a carbonate-rich unsaturated zone. Environmental Earth Sciences, 75:90. DOI: 10.1007/s12665-015-4892-7

Farías, S.S., Casa, V.A., Vazquez, C., Ferpozzi, L., Pucci, G.N., Cohen, I.M., 2003. Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean plain. Science of the Total Environment, 309(1-3), 187-199.

Foundation of the International Centre for Groundwater Hydrology (FCIHS), 2009. Hidrogeología. Comisión Docente Curso Internacional de Hidrología Subterránea. Escuder, R., Fraile, J., Jordana, S., Ribera, F., Sánchez-Vila, X., VázquezSuñe, E. (eds.), Barcelona, Artes Gráficas Torres, 768pp.

Fernández, R.G., Ingallinella, A.M., 2010. Experiencia argentina en la remoción de arsénico por diversas tecnologías. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds.). Tecnologías económicas para el abatimiento de arsénico en aguas. Ciencia y Tecnología para el Desarrollo del Programa Iberoamericano (CYTED), Santiago de Chile, 155-167.

Fidalgo, F., De Francesco, F., Pascual, R., 1975. Geología superficial de la Llanura Bonaerense. In: Angelelli, V., De Francesco, F., Etchevehere, P.H., Fidalgo, F., Kilmurray, J.O., Llambias, E.J., Pascual, R., Prozzi, C.R., Rolleri, E.,O., Sala, J.M., Teruggi, M.E., Turner, J.C., Yrigoyen, M.R. (eds.). Relatorio Geología Provincia de Buenos Aires, VI Congreso Geológico Argentino., Asociación Geológica Argentina, Imprenta CONI, Bahía Blanca, 104-106.

Frenguelli, J., 1955. Loess y Limos Pampeanos. In: Serie Técnica y Didáctica 7, Facultad de Ciencias Naturales y Museo de la

Universidad Nacional de La Plata, La Plata, 88pp.

Gaioli, M., González, D.E., Amoedo, D., 2009. Hidroarsenisismo crónico regional endémico: un desafío diagnóstico y de prevención. Archivos Argentinos de Pediatría, 107(5), 459-473.

Galindo, G., Herrero, M.A., Flores, M., Fernández-Turiel, J.L., 1999. Correlación de metales trazas en aguas subterráneas someras de la Cuenca del Río Salado, Provincia de Buenos Aires, Argentina. In: In: Hidrología Subterránea, II Congreso Argentino de Hidrogeología y IV Seminario Hispano Argentino sobre temas actuales de la Hidrología Subterránea. Serie Correlación Geológica 13: 251-261.

Gerstenfeld, S., Jordán, A., Calli, R., Farías, P., Malica, J., Gómez Peña, M.L., Aguirre, L., Salvatierra, M., Leguizamón, E., Coronel, C., Flores Ivaldi, E., 2012. Determinación de zonas de riesgo al agua arsenical y prevalencia de HACRE en Villa Belgrano, Tucumán, Argentina. Revista Argentina de Salud Pública, 3(10), 24-29.

Giménez-Forcada, E., Vega-Alegre, M., Timón-Sánchez, S., 2017. Characterization of regional cold-hydrothermal inflows enriched in arsenic and associated trace-elements in the southern part of the Duero Basin (Spain), by multivariate statistical analysis. Science of the Total Environment, 593-594, 211-226.

Gómez, M.L., Blarasín, M.T., Martínez, D.E., 2009. Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environmental Geology, 57, 143-155.

Haloi, N., Sarma, H.P., 2011. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment

of water quality in Barpeta District, Assam (India). Environmental Monitoring Assessment, 184(10), 6229-6237. DOI: 10.1007/s10661-011-2415-x

Hernández, M., Giaconi, L.M., González, N., 2002. Línea de base ambiental para las aguas subterráneas y superficiales en el área minera de Tandilia, Buenos Aires, Argentina. In: Bocanegra, E., Martínez, D., Massone, H. (eds.). Groundwater and human development. Mar del Plata, IAH (International Association of Hydrogeologists) and VI ALHSUD (Latin-American Association of Groundwater Hydrology for Development), 336-343.

Huang, S.S., Liao, Q.L., Hua, M., Wu, X.M., Bi, K.S., Yan, C.Y., 2007. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67, 2148-2155.

Khan, S.D., Mahmood, K., Sultan, M.I., Khan, A.S., Xiong, Y., Sagintayev, Z., 2010. Trace element geochemistry of groundwater from Quetta Valley, western Pakistan. Environmental Earth Sciences, 60, 573-582.

Kruse, E., Ainchil, J., 2003. Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environmental Geology, 44, 86-89.

Li, J., Li, F., Liu, Q., Zhang, Y., 2014. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry. Science of the Total Environment, 472, 979-988.

Litter, M.I., 2010. Actualización. La problemática del arsénico en la Argentina: el HACRE. Revista Sociedad Argentina de Endocrinología Ginecológica y Reproductiva (SAEGRE), XVII(2), 5-10.

Martinez, D.E., Massone, H.E., Ceron, J.C., Farenga, M., Ferrante, A. 2003. Hidrogeoquímica del área de disposición final de

residuos de Mar del Plata, Argentina. Boletín Geológico Minero de España, Número Monográfico Iberoamericano Hidrología Subterránea, 114(2), 237-246.

Massone, H., Martinez, D.E., Tomas, M.L. 2005. Caracterización hidroquímica superficial y subterránea de la cuenca superior del arroyo Grande (Prov. de Buenos Aires). In: Actas del II Seminario Hispano-Latinoamericano sobre Temas Actuales de la Hidrología Subterránea, Río Cuarto: 47-56.

Matteoda, E., Blarasin, M., 2013. Fondo natural de cadmio en aguas subterráneas. Vinculación con usos del territorio. Valle

de La Cruz, Córdoba, Argentina. In: González, N., Kruse, E.E., Trovatto, M.M., Laurencena, P. (eds.). Actas del VIII Congreso

Argentino de Hidrogeología, Editorial de la Universidad Nacional de La Plata (EDULP), La Plata, II: 70-77.

Matteoda, E., Blarasin, M., Damilano, G., Cabrera, A., 2010. Manganeso en aguas subterráneas y superficiales. Relación con valores de fondo natural y actividades antrópicas. Córdoba, Argentina. Unpublished. https://doi.org/10.13140/2.1.4783.6964

Mazadiego Martínez, L.F., 1995. Autocorrelación espacial y criterios de reconocimiento de anomalías. In: López Santiago,

F., Ayala Carcedo, F.J. (eds) Contaminación y Depuración de suelos, Instituto Tecnológico Geominero de España, Madrid,

ISBN: 84-7840-236-5. 330pp.

McClintock, T.R., Chen, Y., Bundschuh, J., Oliver, J.T., Navoni, J., Olmos, V., Villaamil, E., Habibul Ahsan, L.H., Parvez, F., 2012. Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76-91.

Miller, J.N., Miller, J.C., 2010. Statistics and Chemometrics for Analytical Chemistry. Sixth edition, Pearson Education Limited, Edinburgh Gate Harlow Essex, England, 221-250.

Ministerio de Salud de la Nación Argentina, 2001. Programa nacional de prevención y control de las intoxicaciones. Hidroarsenicismo crónico regional endémico. Módulo de capacitación, 3, 1-68.

Mukherjee, A., Sengupta, M.K., Hossain, M.A., Ahamed, S., Das, B., Nayak, B., 2006. Arsenic contamination in groundwater:

A global perspectivas with emphasis on the Asian scenario. Journal of Health, Population and Nutrition, 24, 143-63.

National Institute of Censuses and Statistics (INDEC), 2010. http://www.censo2010.indec.gov.ar/resultadosdefinitivos.asp Last access: 2015/07/29.

Navoni, J.A., De Pietri, D., García, S.Y, Villaamil Lepori, E.C., 2012. Riesgo sanitario de la población vulnerable expuesta al arsénico en la provincia de Buenos Aires, Argentina. Revista Panamericana de Salud Pública, 31(1), 1-8.

Ng, J., Wang, J., Shraim, A., 2003. A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353-1359.

Nicolli, H.B., Bundschuh, J., García, J.W., Falcón, C.M., Jean, J.-S., 2010. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates – evidence from the Chaco – Pampean plain (Argentina). Water Research, 44(19), 5589-5604.

Nicolli, H.B., Bundschuh, J., Blanco, M.delC., Tujchneider, O.C., Panarello, H.O., Dapeña, C., Rusansky, H.E., 2012. Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: Results from 100 years of research. Science of the Total Environment, 429, 36-56.

Palacios, S.V., Moron Guglielmino, C., Verea, M.A., Pecotche, D.M., 2012. HACRE: Hidroarsenicismo Crónico Regional y Endémico. Presentación de un caso clínico y breve reseña bibliográfica. Archivos Argentinos de Pediatría, 62, 233-238.

Ruiz de Galarreta, A., Banda Noriega, R., 2005. Geohidrología y evaluación de nitratos del Partido de Tandil, Buenos Aires,

Argentina. In: Galindo, G., Fernández Turiel, J.L., Parada, M.Á., Torrente, D.G. (eds.). Actas del IV Congreso Argentino de Hidrogeología y II Seminario Hispano-Latinoamericano sobre temas actuales de la Hidrología Subterránea. Río Cuarto, Universidad Nacional de Córdoba (UNCR), 99-108.

Silva Busso, A., Santa Cruz, J., 2005. Distribución de elementos traza en las aguas subterráneas del Partido de Escobar, Buenos Aires, Argentina. Ecología Austral, 15, 31-47.

Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-568.

Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., Barros, A.J., Tullio, J.O., 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259-284.

Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S., 2005. Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989-1016.

Steinmaus, C., Bates, M.ND., Michael, N., Yuan, Y., Kalman, D., Atallah, R., Rey, O.A., Bigss, M.D., Mary, L., Hopenhayn, C., Moore, L.E., Hoang, B.K., Smith, M.D., Allan, H., 2006. Arsenic methylation and bladder cancer risk in case–control studies in Argentina and the United States. Journal of Occupational and Environmental Medicine, 48, 478-88.

Steinmaus, C., Moore, L.E., Shipp, M., Kalman, D., Rey, O.A., Biggs, M.L., Hopenhayn, C., Bates, M.N., Zheng, S., Wiencke, J.K., Smith, A. H., 2007. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. Journal of Toxicology and Environmental Health, Part A, 70(2), 159-70.

Teruggi, M.E., 1957. The nature and origin of Argentine Loess. Journal of Sedimentary Petrology, 27, 322-332.

Teruggi, M., Kilmurray, J., 1975. Tandilia. Relatorio Geología Provincia de Buenos Aires. In: Angelelli, V., De Francesco, F., Etchevehere, P.H., Fidalgo, F., Kilmurray, J.O., Llambias, E.J., Pascual, R., Prozzi, C.R., Rolleri, E.,O., Sala, J.M., Teruggi, M.E., Turner, J.C., Yrigoyen, M.R. (eds.). VI Congreso Geológico Argentino, Asociación Geológica Argentina, Imprenta CONI, Bahía Blanca, 55-77.

Thornthwaite, C.W., 1957. Instructions and tables for computing potential evapotranspiration and the water balance (Number 551.57 T515i). Drexel Institute of Technology, Centerton, New Jersey. Laboratory of Climatology, 10(3).

Ullah, K., Arif, M., Tahir Shah, M., Abbasi, I.A., 2015. Geochemistry and Provenance of the Lower Siwaliks from southwestern Kohat, western Himalayan Foreland Basin, NW Pakistan. Geologica Acta, 13(1), 327-343.

Villaamil Lepori, E.C., 2015. Hidroarsenicismo crónico regional endémico en Argentina. Acta Bioquímica Clínica Latinoamericana, 49(1), 83-104.

WHO (World Health Organization), 2004. Guidelines for Drinking-Water Quality, 1: Recommendations. Geneva, WHO, 668pp.

WHO (World Health Organization)-Executive Council, 2006. Mitigación de los efectos del arsénico presente en las aguas subterráneas: informe de la Secretaría. Official document Consejo Ejecutivo, 118. Issue Date: 2006, code: EB118/14, May 24th.

WHO (World Health Organization), UNICEF (Fondo de las Naciones Unidas para la Infancia), 2012. Trends in maternal mortality: 1990 to 2010. WHO, UNICEF, Francia, ISBN: 978 92 4 150363 1.

WHO (World Health Organization), UNICEF (United Nations Children’s Fund), 2015. Progress on sanitation and drinking water: 2015 update and MDG (Millennium Development Goals) assessment. WHO, UNICEF, United States, ISBN: 978 92 4 150914 5.

Zabala, M.E., Manzano, M., Vives, L., 2016. Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina). Journal of Hydrology, 541, 1067-1087.

Downloads

Published

2017-09-04

Issue

Section

Articles