Weld kinematics of syn-rift salt during basement-involved extension and subsequent inversion: Results from analog models
DOI:
https://doi.org/10.1344/GeologicaActa2018.16.4.4Keywords:
Extension and inversion, Salt tectonics, Syn-rift salt, Analog modeling, Southern North Sea.Abstract
Scaled analog models based on extensional basins with synrift salt show how basement topography exerts a control factor on weld kinematics during the extension and inversion phases. In the case of basement-involved extension, syn-rift salt thickness differences may lead to variable degrees of extensional decoupling between basement topography and overburden, which in turn have a strong impact on the development of salt structures. With ongoing extension and after welding, the basin kinematics evolves toward a coupled deformation style. The basin architecture of our experimental results record the halokinetic activity related to growing diapirs and the timing of weld formationduring extension. Moreover, the structures that result from anysubsequent inversion of these basins strongly depends on the inherited welds and salt structures. While those basins are uplifted,the main contractional deformation during inversion is absorbed by the pre-existing salt structures, whose are squeezed developing secondary welds that often evolve into thrust welds. The analysis of our analog models shows that shortening of diapirs is favored by: i) basement topography changes that induce reactivation of primary welds as thrust welds; ii) reactivation of the salt unit as a contractional detachment and iii) synkinematic sedimentation during basin inversion. Finally, in this article, we also compare two natural examples from the southern North Sea that highlight deformation patterns very similar to those observed in our analog models.
References
Baby, P., Colletta, B., Zubieta, D., 1995. Etude géométrique et expérimentale d’un bassin transporté: exemple du synclinorium de l’Alto Beni (Andes centrales). Bulletin de la Société Géologique de France, 166(6), 797-811.
Badley, M., Prince, J.D., Backshall, L.C., 1989. Inversion, reactivated faults and related structures, seismic examples from the Southern North Sea. The Geological Society of London, 44 (Special Publications), 201-219. DOI: 10.1144/GSL.SP.1989.044.01.12
Bally, A.W., 1984. Tectonogénese et sismique de réflexion. Bulletin Société Géologique de France, 7(2), 279-285. DOI:
2113/gssgfbull.S7-XXVI.2.279
Barrier, L., Nalpas, T., Gapais, D., Proust, J.-N., 2013. Impact of synkinematic sedimentation on the geometry and dynamics
of compressive growth structures: Insights from analogue modelling. Tectonophysics, 608, 737-752. DOI: 10.1016/j.tecto.2013.08.005
Bonini, M., 2001. Passive roof thrusting and forelandward fold propagation in scaled brittle-ductile physical models of thrust wedges. Journal of Geophysical Research, 106(B2), 2291-2311.
Bonini, M., Sani, F., Antonielli, B., 2012. Basin inversion and contractional reactivation of inherited normal faults: a review based on previous and new experimental models. Tectonophysics, 522-523, 55-88. DOI: 10.1016/j.tecto.2011.11.014
Brun, J.P., Nalpas, T., 1996. Graben inversion in nature and experiments. Tectonics,15(3), 677-687. DOI: 10.1029/95TC03853
Brun, J.P., Fort, X., 2004. Compressional salt tectonics (Angola margin). Tectonophysics, 382, 129-150. DOI: 10.1016/j.tecto.2003.11.014
Buchanan, P.G., McClay, K.R., 1991. Sandbox experiments of inverted listric and planar fault systems. Tectonophysics, 188,
-115. DOI: 10.1016/0040-1951(91)90317-L
Burliga, S., Koyi, H.A., Krzywiec, P., 2012. Modelling cover deformation and decoupling during inversion, using the MidPolish Trough as a case study. Journal of Structural Geology, 42, 62-73. DOI: 10.1016/j.jsg.2012.06.013
Cramez, C., Jackson, M.P.A, 2000. Superposed deformation straddling the continental-oceanic transition in deep-water Angola. Marine and Petroleum Geology, 17(10), 1095-1109. DOI: 10.1016/S0264-8172(00)00053-2
Callot, J.P., Jahani, S., Letouzey, J., 2007. The role of pre-existing diapirs in fold and thrust belt development. In: Lacombe, O.,
Roure, F., Lavé, J., Vergés, J. (eds.). Thrust Belts and Foreland Basins. Frontiers in Earth Sciences. Berlin, Heidelberg, Springer, 309-325. DOI:10.1007/978-3-540-69426-7_16
Callot, J.P., Trocmé, V., Letouzey, J., Albouy, E., Jahani, S., Sherkati, S., 2012. Pre-existing salt structures and the folding of the Zagros Mountains. The Geological Society of London, 363 (Special Publications), 545-561. DOI: 10.1144/SP363.27
Coward, M., Stewart, S., 1995. Salt-influenced structures in the Mesozoic-Tertiary cover of the southern North Sea, U.K.
In: Jackson, M.P.A., Roberts, D.G., Snelson, S. (eds.). Salt tectonics: a global perspective. American Association of Petroleum Geologists (AAPG), 65 (Memoir), 229-250.
De Jager, J., 2003. Inverted basins in the Netherlands, similarities and differences. Netherlands. Journal of Geoscienes/Geologie em Miijnnown, 82(4), 355-366.
Dell’Ertole, D., Schellart, W.P., 2013. The development of sheath folds in viscously stratified materials in simple shear conditions: an analogue approach. Journal of Structural Geology, 56, 129-141. DOI: 10.1016/j.jsg.2013.09.002
Del Ventisette, C.D., Montanari, D., Bonini, M., Sani, F., 2005. Positive fault inversion triggering ‘intrusive diapirism’: an analogue modelling perspective. Terra Nova,17(5),478-485. DOI: 10.1111/j.1365-3121.2005.00637.x
Dooley, T.P., McClay, K.R., Hempton, M., Smit, D., 2005. Salt tectonics above complex basement extensional fault systems: Results from analogue modelling In: Dore, A.G., Vining, B.A. (eds.). Petroleum geology: North-west Europe and global perspectives. Proceedings of the 6th Petroleum Geology Conference, London, Petroleum Geology Conferences Ltd. and the Geological Society, 1631-1648. DOI: 10.1144/0061631
Dooley, T.P., Jackson, M.P.A., Hudec, M.R., 2009. Inflation and deflation of deeply buried salt stocks during lateral shortening. Journal of structural geology, 31, 582-600. DOI: 10.1016/j.jsg.2009.03.013
Dooley, T.P., Hudec, M.R., Jackson, M.P.A., 2012. The structure and evolution of sutures in allochthonous salt. American Association of Petroleum Geologists Bulletin, 96, 1045-1070. DOI: 10.1306/09231111036
Dooley, T.P., Jackson, M.P.A., Jackson, C.A.L., Hudec, M.R., Rodriguez, C.R., 2015. Enigmatic structures within salt walls of the Santos Basin—Part 2: Mechanical explanation from physical modelling. Journal of Structural Geology, 75,163-187. DOI: 10.1016/j.jsg.2015.01.009
Dooley,T.P., Hudec, M.R., Carruthers, D., Jackson, M.P.A., Luo, G., 2017. The effects of base-salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1-SD23. DOI:
1190/INT-2016-0087.1
Dronkers, A.J., Mrozek, F.J., 1991. Inverted basins of The Netherlands. First Break, 9, 409-418.
Eisenstadt, G., Sims, D., 2005. Evaluating sand and clay models: do rheological differences matter? Journal of Structural Geology, 27, 1399-1412. DOI: 10.1016/j.jsg.2005.04.010
Ferrer, O., Roca, E., Vendeville, B.C., 2014. The role of salt layers in the hangingwall deformation of kinked-planar extensional faults: insights from 3D analogue models and comparison with the Parentis Basin. Tectonophysics, 636, 338-350. DOI: 10.1016/j.tecto.2014.09.013
Ferrer, O., McClay, K., Sellier, N., 2016. Influence of fault geometries and mechanical anisotropies on the growth and inversion of hangingwall synclinal basins: Insights from sandbox models and natural examples. In: Child, C., Holdsworth, R.E., Jackson, C.A.L., Manzocchi, T., Walsh, J.J., Yieldings, G. (eds.). The geometry and growth of normal faults. The Geological Society of London, 439 (Special Publications), 487-509. DOI: 10.1144/SP439.8
Ferrer, O., Gratacós,O., Roca, E., Muñoz, J.A., 2017. Modeling the interaction between presalt seamounts and gravitational
failure in salt-bearing passive margins: The Messinian case in the northwestern Mediterranean Basin. Interpretation,5(1),
SD99-SD117. DOI: 10.1190/INT-2016-0096.1
Ge, H., Jackson, M.P.A., Vendeville, B.C., 1995. Extensional origin of breached Paradox Basin diapirs, Utah and Colorado: Field observations and scaled physical models. In: Huffman, A.C., Lund, W.R.Jr., Godwin, H.L. (eds.). Geology and resources of the Paradox basin: Salt Lake City, UT, Utah Geological Association, Guidebook 25, 285-293.
Gottschalk, R.R., Anderson, A.V., Walker, J.D., Da Silva, J.C., 2004. Modes of contractional salt tectonics in Angola Block 33, Lower Congo basin, West Africa: In Salt-sediment interactions and hydrocarbon prospectivity. Concepts, applications and case studies for the 21st century: Society of Economic Paleontologist and Mineralogist Gulf Coast Section, 24th annual research conference, 705-734.
Graveleau, F., Malavieille, J., Dominguez, S., 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics,
, 1-66. DOI: 10.1016/j.tecto.2012.01.027
Hammerstein, J., Truelove, L., McClay, K.R., 2014. Additional methods for the analysis of seismic data and risk reduction
through the interpretation and reservoir modelling of scaled analogue models. American Association of Petroleum Geologists (AAPG), Houston (Texas, USA),Annual Convention and Exhibition, April 6-9, Datapages/Search and Discovery Article #90189, last accessed: October 2018, website: http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1841538.html
Hubbert, M.K., 1937. Theory of scaled models as applied to the study of geological structures. Geological Society of America Bulletin, 48, 1459-1520. DOI: 10.1130/GSAB-48-1459
Hudec, M.R., Jackson, M.P.A., 2007. Terra infirma: understanding salt tectonics. Earth Science Reviews, 82, 1-28. DOI: 10.1016/j.earscirev.2007.01.001
Huiqi, L., McClay, K.R., Powell, D., 1992. Physical models of thrusts wedges. In: McClay, K.R. (ed.). Thrust Tectonics. London, Chapman and Hall, 71-81.
Jackson, M.P.A., Cramez, C., 1989. Seismic recognition of salt welds in salt tectonics regimes, In: Gulf of Mexico salt tectonics, associated processes and exploration potential. Society of Economic Paleontologists and Mineralogists Gulf
Coast Section, 10th annual research conference program and abstracts, 66-71.
Jackson, M.P.A., Vendeville, B.C., 1994. Regional extension as a geologic trigger for diapirism. Geological society of America bulletin, 106(1), 57-73. DOI: 10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2
Jackson, M.P.A., Hudec, M., 2017. Salt Stocks and Salt Walls. In Salt Tectonics: Principles and Practice. Cambridge, Cambridge University Press, 76-118. DOI: 10.1017/9781139003988.008
Jackson, M.P.A., Vendeville, B.C., Schultz-Ela, D.D., 1994. Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93-117.
Kehle, R.O., 1988. The origin of salt structures. In: Schreiber, B.C. (ed.). Evaporites and Hydrocarbons. Columbia University Press, 345-403.
Konstantinovskaia, E., Malavielle, J., 2005. Erosion and exhumation in acreationary orogens. Experimental and geological approaches. Geochemistry, Geophysics and Geosystems, 6(2), 1-25. DOI: 10.1029/2004GC000794
Koyi, H., Jenyon, M.K., Petersen, K., 1993. The effect of basement faulting on diapirism. Journal of Petroleum Geology, 163,
-312. DOI: 10.1111/j.1747-5457.1993.tb00339.x
Koyi, H., Petersen, K., 1993. Influence of basement faults on the development of salt structures in the Danish Basin. Marine
and Petroleum Geology, 10, 82-94. DOI: 10.1016/0264-8172(93)90015-K
Letouzey, J., Sherkati, S., 2004. Salt Movement, Tectonic Events, and Structural Style in the Central Zagros Fold and Thrust
Belt (Iran). Salt-sediments interactions and hydrocarbon prospectivity: Concepts, applications, and case studies for the 21st century. Society of Economic Paleontologist and Mineralogist Gulf Coast Section, 24th annual research conference, 753-778.
Letouzey, J., Colletta, B., Vially, R., Chermette, J.C., 1995. Evolution of Salt-Related Structures in Compressional Settings. In: Jackson, M.P.A., Roberts, D.G., Snelson, S., (eds.). American Association of Petroleum Geologists Memoir 65 on Salt Tectonics: a global perspective, 41-60.
McClay, K.R., 1989. Analogue models of inversion tectonics. In: Cooper, M.A., Williams, G.D. (eds.). Inversion Tectonics. The Geological Society of London, 44 (Special Publications), 44, 41-59. DOI: 10.1144/GSL.SP.1989.044.01.04
McClay, K.R., 1990.Deformation mechanics in analogue models of extensional fault systems. The Geological Society of London, 54 (Special Publications), 445-453. DOI:10.1144/GSL.SP.1990.054.01.40
McClay, K.R., 1995. The geometries and kinematics of inverted fault systems: a review of analogue models studies. In: Buchanan, J.G., Buchanan, P.G. (eds.). Basin Inversion. The Geological Society of London, 88 (Special Publications), 97-118. DOI: 10.1144/GSL.SP.1995.088.01.07
Nalpas, T., Le Douaran, S., Brun, J.-P., Unternehr, P., Richert, J.-P., 1995. Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale model investigation. Sedimentary Geology, 95, 237-250.
Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995. Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In: Jackson, M.P.A, Roberts, D.G., Snelson, S. (eds.). Salt tectonics: a global perspective. American Association of Petroleum Geologists (AAPG), 65 (Memoir), 413-436.
Pascoe, R., Hooper, R., Storhaug, K., Harper, H., 1999. Evolution of extensional styles at the southern termination of the Nordland Ridge, Mid-Norway: a response to variations in coupling above Triassic salt. In: Fleet, A.J., Boldy, S.A.R. (eds.). Petroleum Geology of northwest Europe: Proceeding of the 5th Conference.The Geological Society of London, 5,83-90.
Pichot, T., Nalpas, T., 2009. Influence of synkinematic sedimentation in a thrust system with two décollement levels; analogue modelling. Tectonophysics, 473, 466-475. DOI: 10.1016/j.tecto.2009.04.003
Roma,M.,Vidal-Royo,O., McClay, K.R., Ferrer, O., Muñoz, J.A., 2018. Tectonic inversion of salt-detached ramp-syncline basins as illustrated by analog modeling and kinematic restoration. Interpretation, 6(1), T127-T144. DOI: 10.1190/INT-2017-0073.1
Roure, F., Colletta, B., 1996. Cenozoic inversion structures in the foreland of the Pyrenees and Alps. Mémoires du Muséum national d’histoire naturelle,170, 173-209.
Rowan, M.G., 2014. Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154-182. DOI:10.1111/bre.12043
Rowan, M.G., Vendeville, B.C., 2006. Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia. Marine and Petroleum Geology, 23, 871-891. DOI: 10.1016/j.marpetgeo.2006.08.003
Rowan, M.G., Jackson, M.P.A., Trudgill, B.D., 1999. Salt-related fault families and fault welds in the northern Gulf of Mexico.
American Association of Petroleum Geologists (AAPG) Bulletin, 83(9), 1454-1484.
Rowan, M.G., Trudgill, B.D., Fiduk, J.C., 2000. Deep-water, salt-cored foldbelts: Lessons from Mississippi fan and Perdido foldbelts; northen Gulf of Mexico. In: Mohriak, W., Talwani, M. (eds.). Atlantic rifts and continental margins. Washington D.C., American Geophysical Union, Geophysical Monograph, 115, 173-191.
Rowan, M.G., Peel, F.J., Vendeville, B.C., 2004. Gravity-driven fold belts on passive margins. In: McClay, K.R. (ed.). Thrust tectonics and hydrocarbon sustems. Tulsa(OK), American Association of Petroleum Geologist (AAPG), 82 (Memoir), 157-182.
Schellart, W.P., 2000. Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics, 324, 1-16. DOI: 10.1016/S0040-1951(00)00111-6
Soto, R., Casas-Sainz, A.M., Del Río, P., 2007. Geometry of half-grabens containing a mid-level viscous décollement. Basin Research, 19, 437-450.DOI: 10.1111/j.1365-2117.2007.00328.x
Stewart, S.A., Clark, J.A., 1999. Impact of salt on the structure of the Central North Sea hydrocarbon fairways. In: Fleet, A.J., Boldy, S.A.R. (eds.). Petroleum Geology of northwestEurope. Proceeding of the 5th Conference. The Geological Society of London, 5, 179-200. DOI: 10.1144/0050179
Storti, F., McClay, K., 1995. Influence of syntectonic sedimentation on thrust wedges in analogue models. Geology, 23(11), 999-1002. DOI: 10.1130/0091-7613(1995)023<0999:IOSSOT>2.3.CO;2
Vendeville, B.C., 2002. A new interpretation of Trusheim’s classic model of salt-diapir growth. Gulf Coast Association of Geological Societies Transaction, 52, 943-954.
Vendeville, B.C., Jackson, M.P.A., 1992. The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology, 9, 331-353.
Vendeville, B.C., Nilsen, K.T., 1995. Episodic growth of salt diapirs driven by horizontal shortening. In: Salt, sediment, and hydrocarbons. Society of Economic Paleontologist and Mineralogist Gulf Coast Section, 16th annual research conference program and extended abstracts, 285-295.
Vendeville, B.C., Ge, H., Jackson, M.P.A., 1995. Scale models of salt tectonics during basement-involved extension. Petroleum Geoscience, 1(2), 179-183. DOI: d10.1144/petgeo.1.2.179
Weijermars, R., 1986. Flow behavior and physical chemistry bouncing putties and related polymers in view of tectonic laboratory applications. Tectonophysics, 124, 325-358. DOI: 10.1016/0040-1951(86)90208-8
Withjack, M.O., Callaway, S., 2000. Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence. American Association of Petroleum Geologists Bulletin, 84(5), 627-651.
Yamada, Y., McClay, K.R., 2003a. Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 2: insights for possible along strike migration of material during 3D hanging wall deformation. Journal of Structural Geology, 25(9), 1551-11560. DOI: 10.1016/S0191-8141(02)00181-5
Yamada, Y., McClay, K.R., 2003b. Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 1: 2D hanging wall deformation and section restoration. Journal of Structural Geology, 25(8), 1331-1336. DOI: 10.1016/S0191-8141(02)00160-8
Published
Issue
Section
License
Copyright (c) 2018 Geologica Acta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.