Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale)
Keywords:
Tsunamis, Tsunami Intensity Scale, Coastal damage, Environmental Seismic IntensityAbstract
This paper discusses possibilities to improve the Environmental Seismic Intensity Scale (ESI-07 scale), a scale based on the effects of earthquakes in the environment. This scale comprises twelve intensity degrees and considers primary and secondary effects, one of them the occurrence of tsunamis. Terminology and physical tsunami parameters corresponding to different intensity levels are often misleading and confusing. The present work proposes: i) a revised and updated catalogue of environmental and geological effects of tsunamis, gathering all the available information on Tsunami Environmental Effects (TEEs) produced by recent earthquake-tsunamis; ii) a specific intensity scale (TEE-16) for the effects of tsunamis in the natural environment at coastal areas. The proposed scale could be used in future tsunami events and, in historic and paleo-tsunami studies. The new TEE-16 scale incorporates the size specific parameters already considered in the ESI-07 scale, such as wave height, run-up and inland extension of inundation, and a comprehensive and more accurate terminology that covers all the different intensity levels identifiable in the geological record (intensities VI-XII). The TEE-16 scale integrates the description and quantification of the potential sedimentary and erosional features (beach scours, transported boulders and classical tsunamites) derived from different tsunami events at diverse coastal environments (e.g. beaches, estuaries, rocky cliffs,). This new approach represents an innovative advance in relation to the tsunami descriptions provided by the ESI-07 scale, and allows the full application of the proposed scale in paleoseismological studies. The analysis of the revised and updated tsunami environmental damage suggests that local intensities recorded in coastal areas do not correlate well with the TEE-16 intensity (normally higher), but shows a good correlation with the earthquake magnitude (Mw). Tsunamis generated by earthquakes can then be considered efficient processes in the direct transference of the “energy” released by offshore seismogenic sources to the nearest coastal areas, even over distances of hundreds of kilometres (>200km). This scale, as the previous ones, is independent of the earthquake type (i.e. style of faulting) and only focuses on the environmental effects triggered by tsunamis of seismic origin.
Downloads
Published
Issue
Section
License
Copyright
The commercial rights of the printed and online versions of Geologica Acta are property of the UB, ICTJA, IDAEA and UAB, and Geologica Acta must be cited for any partial or full reproduction.
The opinions and conclusions stated in each article are the exclusive responsability of the authors and do not necessarily coincide with those of the above mentioned institutions UB, ICTJA, IDAEA and UAB.
Author Rights
Authors retain the copyright on their papers (accepted manuscript, uncorrected proof and published paper) and are authorized to post them on their own Web page or their institutional repositories. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission of Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.
Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows others to alter, remix or build upon a paper and the resulting work may be distributed under the same or similar license to this one.