Time lag between metamorphism and crystallization of anatectic granites (Córdoba, Argentina)

Authors

  • F.J. D´Eramo Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente (ICBIA) CONICET-UNRC Ruta Nac. nº 36 km 601, Río Cuarto, Argentina. Universidad Nacional de Río Cuarto, Departamento de Geología Ruta Nac. n° 36 km 601, Río Cuarto, Argentina.
  • J.J. Esteban Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU Apartado 644, 48080 Bilbao, Spain.
  • M. Demartis Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente (ICBIA) CONICET-UNRC Ruta Nac. nº 36 km 601, Río Cuarto, Argentina. Universidad Nacional de Río Cuarto, Departamento de Geología Ruta Nac. n° 36 km 601, Río Cuarto, Argentina.
  • E. Aragón Universidad Nacional de la Plata, CIG-CONICET Diagonal 113 64, 1900. La Plata, Argentina.
  • J.E. Coniglio Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente (ICBIA) CONICET-UNRC Ruta Nac. nº 36 km 601, Río Cuarto, Argentina. Universidad Nacional de Río Cuarto, Departamento de Geología Ruta Nac. n° 36 km 601, Río Cuarto, Argentina.
  • L.P. Pinotti Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente (ICBIA) CONICET-UNRC Ruta Nac. nº 36 km 601, Río Cuarto, Argentina. Universidad Nacional de Río Cuarto, Departamento de Geología Ruta Nac. n° 36 km 601, Río Cuarto, Argentina.

DOI:

https://doi.org/10.1344/GeologicaActa2020.18.17

Keywords:

Pampean Orogeny, Pampean Metamorphism, Rio de Los Sauces granite, U-Pb SHRIMP dating, LA-ICP-MS analyses.

Abstract

SHRIMP and LA-ICP-MS analyses carried out on zircons from the Río de los Sauces granite revealed their metamorphic and igneous nature. The metamorphic zircons yielded an age of 537±4.8 (2σ)Ma that probably predates the onset of the anatexis during the Pampean orogeny. By contrast, the igneous zircons yielded a younger age of 529±6 (2σ)Ma and reflected its crystallization age. These data point to a short time lag of ca. 8Myr between the High Temperature (HT) metamorphic peak and the subsequent crystallization age of the granite. Concordia age of 534±3.8 (2σ)Ma, for both types of zircon populations, can be considered as the mean age of the Pampean HT metamorphism in the Sierras de Córdoba.

References

Aceñolaza, F.G., Aceñolaza, F., 2007. Insights in the Neoproterozoic–Early Cambrian transition of NW Argentina: facies, environments and fossils in the proto-margin of western Gondwana. In: Vickers-Rich, P., Komarower, P. (eds.). The Rise and Fall of the Ediacaran Biota. London, Geological Society, 286 (Special Publications), 1-13.

Aceñolaza, F.G., Toselli, A., 2009. The Pampean Orogen: Ediacaran-Lower Cambrian evolutionary history of Central and Northwest region of Argentina. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (eds.). NeoproterozoicCambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, 16, 239-254.

Barzola, M.G., Tibaldi A.M., Cristofolini, E.A., Otamendi, J.E., Demichelis, A.H., Armas, P., Camilletti, G.C., 2019. Estructura interna de una sección de corteza media expuesta en el basamento metamórfico del sector centro-norte de sierra de Comechingones, Córdoba. Revista de la Asociación Geológica Argentina, 76(4), 375-390.

Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Alenikoff, J.N., Valley, J.W., Mundif, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of trace element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1), 115-140.

Carson, C.J., Ague, J.J., Grove, M., Coath, C.D., Harrison, T.M., 2002. U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism in the Napir Complex. Precambrian Research, 116, 237-263.

Casquet, C., Dahlquist, J.A., Verdecchia, S.O., Baldo, E.G., Galindo, C., Rapela, C.W., Pankhurst, R.J., Morales, M.M., Murra, J.A., Fanning, C.M., 2018. Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth-Science Reviews, 177, 209-225.

Castiñeiras, P., Navidad, M., Casas, J.M., Liesa, M., Carreras, J., 2011. Petrogenesis of Ordovician magmatism in the Pyrenees

(Albera and Canigó Massifs) determined on the basis of zircon minor and trace element composition. Journal of Geology, 119, 521-34.

Cawood, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249-279.

Chen, R-X., Zheng, Y.F., Xie, L., 2010. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous insitu analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos, 114, 132-154.

Dahlquist, J.A., Verdecchia, S.O., Baldo, E.G., Basei, M.A.S., Alasino, P.H., Urán, G.A., Rapela, C.W., Da Costa Campos Neto, M., Zandomeni, P.S., 2016. Early Cambrian U-Pb zircon age and Hf-isotope data from the Guasayán pluton, Sierras Pampeanas,

Argentina: implications for the northwestern boundary of the Pampean arc. Andean Geology, 43(1), 137-150.

Escayola, M.P., Pimentel, M.M., Armstrong, R., 2007. Neoproterozoic back arc basin: sensitive high-resolution ion microprobe U–Pb and Sm–Nd isotopic evidence from eastern Pampean ranges, Argentina. Geology, 35, 495-498.

Esteban, J.J., Aranguren, A., Cuevas, J., Hilario, A., Tubía, J.M., Larionov, A., Sergeev, S., 2015. Is there a time lag between the metamorphism and emplacement of plutons in the Axial Zone of the Pyrenees? Geological Magazine, 152, 935-941.

Fagiano, M., 2007. Geología y Petrología del basamento cristalino de las Albahacas, sur de la Sierra de Comechingones, Córdoba. PhD Thesis. Río Cuarto, Universidad Nacional de Río Cuarto, 380pp.

Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-37.

Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35, 643-6.

Guereschi, A.B., Martino, R.D., 2014. Las migmatitas de las Sierras de Córdoba. In: Martino, R.D., Guereschi, A.B. (eds.). Relatorio del XIX congreso geológico argentino: geología y recursos naturales de la provincia de Córdoba. Asociación Geológica Argentina, 125-148.

Harley, S.L., Kinny, P.D., Snape, I., Black, L.P., 2001. Zircon chemistry and the definition of events in Archaean granulite terrains. In: Cassidy, K.F., Dunphy, J.M., van Kranendonk, M.J. (eds.). Extended abstracts of the 4th International Archaean

Symposium. Canberra, AGSO-Geoscience Australia Record 2001/37, 511-513.

Harley, S.L., Kelly, N.M., Möller, A., 2007. Zircon behaviour and the thermal histories of mountain chains. Elements, 3, 25-30.

Hauser, N., Matteini, M., Omarini, R.H., Piementel, M.M., 2011. Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460Ma. Gondwana Research, 19(1), 100-127.

Hokada, T., Harley, S.L., 2004. Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99, 180-190.

Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1), 27-55.

Hu, F.F., Fan, H.R., Yang, J.H., Wan, Y.S., Liu, D.Y., Zhai, M.G., Jin, C.W., 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U–Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49, 1629-1636.

Iannizzotto, N.F., Rapela, C.W., Baldo, E.G., Galindo, C., Fanning, C.M., 2013. The Sierra Norte–Ambargasta Batholith: Cambrian magmatism formed in a transpressional belt along the western edge of the Río de la Plata cratón? Journal of South American Earth Sciences, 42, 127-142.

Ježek, P., Willner, A.P., Aceñolaza, F.G., Miller, H., 1985. The Puncoviscana trough - a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. Geologische Rundschau, 74(3), 573-584.

Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011. Determination of reference values for NIST SRM 610—617 glasses following ISO guideline. Geostandards and Geoanalytical Research, 35, 397-429.

Keay, S., Lister, G., Buick, I., 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 342, 275-312.

Kelly, N.M., Harley, S.L., 2005. An integrated microtextural and chemical approach to zircon geochronology: Refining the Archaean history of the Napier Complex, east Antarctica. Contributions to Mineralogy and Petrology, 149, 57-84.

Kröner, A., O’Brian P.J., Nemchin, A.A., Pidgeon, R.T., 2000. Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contributions to Mineralogy and Petrology, 138, 127-142.

Ladenberger, A., Be´eri-Shlevin, Y., Claesson, S., Gee, D.G., Majka, J., Romanova, I.V., 2014. Tectonometamorphic evolution of the Areskutan Nappe – Caledonian history revealed by SIMS U–Pb zircon geochronology. In: Corfu, F., Gasser, D., Chew, D.M. (eds.). New Perspectives on the Caledonides of Scandinavia and Related Areas. London, Geological Society, 390 (Special Publications), 337-368.

Lira, R., Millone, H.A., Kirschbaum, A.M., Moreno, R.S., 1997. Calc-alkaline arc granitoid activity in the Sierra NorteAmbargasta ranges, central Argentina. Journal of South American Earth Sciences, 10(2), 157-177.

López-Sánchez, M.A., Aleinikoff, J.N., Marcos, A., Martínez, F.J., Llana-Fúnez, S., 2016. An example of low-Th/U zircon overgrowths of magmatic origin in a late orogenic Variscan intrusion: the San Ciprián massif (NW Spain). London, The Geological Society, 173(2), 282-291.

Ludwig, K.R., 2003. User’s Manual for Isoplot/Ex, Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, 4 (Special Publication), 73pp.

Martino, R.D., Guereschi, A.B., 2014. La estructura neoproterozoica-paleozoica inferior del complejo metamórfico de las Sierras Pampeanas de Córdoba. In: Martino, R.D., Guereschi, A.B. (eds.). Relatorio del XIX congreso geológico argentino: geología y recursos naturales de la provincia de Córdoba. Asociación Geológica Argentina, 95-128.

Moller, A., O´Brien, P.J., Kennedy, A., Kröner, A., 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance, D., Müller, W., Villa, I.M. (eds.). Geochronology: Linking the Isotopic Record with Petrology and Textures. London, Geological Society, 220 (Special Publications), 65-81.

Omarini, R.H., Sureda, R.J., Götze, H.J., Seilacher, A., Pflüger, F., 1999. Puncoviscana folded belt in northwestern Argentina:

testimony of late Proterozoic Rodinia fragmentation and preGondwana collisional episodes. International Journal of Earth

Science, 88(1), 76-97.

Otamendi, J.E., Castellarini, P.A., Fagiano, M., Demichelis, A., Tibaldi, A., 2004. Cambrian to Devonian geologic evolution of the Sierra de Comechingones, eastern Sierras Pampeanas: evidence for the development and exhumation of continental crust on the proto-pacific margin of Gondwana. Gondwana Research, 7(4), 1143-1155.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2518.

Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., Greig, A., 2012. CellSpace: a module for creating spatially

registered laser ablation images within the Iolite freeware environment. Journal of Analytical Atomic Spectrometry, 27, 700-706.

Pidgeon, R.T., 1992. Recrystallisation of oscillatory zoned zircon: Some geochronological and petrological implications.

Contributions to Mineralogy and Petrology, 110, 463-472.

Rapela, C.W., Pankhurst R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Fanning, C.M., 1998. The Pampean orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto-Andean Margin of Gondwana. London, Geological Society, 142 (Special Publications), 181-217.

Rapela, C.W., Baldo, E.G., Pankhurst, R.J., Saavedra, J., 2002. Cordieritite and leucogranite formation during emplacement

of highly peraluminous magma: the El Pilón granite complex (Sierras Pampeanas, Argentina). Journal of Petrology, 43(6),

-1028.

Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E.G., González-Casado, J.M., Galindo, C., Dahlquist, J., 2007.

The Río de la Plata craton and the assembly of SW Gondwana. Earth Science Review, 83(1-2), 49-82.

Sato, K., Tassinari, C.C.G., Basei, M.A.S., Siga, O.Jr., Onoe, A.T., Dias de Souza, M., 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP Série Científica São Paulo, 14(3), 3-18.

Schaltegger, U., Fanning, C.M., Günther, D., Maurin, J.C., Schulmann, K., Gebauer, D., 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134, 186-201.

Schärer, U., 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya. Earth and Planetary Science Letters, 67, 191-204.

Schwartz, J.J., Gromet, L.P., 2004. Provenance of Late Proterozoicearly Cambrian basin, Sierras de Córdoba, Argentina. Precambrian Research, 129, 1-21.

Schwartz, J.J., Gromet, L.P., Miró, R., 2008. Timing and Duration of the Calc-Alkaline Arc of the Pampean Orogeny: Implications for the Late Neoproterozoic to Cambrian Evolution of Western Gondwana. The Journal of Geology, 116, 39-61.

Siegesmund, S., Steenken, A., Martino, R., Wemmer, K., López de Luchi, M.G., Frei, R., Presnyakow, S., Guerschi, A., 2010. Time constraints on the tectonic Evolution of the Eastern Sierras Pampeanas (Central Argentina). International Journal Earth Sciences, 99, 1199-1226.

Sims, J., Ireland, T.R., Camacho, A., Lyons, P., Pieters, P.E., Skirrow, R., Stuart-Smith, P.G., Miró, R., 1998. U–Pb, Th–Pb, and Ar–

Ar geochronology from the Southern Sierras Pampeanas, Argentina: implications for the Paleozoic tectonic evolution of the western Gondwana margin. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto-Andean Margin of Gondwana. London,

Geological Society, 142 (Special Publications), 259-281.

Sláma, J., Kosler, J., Condon, J.K., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1-35.

Stuart-Smith, P.G., Camacho, A., Sims, J.P., Skirrow, R.G., Lyons, P., Pieters, P.E., Black, L.P., 1999. Uranium – lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: Implications for the tectonic development of the

proto-Andean Gondwana margin. In: Ramos, V.A., Keppie, J.D. (eds.). Laurentia-Gondwana Connections before Pangea.

Geological Society of America, 336 (Special Papers), 87-114.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sun, S.S., McDonough, W.F. (eds.). Magmatism in the Ocean Basins. London, Geological Society, 42 (Special Publications), 313-45.

Tibaldi, A.M., Otamendi, J.E., Gromet, L.P., Demichelis, A. H., 2008. Suya Taco and Sol de Mayo mafic complexes from eastern Sierras Pampeanas, Argentina: Evidence for the emplacement of primitive OIB-like magmas into deep crustal levels at a late stage of the Pampean orogeny. Journal of South American Earth Sciences, 26, 172-187.

Toselli, A.J., 1990. Metamorfismo del Ciclo Pampeano. In: Acenolaza, F.G., Miller, H., Toselli, A.J. (eds.). El Ciclo Pampeano en el Noroeste Argentino. Universidad Nacional de Tucumán, Serie Correlación Geológica, 4, 181-198.

Turner, J.C.M., 1960. Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín de la Academia Nacional de Ciencias,

, 163-196.

Vanderhaeghe, O., Teyssier, C., Wysoczanski, R., 1999. Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia. Canadian Journal of Earth Sciences, 36, 917-943.

Vavra, X., Schmid, R., Gebauer, D., 1999. Internal morphology, habitat and U-Th-Pb microanalysis of amphibolite-togranulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380-404.

Von Gosen, W., Prozzi, C., 2010. Pampean deformation in the Sierra Norte de Córdoba, Argentina: implications for the collisional history at the western pre-Andean Gondwana margin. Tectonics, 29, 1-33.

Weinberg, R.F., Mark, G., 2008. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone,

Ladakh, NW India. Geological Society of America Bulletin, 120(7/8), 994-1009.

Weinberg, R.F., Becchio, R., Farías, P., Susaño, N., Sola, A., 2018. Early Paleozoic accretionary orogenies in NW Argentina:

Growth of West Gondwana. Earth-Science Reviews, 187, 219-247.

Whitney, D.L., Teyssier, C., Fayon, A.K., Hamilton, M.A., Heizler, M., 2003. Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Niğde Massif, Turkey. Tectonophysic, 376(1-2), 37-60.

Zeck, H.P., Whitehouse, M.J., 1999. Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages for a Betic-Rif core complex, Alpine belt, W Mediterraneanconsequences for its P-T-t path. Contributions to Mineralogy and Petrology, 134, 134-149.

Downloads

Published

2020-11-02

Issue

Section

Articles