Audiomagnetotelluric survey at the Bañitos-Gollete geothermal area, main Andes Cordillera of San Juan, Argentina
DOI:
https://doi.org/10.1344/GeologicaActa2019.17.8Keywords:
Audiomagnetotellurics, Geothermal resource, Hydrothermal system, Valle del Cura basin, AndesAbstract
The present research explores the Bañitos-Gollete geothermal field located in the Frontal Andes Cordillera over the Pampean flat-slab. We carried out an audiomagnetotelluric survey in order to define the underground geoelectrical
structure and to understand the link between the geothermal fluid path and the main geological structures. 2-D audiomagnetotelluric models suggest that the deep-rooted N-S fault system control the geothermal flow path. We propose a conductive heat-driven system, taking into consideration the geologic setting and the supposed low geothermal gradient of this tectonic environment. The mature Na-Cl waters from Gollete and an estimated reservoir temperature of ~140ºC are consistent with this conceptual model. Further investigations are required to assess the geothermal potential of the study area, and the present work likely represents only the first but necessary step in the exploration process.
References
Alonso, S., Limarino, C., Litvak, V., Poma, S., Suriano, J., Remesal, M., 2011. Palaeogeographic, magmatic and palaeoenvironmental scenarios at 30ºSL during the Andean Orogeny: Cross sections form the volcanic-arc to the orogenic front (San Juan province, Argentina). In: Salfity, J.A., Marquillas, R.A. (eds.). Cenozoic Geology of the Central Andes of Argentine, SCS Publisher, Salta, 23-45.
Bahr, K., 1988. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. Journal of Geophysics, 62, 119-127.
Bahr, K., 1991. Geological noise in magnetotelluric data: a classification of distortion types. Physics of the Earth and Planetary Interiors, 66, 24-38.
Barcelona, H., Favetto, A., Peri, A., Pomposiello, C., 2014. Sistema geotermal de Despoblados determinado a partir de datos
magnetotelúricos, Valle del Cura, San Juan. Revista de la Asociación Geológica Argentina, 71(4), 562-574.
Berdichevsky, M., Dmitriev, V., 2008. Models and Methods of Magnetotellurics. Berlin, Springer, 564pp.
Bertrand, E., Cadwell, T., Hill, G., Bennie, S., Soengkono, S., 2013. Magnetotelluric imaging of the Ohaaki geothermal system, New Zealand: Implications for locating basement permeability. Journal of Volcanology and Geothermal Research, 268, 36-45.
Bibby, H., Risk, G., Caldwell, T., Heise, W., 2009. Investigations of deep resistivity structures at the Wairakei geothermal field. Geothermics, 38, 98-107.
Bissig, T., Clark, A., Lee, J., Heather, K., 2001. The cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: New 40Ar-39Ar constrains from the El Indio-Pascua Au (-Ag, Cu) belt, 29º20-30º30” S. International Geology Review, 43, 312-340.
Bissig, T., Clark, A., Lee, J., Hodgson, C., 2002. Miocene landscape evolution and geo- morphological controls on epithermal
processes in the El Indio-Pascua Au–Ag–Cu belt, Chile and Argentina. Economic Geology, 97, 971-996.
Bissig, T., Clark, A.H., Lee, J.K.W., von Quadt, A., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattenig: New constrains from the El Indio-Pascua Au-Ag-Cu Belt, Chile/Argentina. Mineralium Deposita, 38, 844-862.
Blake, S., Henry, T., Muller, M.R., Jones, A.G., Moore, J.P., Murray, J., Rath, V., 2016. Understanding hydrothermal circulation
patterns at a low-enthalpy thermal spring using audiomagnetotelluric data: A case study from Ireland. Journal of Applied Geophysics, 132, 1-16.
Ellis, A.J., Mahon, W.A.J., 1964. Chemistry and Geothermal System. Natural hydrothermal systems and experimental hotwater/rock interactions. Geochimica et Cosmochimica Acta, 28(8), 1323-1357.
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.
Giggenbach, W.F., Sheppard, D.S., Robinson, B.W., Stewart, M.K., Lyon, G.L., 1994. Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics, 23, 599-644.
Godoy, E., Yañez, G., Vera, E., 1999. Inversion of an Oligocene volcano-tectonic basin and uplift of its superimposed Mioceno magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics, 306, 217-236.
Groom, R.W., Bailey, R.C., 1989. Decomposition of magnetotelluric impedance tensors in presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94, 1913-1925.
Jordan, T., Allmendinger, R., 1986. The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland
deformation. American Journal of Science, 286, 737-764.
Kay, S., Coira, B., 2009. Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay, S., Ramos, V., Dickinson, W. (eds.). Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision, The Geological Society of America, 204-229.
Kay, S.M., Mpodozis, C., Coira, B., 1999. Neogene magmatism, tectonism and mineral deposits of the Central Andes (22º-23º S Latitude). In: Skinner, B.J. (ed.). Geology and Ore Deposits of the Central Andes. Society of Economic Geologists Special Publication, 7, 27-59.
Limarino, C., Gutiérrez, P., Malizia, D., Barreda, V., Page, S., Ostera, H., Linares, E., 1999. Edad de las secuencias paleógenas y neógenas de las cordilleras de la Brea y Zancarrón, Valle del Cura, San Juan. Revista de la Asociación Geológica Argentina, 54, 177-181.
Litvak, V., 2009. El volcanismo Oligoceno superior – Mioceno inferior del Grupo Doña Ana en la Alta Cordillera de San Juan.
Revista de la Asociación Geológica Argentina, 64, 201-213.
Litvak, V., Poma, S., 2005. Estratigrafía y facies volcánicas y volcaniclásticas de la Formación Valle del Cura: magmatismo
paleógeno en la Cordillera Frontal de San Juan. Revista de la Asociación Geológica Argentina, 60, 402-416.
Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., 1984. Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordillera del Norte Chico (29º-31º Sur): Geología, Alteración Hidrotermal y Mineralización. Revista Geológica de Chile, 21, 11-51.
Malizia, D., Limarino, C., Sosa-Gomez, J., Kokot, R., Nullo, F., Gutierrez, P., 1997. Descripción de la Hoja Geológica Cordillera del Zancarrón, escala 1: 100.000. Secretaría de Minería de la Nación, Buenos Aires, unpublished, 280pp.
McNeice, G.W., Jones, A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66, 158-173.
Mpodozis, C., Ramos, V.A., 1989. The Andes of Chile and Argentina. In: Ericksen, G.E., Cañas Pinochet, M.T., Reinemud,
J.A. (eds.). Geology of the Andes and its relation to hydrocarbon and mineral resources, Circumpacific Council for Energy and Mineral Resources, Earth Sciences Series, 11, 59-90.
Muñoz, G., 2013. Exploring for Geothermal Resources with Electromagnetic Methods. Survey in Geophysics, 35, 101-122.
Newman, G., Gasperikova, E., Hoevrsten, G., Wanamaker, P., 2008. Three dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics, 37, 369-399.
Nullo, F., Marín, G., 1990. Geología y estructura de las quebradas de la Sal y de la Ortiga, San Juan. Revista de la Asociación
Geológica Argentina, 45, 323-335.
Pesce, A., Miranda, F., 2003. Catálogo de manifestaciones termales de la República Argentina. Servicio Geológico Minero Argentino, Buenos Aires, Instituto de Geología y Recursos Minerales, 165pp.
Ramos, V.A., 2010. The tectonic regime along the Andes: presentday and Mesozoic regimes. Geological Journal, 45, 2-25.
Ramos, V.A., Kay, S.M., Page, R., Munizaga, F., 1989. La Ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, provincia de San Juan. Revista de la Asociación Geológica Argentina, 44, 336-352.
Reddy, I., Rankin, D., Phillips, R., 1977. Three-dimensional modelling in magnetotelluric and magnetic variation sounding. Geophysical Journal of the Royal Astronomical Society, 5, 13-325.
Risacher, F., Hauser, A., 2008. Catastro de las principals fuentes de aguas termales de Chile Servicio Nacional de Geología y
Minería, unpublished, 81pp.
Rodi, W., Mackie, R., 2001. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion. Geophysics, 66, 174-187.
Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. Cambridge, University press, 272pp.
Smith, J.T., 1995. Understanding telluric distortion matrices. Geophysical Journal International, 122, 219-226.
Spichak, V., Manzella, A., 2009. Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics, 68, 459-478.
Swift, C., 1967. A magnetotelluric investigation of aelectrical conductivity anomaly in the southwestern United States. PhD Thesis. Cambridge, Massachusetts Institute of Technology, 226pp.
Syracuse, E.M., Abers, G.A., 2006. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochemistry, Geophysics, Geosystems, 7, Q05017.
Winocur, D., 2010. Geología y estructura del Valle del Cura y el sector central del Norte Chico, provincia de San Juan y IV Región de Coquimbo, Argentina y Chile. PhD. Thesis. Buenos Aires, Universidad de Buenos Aires, unpublished, 354pp.
Winocur, D., Ramos, V., 2011. La Formación Valle del Cura: Su edad y ambiente tectónico. 18º Congreso Geológico Argentino, Actas (Cd-Room), Neuquén.
Winocur, D., Litvak, V., Ramos, V., 2014. Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes
of Argentina and Chile: Evidence for generalized extension. In: Sepúlveda, S., Giambiagi, L., Pinto, L., Moreiras, S., Tunik, M., Hoke, G., Farías, M. (eds.). Geodynamic Processes in the Andes of Central Chile and Argentina. Geological Society of London, Special Publications, 109-130.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Geologica Acta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.