Magnetic mineralogy of Variscan granites from northern Portugal: an approach to their petrogenesis and metallogenic potential

Authors

  • C. Cruz Departamento de Geociências Ambiente e Ordenamento do Território - Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, Porto, Portugal. https://orcid.org/0000-0003-2398-4869
  • H. Sant'Ovaia Departamento de Geociências Ambiente e Ordenamento do Território - Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, Porto, Portugal. Instituto de Ciências da Terra, Polo Porto Rua do Campo Alegre 687, Porto, Portugal.
  • F. Noronha Instituto de Ciências da Terra, Polo Porto Rua do Campo Alegre 687, Porto, Portugal https://orcid.org/0000-0001-8960-7228

DOI:

https://doi.org/10.1344/GeologicaActa2020.18.5

Keywords:

Magnetic mineralogy, Variscan granites, Post-D3 biotite granites, Central Iberian Zone, W-Mo mineralizations

Abstract

Northern Portugal is characterized by the occurrence of numerous W hydrothermal deposits spatially associated with granites. The primary goal of this work is to establish a relationship between the magnetic behavior of the granites and the redox conditions during magma genesis, as this can influence the occurrence of mineralizations, namely of W (Mo). To this end, the magnetic mineralogy of the granites of the Lamas de Olo Pluton, a posttectonic pluton in northern Portugal, with associated W (Mo) occurrences was characterized and compared with the magnetic mineralogy of other post-tectonic Variscan plutons. This pluton is composed of different biotite granites: Lamas de Olo, Alto dos Cabeços and Barragem. To better characterize its magnetic behavior, different analytical techniques that complement previous magnetic susceptibility studies were performed. The magnetic mineralogy of Lamas de Olo Pluton was then compared with other post-tectonic Variscan plutons such as the Vila Pouca de Aguiar, Peneda-Gerês and Lavadores-Madalena plutons. The presence of magnetite in some of these granites is important because it points to melt-oxidized conditions not commonly found in Iberian Variscan granites. Our study shows that granite areas where magnetite and/or magnetite/ilmenite coexist are important targets for W (Mo) mineralizations. The results indicate that a few plutons have granites with a complex redox history which leads to the formation of magnetite and ilmenite.

Author Biographies

C. Cruz, Departamento de Geociências Ambiente e Ordenamento do Território - Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, Porto, Portugal.

PhD student

H. Sant'Ovaia, Departamento de Geociências Ambiente e Ordenamento do Território - Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, Porto, Portugal. Instituto de Ciências da Terra, Polo Porto Rua do Campo Alegre 687, Porto, Portugal.

Professor

F. Noronha, Instituto de Ciências da Terra, Polo Porto Rua do Campo Alegre 687, Porto, Portugal

Emeritus professor

References

Abrajevitch, A., Kodama, K., 2011. Diagenetic sensitivity of paleoenvironmental proxies: A rock magnetic study of Australian continental margin sediments. Geochemistry, geophysics, geosystems, 12, Q05Z24.

Almeida, A., Leterrier, J., Noronha, F., Bertrand, J.M, 1998. U-Pb zircon and monazite geochronology of the Hercynian two mica granite composite pluton of Cabeceiras de Basto (Northern Portugal). Comptes Rendus de l’Académie des Sciences (Paris), 326, 779-785.

Antunes, I.M.H.R., Neiva, A.M.R., Silva, M.M.V.G., Corfu, F., 2008. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos, 103, 445-465.

Aranguren, A., Tubia, J., Bouchez, J.L., Vigneresse, J.L., 1996. The Guitiriz granite, Variscan belt of northern Spain: extensioncontrolled emplacement of magma during tectonic escape. Earth and Planetary Science Letters, 139(1-2), 165-176.

Bouchez, J.L., 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez, J.L., Hutton,

D.H.W., Stephens, W.E. (eds.). Granite: From Segregation of Melt to Emplacement Fabrics. Dordrecht, Kluwer Academic

Publishers, 95-112.

Bouchez, J.L., 2000. Magnetic susceptibility anisotropy and fabrics in granites. Comptes Rendus de l’Académie des Sciences de la Terre et des planets. Earth and Planetary Science, 330(1), 1-14.

Butler, R.F., 1992. Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific Publications, 319pp.

Castiñeiras, P., Villaseca, C., Barbero, L., Martín Romera, C., 2008. SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: implications in the Hercynian evolution of Central Iberia. International Journal of Earth Sciences, 97, 35-50.

Chadima, M., Jelinek, V., 2009. Anisoft 4.2: anisotropy data browser for windows. Advanced Geoscience Instruments Company (AGICO), Incorporated, Brno.

Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology, 8, 173-174.

Cheilletz, A., Giuliani, G., 1982. Role de la Deformation du Granite dans la Genese des Episyenites Feldspathiques des Massifs de Lovios-Geres (Galice) et des Zaer (Maroc Central). Mineralium Deposita, 17(3), 387-400.

Cottard, F., 1979. Pétrologie structurale et métallogénie du Complexe Granitique de Lovios Geres. Le modèle de mise en

place de la mine de Las Sombras (Sn-W-Mo-Bi) (Sud Galice ─ Espagne). PhD Thesis. France, Universite de Nancy I, 243pp.

Cruz, C., Sant’Ovaia, H., Noronha, F., 2016. Magnetic susceptibility and δ18O characterization of Variscan granites related to

W-(Mo) and Sn-(W) mineralizations: Lamas de Olo Pluton case study. Comunicações Geológicas, 103(1), 143-174.

Dallmeyer, R.D., Martínez Catalán, J.R., Arenas, R., Gil Ibarguchi, J.I., Gutiérrez Alonso, G., Farias, P., Aller, J., Bastida, F., 1997.

Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277, 307-337.

Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., O’Grady, K., 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophysics Journal International,124, 228-240.

Dekkers, M.J., 1989. Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM

as function of grain size. Physics of the Earth and Planetary Interiors, 57, 266-283.

Dias, G., Leterrier, J., Mendes, A., Simões, P., Bertrand, J.M., 1998. U-Pb zircon and monazite geochronology of syn- to posttectonic Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos, 45, 349-369.

Dias, G., Noronha, F., Almeida, A., Simões, P.P., Martins, H.C.B., Ferreira, N., 2010. Geocronologia e petrogénese do plutonismo tardi-Varisco (NW de Portugal): síntese e inferências sobre o processo de acreção e reciclagem crustal na Zona CentroIbérica. In: Cotelo Neiva, J.M., Ribeiro, A., Victor, M., Noronha, F., Ramalho, M. (eds.). Geologia Clássica, Volume I - Ciências Geológicas: Ensino, Investigação e sua História. Geologia Clássica, Lisboa, Escolar Editora, 143-160.

Díez Fernández, R., Arenas, R., Pereira, M.F., Sánchez Martínez, S., Albert, R., Martín Parra, L.M., Rubio Pascual, F.J., Matas, J., 2016. Tectonic evolution of Variscan Iberia: gondwana–Laurussia collision revisited. Earth Science Reviewer, 162, 269-292.

Dunlop, D.J., Özdemir, Ö., 1997. Rock magnetism: fundamentals and frontiers. Cambridge, Cambridge University Press, 573pp.

Ellwood, B.B., Wenner, D.B., 1981. Correlation of magnetic susceptibility with 18O/16O data in late orogenic granites of

the southern Appalachian Piedmont. Earth Planetary Science Letters, 54, 200-202.

Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. San Diego (California), Academic Press, 304pp.

Farias, P., Gallastegui, G., González Lodeiro, L., Marquínez, J., Martín Parra, L.M., Martínez Catalán, J.R., Pablo Maciá, J.G., Rodríguez Fernández, L.R., 1987. Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. IX Reunião sobre a geologia do oeste peninsular, Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências da Universidade do Porto, 1 (Memórias), 411-431.

Fernandes, S., Gomes, M., Teixeira, R., Corfu, F., 2013. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal. Geophysical Research Abstracts, EGU General Assembly, 15, 1pp.

Ferreira, N., Iglesias, M., Noronha, F., Pereira, E., Ribeiro, A., Ribeiro, M.L., 1987. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In: Bea, F., Carnicero, A., Gonzalo, J.C., López Plaza, M., Rodriguez Alonso, M.D. (eds.). Geologia de los granitoides y rocas asociadas del Macizo Hespérico. Madrid, Rueda, 37-51.

Font, E., Ernesto, M., Silva, P.F., Correia, P.B., Nascimento, M.A.L., 2009. Palaeomagnetism, rock magnetism and AMS of the Cabo Magmatic Province, NE Brazil, and the opening of South Atlantic. Geophysical Journal International, 179, 905-922.

Font, E., Veiga-Pires, C., Pozo, M., Carvalho, C., Neto, A.C.S., Camps, P., Fabre, S., Mirão, J., 2014. Magnetic fingerprint of southern Portuguese speleothems and implications for paleomagnetism and environmental magnetism. Journal of Geophysical Research Solid Earth, 119, 7993-8020.

Franke, W., 1989. Variscan plate tectonics in Central Europe – current ideas and open questions. Tectonophysics, 169, 221-228.

Gutiérrez-Alonso, G., Johnston, S.T., Weil, A.B., Pastor-Galán, D., Fernández-Suárez, J., 2012. Buckling an orogen: The Cantabrian Orocline. Geological Society of America Today, 22(7), 4-9.

Helal, B., 1992. Granitoïdes, granites à métaux rares et hydrothermalisme associe: géologie, minéralogie et géochimie de plusieurs suites tardi-hercyniennes (Nord du Portugal). Ph.D. Thesis. France, Ecole Nacionale Superieure des Mines de Saint-Etienne, 508pp.

Ishihara, S., 1977. The Magnetite-series and Ilmenite-series Granitic Rocks. Mining Geology, 27, 292-305.

Ishihara, S., Lee, D.S., Kim, S.Y., 1981. Comparative study of Mesozoic granitoids and related W-Mo mineralization in Southern Korea and Southwestern Japan. Mining Geology, 31(4), 311-320.

Jover, O., Rochette, P., Lorand, J.P., Maeder, M., Bouchez, J.L., 1989. Magnetic mineralogy of some granites from the French

Massif Central: origin of their low-field susceptibility. Physics of the Earth and Planetary Interiors, 55, 79-92.

Julivert, M., Fontboté, J.M., Ribeiro, A., Conde, L., 1974. Mapa tectónico de la península Ibérica y Baleares a escala 1:1.000.000 y memoria explicativa. Instituto Geologico y Mineiro de España, 113pp.

Kroner, U., Romer, R.L., 2013. Two plates – many subduction zones: The Variscan orogeny reconsidered.Gondwana Research, 24, 298-329.

Kruiver, P., Dekkers, M., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition

curves of isothermal remanent magnetisation. Earth and Planetary Science Letters, 189(3-4), 269-276.

Kumar, S., 2010. Magnetite and ilmenite series granitoids of Ladakh batholith, Northwest Indian Himalaya: implications on redox conditions of subduction zone magmatism. Current Science, 99(9), 1260-1264.

Lagoeiro, L.E., 1998. Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals.

Journal of Metamorphic Geology, 16, 415-423.

Marques, F.O., Mateus, A., Tassinari, C., 2002. The Late-Variscan fault network in central–northern Portugal (NW Iberia): a reevaluation. Tectonophysics, 359(3-4), 255-270.

Martínez Catalán, J.R., Rubio Pascual, F.J., Díez Montes, A., Díez Fernández, R., Gómez Barreiro, J., Dias da Silva, Í., González Clavijo, E., Ayarza, P., Alcock, J.E., 2014. The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. London, The Geological Society, 405 (Special Publications), 225-247.

Martins, H.C.B., Noronha, F., 2006. Late variscan granite pluton of Vila Pouca de Aguiar (Northern Portugal): an example of low 87Sr/86Sr felsic granites. Goldschmidt Conference Abstracts, 395.

Martins, H.C.B., Sant’Ovaia, H., Noronha, F., 2009. Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: An integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos,

, 142-155.

Martins, H.C.B., Sant’Ovaia, H., Abreu, J., Oliveira, M., Noronha, F., 2011. Emplacement of Lavadores granite (NW Portugal):

U/Pb and AMS results. Comptes Rendus Geocience, 343, 387-396.

Mateus, A., Noronha, F., 2010. Sistemas mineralizantes epigenéticos na Zona Centro-Ibérica; expressão da estruturação orogénica Meso- a Tardi-Varisca. In: Cotelo Neiva, J.M., Ribeiro, A., Victor, M., Noronha, F., Ramalho, M. (eds.). Geologia Clássica, Volume II - Ciências Geológicas: Ensino, Investigação e sua História. Geologia Aplicada, Lisboa, Escolar Editora, 143-160.

Maulana, A., Watanabe, K., Imai, A., Yonezu, K., 2013. Origin of magnetite- and ilmentite-series granitic rocks in Sulawesi,

Indonesia: magma genesis and regional metallogenic constrains. Earth and Planetary Sciences, 6, 50-57.

Maxbauer, D.P., Feinberg, J.M., Fox, D.L., 2016. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers & Geosciences, 95, 140-145.

Mendes, A.C., Dias, G., 2004. Mantle-like Sr–Nd isotope composition of Fe–K subalkaline granites: the Peneda–Gerês Variscan massif (NW Iberian Peninsula). Terra Nova, 16, 109-115.

Nédélec, A., Trindade, R., Peschler, A., Archanjo, C., Macouin, M., Poitrasson, F., Bouchez, J.L., 2015. Hydrothermally-induced

changes in mineralogy and magnetic properties of oxidized A-type granites. Lithos, 212(215), 145-157.

Noronha, F., Ramos, J.M.F., Rebelo, J., Ribeiro, A., Ribeiro, M.L., 1981. Essai de corrélation des phases de déformation

hercyniennes dans le NW de la péninsule Ibérique. Leidse Geologische Mededelingen, 52(1), 87-91.

Noronha, F., 1984. Mineralizações espacial e geneticamente associadas ao maciço granítico da Serra do Gerês. Cuadernos

do Laboratorio Xeolóxico de Laxe, 7, 87-99.

Noronha, F., Ferreira, N., Marques De Sá, C., 2006. Rochas granitóides: caracterização petrológica e geoquímica. In: Pereira, E. (coord.). Carta Geológica de Portugal. Notícia explicativa da folha 2, Lisboa, Instituto Geológoco Mineiro (IGM)/Instituto Nacional de Engenharia, Tecnologia e Inovação (INETI), 49-68.

Noronha, F., Ribeiro, M.A., Almeida, A., Dória, A., Guedes, A., Lima, A., Martins, H.C.B., Sant’Ovaia, H., Nogueira, P., Martins, T., Ramos, R., Vieira, R., 2013. Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (norte de Portugal). In: Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C. (eds.). Geologia de Portugal. Lisboa, Escolar Editora, Vol. I, 403-438.

Noronha, F., 2017. Fluids and Variscan metallogenesis in granite related systems in Portugal. Procedia Earth and Planetary

Science, 17, 1-4.

Olivia-Urcia, B., Pueyo, E.L., 2012. Gradient of shortening and vertical-axis rotations in the Southern Pyrenees (Spain), insights from a synthesis of paleomagnetic data. Revista de la Sociedad Geológica de España, 20(1-2), 105-118.

Pastor-Galán, D., Gutierrez-Alonso, G., Zulauf, G., Zanella, F., 2012. Analogue modeling of lithospheric-scale orocline buckling: Constraints on the evolution of the Iberian-Armorican Arc. Geological Society of America Bulletin, 124, 1293-1309.

Pereira, E., Silva, N., Moreira, A., Ribeiro, A., 1987. Folha 10-A Celorico de Basto da Carta Geológica de Portugal na escala 1/50 000. Serviços Geológicos de Portugal.

Pereira, E., 1989. Carta Geológica de Portugal à escala 1:50 000, Notícia Explicativa da Folha 10-A (Celorico de Basto). Lisboa, Serviços Geológicos de Portugal, 53pp.

Pereira, M.F., Díez Fernández, R., Gama, C., Hofmann, M., Gärtner, A., Linnemann, U., 2018. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). International Journal of Earth Sciences, 107, 251-267.

Porquet, M., Pueyo, E.L., Róman-Berdiel, T., Olivier, P., Longares, L.A., Cuevas, J., Ramajo, J., Geokin3DPyr working group, 2017. Anisotropy of magnetic susceptibility of the Pyrenean granites. Journal of Maps, 13(2), 438-448.

Ribeiro, A., Pereira, E., Dias, R., 1990. Structure of the Northwest of the Iberian Peninsula. In: Dallmeyer, D., Martinez Garcia,

E. (eds.). Pre-Mesozoic Geology of Iberia. Berlin, Springer, 220-236.

Robertson, D., France, D., 1994, Discrimination of remanencecarrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Physics of Earth and Planetary Interiors, 82(3-4), 223-234.

Rochette, P., 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9(8), 1015-1020.

Román-Berdiel, T., Pueyo-Morer, E.L., Casas-Sainz, A.M., 1995. Granite emplacement during contemporary shortening and

normal faulting: structural and magnetic study of the Veiga Massif (NW Spain). Journal of Structural Geology, 17(12), 1689-1706.

Sant’Ovaia, H., 1993. Características magnéticas dos granitóides biotíticos pós-tectónicos de Vila Pouca de Aguiar. Provas de Aptidão Pedagógica e Capacidade Científica. Universidade do Porto, unpublished, 130pp.

Sant’Ovaia, H., Bouchez, J.L., Noronha, F., Leblanc, D., Vigneresse, J.L., 2000. Composite-laccolith emplacement of the posttectonic Vila Pouca de Aguiar granite pluton (northern Portugal): a combined AMS and gravity study. Transactions of the Royal Society of Edinburgh Earth Sciences, 91, 123-137.

Sant’Ovaia, H., Martins, H.C.B., Lopes, J.C., Machado, J., Noronha, F., 2012. Correlation of magnetic susceptibility with δ18O data in magnetite- and ilmenite-type granites from Iberian massif. Mineralogical Magazine, 76(6), 23-25.

Sant’Ovaia, H., Martins, H.C.B., Noronha, F., 2013a. Oxidized and reduced Portuguese Variscan granites associated with W

and Sn hydrothermal lode deposits: magnetic susceptibility results. Comunicações Geológicas, 100(1), 33-39.

Sant’Ovaia, H., Martins, H.C.B., Noronha, F., 2013b. Magnetic susceptibility and δ18O characterization of granites related

with W, Sn, Mo and Bi (Au) hydrothermal vein deposits. Mineralogical Magazine, 77(5), 2130-2130.

Sant’Ovaia, H., Ribeiro, M.A., Martins, H.C.B., Ferrão, F., Gomes, C., Noronha, F., 2014. Estruturas e fabric magnético no maciço granítico de Lavadores-Madalena. Comunicações Geológicas, 101(1), 313-317.

Shaw, J., Johnston, S.T., Gutiérrez-Alonso, G., Weil, A.B., 2012. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth and Planetary Science Letters, 329-330, 60-70.

Sheppard, S.M.F., 1977. Identification of the origin of ore forming solutions by the use of stable isotopes. London, Volcanic Processes in Ore Genesis. Institution of Mining and Metallurgy and Geological Society, 254pp.

Takagi, T., Tsukimura, M., 1997. Genesis of oxidized- and reduced-type granites. Economic Geology, 92, 81-86.

Tarling, D.H., Hrouda, F., 1993. The magnetic anisotropy of rocks. London, Chapman & Hall, 217pp.

Teixeira, C., Perdigão, J., 1962. Folha 13-A Espinho da Carta Geológica de Portugal na escala 1/50 000. Serviços Geológicos de Portugal.

Teixeira, R.J.S., Neiva, A.M.R., Gomes, M.E.P., Corfu, F., Cuesta, A., Croudace, I.W., 2012. The role of fractional crystallization

in the genesis of early syn-D3, tin-mineralized Variscan twomica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos, 153, 177-191.

Thadeu, D., 1965. Carta Mineira de Portugal, Notícia explicativa. Lisboa, Serviços Geológicos de Portugal, 46pp.

Villaseca, C., Ruiz-Martínez, V.C., Pérez-Soba, C., 2017. Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma. Geologica Acta, 15(4), 379-394.

Weil, A., Gutiérrez-Alonso, G., Johnston, S.T., Pastor-Galán, D., 2013. Kinematic constraints on buckling a lithospheric-scale

orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophysics, 582, 25-49.

Downloads

Published

2020-03-09

Issue

Section

Articles