Elogi de la visualització: l'aprenentatge del pensament visual en matemàtiques
Resum
Paraules clau
Text complet:
PDFReferències
Alsina, C.; Nelsen, R.B. (2006). Math Made Visual: Creating Images for Understanding Mathematics. Washington: Mathematical Association of America.
Alsina, C.; Nelsen, R.B. (2009). When Less is More. Visualizing Basic Inequalities. Washington: Mathematical Association of America.
Armstrong, T. (1994). Multiple Intelligences in the Classroom. Association for Supervision and Curriculum Development (ASCD).
Arnheim, R. (1969). Visual Thinking. Nova York: Faber & Faber.
Craiven, T.V.; Rubenstein, R. (Eds.) (2009). Understanding Geometry for a Changing World, Reston: NCTM.
Davis, P.J. (1993). Visual theorems. Educational Studies in Mathematics, 24, 333-344.
Gardner, H. (1983). Frames of Mind: The Theory of Multiple Intelligences. Nova York: Basic Books.
Goodman, N. (1976). Languages of Art: An Approach to a Theory of Symbols. Oxford: Oxford University Press.
Hanna, G., Jahnke, H.N. (1996). Proof and proving. A A.J. Bishop et al. (Eds) International Handbook of Mathematics Education, Dordrecht: Kluwer, pp. 877-908.
Hendricks, V.F. et al. (Eds.) (2003). Visualization, Explanation and Reasoning Styles in Mathematics. Dordrecht: Kluwer.
Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 24, 389-399.
Lakatos, I. (1976). Proofs and Refutations. Cambridge: Cambridge Univ. Press.
Laspina, J.A. (1998). The Visual Turn and the Transformation of the Textbook. Nova York: Lawrence Erlbaum Associates.
Loomis, E.S. (1969). The Pythagorean Proposition. Washington: National Council of Teachers of Mathematics, Inc.
Malkevitch, J. (Ed.) (1991). Geometry’s Future. Lexington: COMAP.
Mason, J. H. (2004). Mathematics Teaching Practice. A Guide for University and College Lectures, Chichester: Horwood Pub.
Murphy, S.J. (2006). Pictures + Words + Math = Story. Book Links. Volume 16, núm. 2. (November), 34–35.
NCTM (2000). Principles and Standards for School Mathematics. Washington: National Council of Teachers of Mathematics Inc.
Nelsen, R.B. (1993). Proofs without Words: Exercises in Visual Thinking, Washington: Mathematical Association of America (Proyecto Sur, Granada, 2001).
Nelsen, R. B. (2000). Proofs without Words II: More Exercises in Visual Thinking. Washington: Mathematical Association of America.
Pólya, G. (1954). Mathematics and Plausible Reasoning: Induction and Analogy in Mathematics. Vol. I, Princeton: Princeton University Press.
Pólya, G. (1981). Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving (2 vols., combined ed.) New York: John Wiley & Sons.
Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7 volume 3, 5-41.
Rotman, J. (1998). Journey into Mathematics: An Introduction to Proofs. New York: Prentice Hall.
Senechal, M. (1991). Visualization and visual thinking, in: Geometry's Future, J. Malkevitch, ed., pp. 15-22.
Tufte, E. R. (1990). Envisioning Information. Cheschire: Graphics Press.
Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Cheschire: Graphics Press.
ZDM (1994). Analyses: Visualization in Mathematics and Didactics of Mathematics, Vol. 1, Karlsruhe: ZDM.
Zimmermann, W.; Cunningham, E. (Eds.) (1991). Visualization in Teaching and Learning Mathematics, Notes 19, Washington: Mathematical Association of America.
DOI: https://doi.org/10.1344/reire2009.2.3232
Copyright (c) 2009 Claudi Alsina

Aquesta obra està subjecta a una llicència de Reconeixement 4.0 Internacional de Creative Commons