The late-Variscan peraluminous Valdepeñas pluton (southern Central Iberian Zone)

Authors

  • J. ERRANDONEA-MARTÍN Dep. of mineralogy and Petrology, Faculty of Science and Technology, University of the Basque Country UPV/EHU C/ Sarriena s/n, 48940 Leioa, Spain http://orcid.org/0000-0003-2561-8213
  • M. CARRACEDO-SÁNCHEZ Dep. of mineralogy and Petrology, Faculty of Science and Technology, University of the Basque Country UPV/EHU C/ Sarriena s/n, 48940 Leioa, Spain
  • F. SARRIONANDIA Dep. of Geodynamics, Faculty of Pharmacy, University of the Basque Country UPV/EHU 01006 Vitoria, Spain.
  • J.F. SANTOS ZALDUEGUI Dep. of mineralogy and Petrology, Faculty of Science and Technology, University of the Basque Country UPV/EHU C/ Sarriena s/n, 48940 Leioa, Spain
  • S. GARCÍA DE MADINABEITIA Dep. of mineralogy and Petrology, Faculty of Science and Technology, University of the Basque Country UPV/EHU C/ Sarriena s/n, 48940 Leioa, Spain
  • J.I. GIL-IBARGUCHI Dep. of mineralogy and Petrology, Faculty of Science and Technology, University of the Basque Country UPV/EHU C/ Sarriena s/n, 48940 Leioa, Spain

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.4.7

Keywords:

Peraluminous, Monzogranite, Metaigneous source, Central Iberian Zone, Valdepeñas.

Abstract

The Valdepeñas pluton is the easternmost outcrop of the Cáceres-Valdepeñas magmatic alignment (southern Central Iberian Zone). This massif is constituted by a cordierite-bearing porphyritic monzogranite and may be grouped within the so-called “Serie Mixta” granitoids. The Valdepeñas monzogranite is of magnesian [FeOt/(FeOt+MgO)~0.76], alkali-calcic [(Na2O+K2O)–CaO=7.8–8.5] and peraluminous (A/CNK=1.14–1.20). Multielemental- and REE-normalized patterns are comparable to those of similar rocks in the Nisa- Alburquerque-Los Pedroches magmatic alignment, and slightly differ from those of the Montes de Toledo batholith, both in the southern Central Iberian Zone. The U-Pb zircon age of 303±3Ma is consistent with the late-orogenic character of the intrusion and is in accordance with most of the granitic peraluminous intrusions in the southern Central Iberian Zone.  86Sr/87Sr300Ma ratios (0.707424–0.711253), εNd300Mavalues (-5.53 to -6.68) and whole-rock major and trace element compositions of the studied rocks, suggest that the parental magma of the Valdepeñas monzogranite could derive from a crustal metaigneous source. The U-Pb ages (552–650Ma) of inherited zircon cores found in Valdepeñas monzogranite samples match those often found in Lower Paleozoic metavolcanics and granitic orthogneisses of Central Iberia and, furthermore, point to Upper Neoproterozoic metaigneous basement rocks as possible protoliths at the magma source. Based on the solubility of monazite in peraluminous melts, the estimated emplacement temperature of the studied monzogranite is 742–762ºC. The results obtained in this work would contribute to a better understanding of the origin of the “Serie Mixta” granitoids.

References

Ábalos, B., Gil Ibarguchi, J.I., Sánchez Lorda, M.E., Paquette, J.L., 2012. Detrital zircon U-Pb study of early Cambrian conglomerates from the Sierra de la Demanda (N Spain): implications for West-African/Amazonian Proterozoic correlations of Iberia. Tectonics, 31, TC3003, https://doi.org/10.1029/2011TC003041.

Abdel-Rahman, A.F.M., 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35(2), 525–541. https://doi.org/10.1093/petrology/35.2.525.

Alonso Olazabal, A., 2001. El plutón de Campanario-La Haba: caracterización petrológica y fábrica magnética. PhD Thesis,

University of the Basque Country, Spain, 323pp.

Andonaegui, P., 1990. Geoquímica y geocronología de los granitoides del Sur de Toledo. PhD Thesis. Complutense University of Madrid, Spain, 365pp.

Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3), 505–539. https://doi.org/10.1093/petrology/egi084.

Aparicio, A., Barrera, J.L., Casquet, C., Peinado, M., Tinao, J.M., 1977. Caracterización Geoquímica del plutonismo post-metamórfico del SO del Macizo Hespérico. Studia Geologica, XII, 9–39.

Barbero, L., Villaseca, C., 2004. El macizo de Toledo. In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica de España e

Instituto Geológico y Minero de España, Madrid, 110–115.

Barbero, L., Villaseca, C., Andonaegui, P., 1990. On the origin of the gabbro-tonalite-monzogranite association from Toledo area (Hercynian Iberian belt). Schweizerische Mineralogische Und Petrographische Mitteilungen, 70, 209–221.

Bea, F., 1996a. Controls on the trace element composition of crustal melts. Transaction of the Royal Society of Edinburg:

Earth Sciences, 87(1–2), 33–41. https://doi.org/10.1017/S0263593300006453.

Bea, F., 1996b. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal

Melts. Journal of Petrology, 37(3), 521–552. https://doi.org/10.1093/petrology/37.3.521.

Bea, F., 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, 153, 278–291. https://doi.org/10.1016/j.lithos.2012.01.017.

Bea, F., Fershtater, G., Corretgé, L.G., 1992. The geochemistry of phosphorus in granite rocks and the effect of aluminium.

Lithos, 29(1–2), 43–56. http://dx.doi.org/10.1016/0024-4937(92)90033-U.

Bea, F., Pereira, M.D., Corretgé, L.G., Fershtater, G.B., 1994. Differentiation of strongly peraluminous, perphoshorous granites. The Pedrobernardo pluton, central Spain. Geochimica et Cosmochimica Acta, 58, 2609–2628. http://dx.doi.

org/10.1016/0016-7037(94)90132-5.

Bea, F., Montero, P., Molina, J.F., 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. The Journal of Geology, 107(4), 399–419. http://dx.doi.org/10.1086/314356.

Bea, F., Montero, P., Zinger, T., 2003. The Nature, Origin, and Thermal Influence of the Granite Source Layer of Central Iberia. The Journal of Geology, 111, 579–595. http://dx.doi.org/10.1086/376767.

Bea, F., Montero, P., González-Lodeiro, F., Talavera, C., Molina, J.F., Scarrow, J.H., Whitehouse, M.J., Zinger, T.F., 2006. Zircon

thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic

Complex, Central Iberia. Journal of the Geological Society, London, 163, 847–855. DOI:10.1144/0016-76492005-143.

Bergamín, J.F., De Vicente, G., 1985. Estructura en profundidad del granito de Pozo de la Serna (Ciudad Real), basada en

determinaciones gravimétricas. Estudios Geológicos, 41, 5–6.

Capdevila, R., Corretgé, L.G., Floor, P., 1973. Les granitoides varisques de la Meseta Ibérica. Bulletin de la Société Géologique de France, 15/7(3–4), 209–228.

Caride de Liñán, C., 1994. Mapa Geológico de la Península Ibérica, Baleares y Canarias a escala 1:1.000.000, 1ªedición. Available at: http://info.igme.es/cartografiadigital/geologica/Geologicos1MMapa.aspx?Id=Geologico1000_ (1994)&language=es. [last access: 17/11/2017]

Carracedo, M., Gil Ibarguchi, J.I., García de Madinabeitia, S., Berrocal, T., 2005. Geocronología de los granitoides Hercínicos de la Serie Mixta: Edad U-Th-Pbtotal de monacitas del plutón de Cabeza de Araya (Zona Centro Ibérica) y de las manifestaciones filonianas asociadas. Revista de la Sociedad Geológica de España, 18(1–2), 75–86.

Carracedo, M., Paquette, J.L., Alonso Olazabal, A., Santos Zalduegui, J.F., García de Madinabeitia, S., Tiepolo, M., Gil Ibarguchi, J.I., 2009. U-Pb dating of granodiorite and granite units of the Los Pedroches batholith. Implications for geodynamic models of the southern Central Iberian Zone (Iberian Massif). International Journal of Earth Sciences, 98, 1609–1624. http://dx.doi.org/10.1007/s00531-008-0317-0.

Carrington da Costa, J., 1950. Noticia sobre uma carta geologica do Buçaco, de Nery Delgado. Lisboa, Publicación Especial de la Comision de Servicio Geológico de Portugal, 1–27.

Castro, A., 1986. Structural pattern and ascent model in the Central Extremadura batholith, Hercynian belt, Spain. Journal of Structural Geology, 8(6), 633–645. https://doi.org/10.1016/0191-8141(86)90069-6.

Castro, A., 2014. The off-crust origin of granite batholiths. Geoscience Frontiers, 5, 63–75. http://dx.doi.org/10.1016/j.gsf.2013.06.006.

Castro, A., Patiño-Douce, A., Corretgé, L.G., de la Rosa, J., El-Biad, M., El-Hmidi, H., 1999. Origin of peraluminous granites and granodiorites, Iberian Massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135(2), 255–276. http://dx.doi.org/10.1007/s004100050511.

Castro, A., Corretgé, L.G., de la Rosa, J., Enrique, P., Martínez, F.J., Pascual, E., Lago, M., Arranz, E., Galé, C., Fernández, C., Donaire, T., López, S., 2002. Paleozoic Magmatism. In: Gibbons, W., Moreno, T. (eds.). The Geology of Spain, Geological Society, London, 117–153.

Chicharro, E., Villaseca, C., Valverde-Vaquero, P., Belousova, E., López-García, J.A., 2014. Zircon U-Pb and Hf isotopic constraints on the genesis of a post-kinematic S-type Variscan tin granite: the Logrosán cupola (Central Iberian Zone). Journal of Iberian Geology 40(3), 451–470. http://dx.doi.org/10.5209/rev_JIGE.2014.v40.n3.43928.

Corretgé, L.G., 1971. Estudio petrológico del Batolito de Cabeza de Araya (Cáceres). PhD Thesis, University of Salamanca, Spain, 453pp.

Corretgé, L.G., 1983. Las rocas graníticas y granitoides del Macizo Ibérico. In: Comba, J.A. (ed.). Geología de España, Tomo 1, Instituto Geológico y Minero de España, Madrid, 569–592.

Corretgé, L.G., Bea, F., Suárez, O., 1985. Las características geoquímicas del batolito de Cabeza de Araya (Cáceres, España). Implicaciones petrogenéticas. Trabajos de Geología Universidad de Oviedo, 15, 219–238.

Corretgé, L.G., Castro, A., García-Moreno, O., 2004. Granitoides de la “serie mixta”. In: Vera, J.A. (ed.). Geología de España.

Madrid, Sociedad Geológica de España e Instituto Geológico y Minero de España, 115–116.

Debon, F., Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science, 73(3), 135–149. https://doi.org/10.1017/S0263593300010117.

Dias, G., Leterrier, J., Mendes, A., Simoes, P., Bertrand, J., 1998. U-Pb zircon and monazite geochronology of post-collisional

Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos, 45, 349–369. https://doi.org/10.1016/

S0024-4937(98)00039-5.

Fitton, J.G., James, D., Kempton, P.D., Ormerod, D.S., Leeman, W.P., 1988. The role of the lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. Journal of Petrology, Special Volume (1), 331–349. https://doi.org/10.1093/petrology/Special_Volume.1.331

García de Madinabeitia, S., Santos Zalduegui, J.F., Gil Ibarguchi, J.I., Carracedo, M., 2003. Geocronologia del plutón de Campanario-La Haba (Badajoz) a partir del análisis de isótopos de Pb en circones y U-Th-Pbtotal en monacitas. Geogaceta, 34, 27–30.

García de Madinabeitia, S., Sánchez Lorda, M.E., Gil Ibarguchi, J.I., 2008. Simultaneous determination of major to ultratrace

elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Analytica Chimica Acta, 625(2), 117–130. http://dx.doi.org/10.1016/j.aca.2008.07.024.

García-Moreno, O., 2004. Estudio experimental de las relaciones texturales y de fases en granitos peralumínicos de la “Serie Mixta” del Macizo Ibérico: El caso de Cabeza de Araya (Cáceres). PhD Thesis, University of Granada, Spain, 248pp.

García-Moreno, O., Corretgé, L.G., Castro, A., 2007. Processes of assimilation in the genesis of cordierite leucomonzogranites from the Iberian massif: a short review. The Canadian Mineralogist, 45, 71–85. https://doi.org/10.2113/gscanmin.45.1.71.

González Menéndez, L., 1998. Petrología y geoquímica del batolito granítico de Nisa-Alburquerque (Alto Alentejo, Portugal; Extremadura, España). PhD Thesis, University of Granada, Spain, 221pp.

Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Johnston, S.T., Pastor-Galán, D., Murphy, J.B., Franco, M.P., Gonzalo, J.C., 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 30(5), TC5008. https://doi.org/10.1029/2010TC002845.

Harrison, T.M., Watson, E.B., 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations.

Geochimica et Cosmochimica Acta, 48(7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4.

Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology,

(7), 635–638. https://doi.org/10.1130/G23505A.1.

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.

Janoušek, V., 2006. Saturnin, R language script for application of accessory-mineral saturation models in igneous geochemistry. Geologica Carpathica, 57(2), 131–142.

Janoušek, V., Farrow, C.M., Erban, V., 2006. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255–1259. https://doi.org/10.1093/petrology/egl013.

Janoušek, V., Moyen, J.-F. Martin, H., Erban, V., Farrow, C., 2016. Geochemical Modelling of Igneous Processes–Principles

And Recipes in R Language. Berlin, Springer-Verlag Berlin Heidelberg, 346pp. https://doi.org/10.1007/978-3-662-46792-3.

Martínez Catalán, J.R., Arenas, R., Abati, J., Sánchez Martínez, S., Díaz García, F., Fernández Suárez, J., González Cuadra,

P., Castiñeiras, P., Gómez Barreiro, J., Díez Montes, A., González Clavijo, E., Rubio Pascual, F.J., Andonaegui, P., Jeffries, T.E., Alcock, J.E., Díez Fernández, R., López Carmona, A., 2009. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geoscience, 341, 114–126. https://doi.org/10.1016/j.crte.2008.11.004.

Martínez Poyatos, D., Gutiérrez-Marco, J.C., Pardo Alonso, M.V., Rábano, I., Sarmiento, G., 2004. La secuencia paleozoica postcámbrica. In: Vera, J.A. (ed.). Geología de España. Sociedad Geológica de España e Instituto Geológico y Minero de España (SGE-IGME), Madrid, 81–83.

McCulloch, M.T., Chappell, B.W., 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters, 58(1), 51–64. http://dx.doi.org/10.1016/0012-821X(82)90102-9.

Meinhold, G., Kostopoulos, D., Frei, D., Himmerkus, F., Reischmann, T., 2010. U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. International Journal of Earth Sciences (Geologische Rundschau), 99(4), 813–832. https://doi.org/10.1007/s00531-009-0425-5.

Merino Martínez, E., Villaseca, C., Orejana, D., Pérez-Soba, C., Belousova, E., Andersen, T., 2014. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central Spain). Lithos, 200–201, 273–298. http://dx.doi.org/10.1016/j.lithos.2014.04.013.

Miller, C.F., Stoddard, E.F., Bradfish, L.J., Dollase, W.A., 1981. Composition of plutonic muscovite: genetic implications. The

Canadian Mineralogist, 19, 25–34.

Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperaturesand

preservation of inheritance. Geology, 31(6), 529–532. http://dx.doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.

CO;2.

Montel, J.-M., 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110(1–3), 127–146. http://dx.doi.org/10.1016/0009-2541(93)90250-M.

Montel, J.-M., Vielzeuf, D., 1997. Partial melting of metagreywackes, Part II. Composition of minerals and melts. Contributions to Mineralogy and Petrology, 128(2), 176–196. https://doi.org/10.1007/s004100050302.

Montero, P., Bea, F., González-Lodeiro, F., Talavera, C., Whitehouse, M., 2007. Zircon crystallization age and protolith history of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain. Implications for the Neoproterozoic to Early-Paleozoic evolution of Iberia. Geological Magazine, 144(6), 963–976. http://dx.doi.org/10.1017/S0016756807003858.

Montero, P., Talavera, C., Bea, F., Lodeiro, F.G., Whitehouse, M.J., 2009. Zircon Geochronology of the Ollo de Sapo Formation and the Age of the Cambro-Ordovician Rifting in Iberia. The Journal of Geology, 117, 174–191. https://doi.org/10.1086/595017.

Nachit, H., Razafimahefa, N., Stussi, J.-M., Carron, P.J., 1985. Composition chimique des biotites et typologie magmatique

des granitoïdes. Comptes Rendus de l’Académie des Sciences, 301(11), 813–818.

Nachit, H., Ibhi, A., Abia, E.H., Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415–1420. http://dx.doi.org/10.1016/j.crte.2005.09.002.

O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. In: Nolan, T.B. (ed.). U.S. Geological Survey, Professional Paper 525-B, 79–84.

Orejana, D., Villaseca, C., Valverde-Vaquero, P., Belousova, E., Armstrong, A., 2012. U–Pb geochronology and zircon composition of late Variscan S- and I-type granitoids from the Spanish Central System batholith. International Journal of Earth Sciences (Geologische Rundschau), 101, 1789–1815.

Patiño Douce, A.E., 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Journal of Geophysical Research, 100(B8), 15623–15639. https://doi.org/10.1029/94JB03376.

Patiño Douce, A.E., Johnston, A.D., 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2), 202–218. https://doi.org/10.1007/BF00310707.

Patiño Douce, A.E., Humphreys, E.D., Johnston, A.D., 1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth and Planetary Science Letters, 97(3–4), 290–315. https://doi.org/10.1016/0012-821X(90)90048-3.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/C1JA10172B.

Petrus, J.A., Kamber, B.S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36, 247–270. http://dx.doi.org/10.1111/j.1751-908X.2012.00158.x.

Pichavant, M., Montel, J-M., Richard, L.R., 1992. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56(10), 3855–3861. http://dx.doi.org/10.1016/0016-7037(92)90178-L.

Rapp, R.P., Watson, E.B., 1986. Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94(3), 304–316. http://dx.doi.

org/10.1007/BF00371439.

Rodríguez Alonso, M.D., Díez Balda, M.A., Perejón, A., Pieren, A., Liñan, E., López Díaz, F., Moreno, F., Gámez Vintaned, J.A., González Lodeiro, F., Martínez Poyatos, D., Vegas, R., 2004. La secuencia litoestratigráfica del NeoproterozoicoCámbrico Inferior. In: Vera, J.A. (ed.). Geología de España, Sociedad Geológica de España e Instituto Geológico y Minero de España (SGE-IGME), Madrid, 78–81.

Rossi, P., Chevremont, P., 1987. Classification des associations magmatiques granitoides. Géochronique, 21, 14–18.

Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Holland, H.D., Turekian, K.K. (eds.). Treatise on Geochemistry. Oxford, Elsevier-Pergamon, 1–64.

Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and Chemically-Depleted Mantle Reservoirs: Trace Element Constraints. Journal of Petrology, Special Volume (1), 415–445. http://dx.doi.org/10.1093/petrology/Special_Volume.1.415.

Sláma, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon - a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

Solá, A.R., Williams, I.S., Neiva, A.M.R., Ribeiro, M.L., 2009. U-Th-Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, NisaAlbuquerque batholith, SW Iberian Massif: Petrologic and regional implications. Lithos, 111(3–4), 156–167. http://dx.doi.org/10.1016/j.lithos.2009.03.045.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.). Magmatism in the ocean basins. London, Geological Society of London, 42 (Special Paper), 313–345.

Sylvester, J.P., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1–4), 29–44. http://dx.doi.org/10.1016/S0024-4937(98)00024-3.

Talavera, C., Bea, F., Montero, P., Whitehouse, M., 2008. A revised Ordovician age for the Sisargas orthogneiss, Galicia (Spain). Zircon U-Pb ion-microprobe and LA-ICPMS dating. Geologica Acta, 6(4), 313–317. http://dx.doi.org/10.1344/105.000000259.

Talavera, C., Montero, P., Martínez Poyatos, D., Williams, I.S., 2012. Ediacaran to Lower Ordovician age for rocks ascribed

to the Schist-Greywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U-Pb geochronology. Gondwana Research, 22(3–4), 928–942. http://dx.doi.org/10.1016/j.gr.2012.03.008.

Talavera, C., Montero, P., Bea, F., González Lodeiro, F., Whitehouse, M., 2013. U-Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. International Journal of Earth Sciences (Geologische Runschau), 102, 1–23. https://doi.org/10.1007/s00531-012-0788-x.

Villaseca, C., Barbero, L., Herreros, V., 1998a. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 89(2), 113–119. https://doi.org/10.1017/S0263593300007045.

Villaseca, C., Barbero, L., Rogers, G., 1998b. Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain:

petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43(2), 55–79. https://doi.org/10.1016/S0024-4937(98)00002-4.

Villaseca, C., Downes, H., Pin, C., Barbero, L., 1999. Nature and Composition of the Lower Continental Crust in Central Spain

and the Granulite–Granite Linkage: Inferences from Granulitic Xenoliths. Journal of Petrology, 40(10), 1465–1496. https://

doi.org/10.1093/petroj/40.10.1465.

Villaseca, C., Pérez-Soba, C., Merino, E., Orejana, D., LópezGarcía, J.A., Billstrom, K., 2008. Contrasting crustal sources for peraluminous granites of the segmented Montes de Toledo batholith (Iberian Variscan Belt). Journal of Geosciences, 53,

–280.

Villaseca, C., Orejana, D., Beolousova, A.E., 2012. Recycled metaigneous crustal sources for S- and I-type Variscan granitoids from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos, 153, 84–93. https://doi.org/10.1016/j.lithos.2012.03.024.

Villaseca, C., Merino Martínez, E., Orejana, D., Andersen, T., Beolousova, E., 2016. Zirzon Hf signatures from granitic orthogneisses of the Spanish Central System: Significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Research, 34, 60–83. http://dx.doi.org/10.1016/j.gr.2016.03.004.

Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal

magma types. Earth and Planetary Science Letters, 64(2), 295–304. http://dx.doi.org/10.1016/0012-821X(83)90211-X

Wilson, M., 1989. Igneous Petrogenesis: a Global Tectonic Approach. London, Unwin Hyman, 466pp.

Downloads

Published

2017-11-22

Issue

Section

Granites and Related Rocks. A tribute to Guillermo Corretgé