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 Abstract: There are many artificial intelligence algorithms that work particularly well 

when trying to find the best solution to a given problem from the set of all possible 

solutions. However, such an unprecedented ability to solve optimisation problems only 

stresses the need to carefully pick out the right goal to be optimised. In this regard, and 

taking route-planning services as a guiding example, I claim that the current problem 

definition for route-planning algorithms prompts disruptive driving practices such as 

intelligent rat-running which create, in turn, global problems by intending to optimise 

local ones. In order to avoid this, I defend that the design approach to such algorithms 

should aim for hybrid search strategies that constrain the local benefit to the global costs 

of a given solution, in order to set the grounds for a safer AI in the future.    

 Keywords: Optimisation Problem; Search Strategies; AI Safety; Navigation 

Systems; 

 

 

INTRODUCTION 

To drive a black cab in London, one needs to pass “the knowledge”, a thorough oral 

test in which the candidate must be able to connect by heart, turn after turn, two points 

selected by the examiners from the map of London city, instantiating — almost 
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nostalgically — an old paradigm of route-planning and road navigation. Common 

humans, once they sit before the driving wheel, may know the route to some places by 

heart, or even more suitable alternatives depending on the traffic experienced in past 

occasions. However, navigation systems such as Google Maps exempt us from having to 

plan or learn a vast set of routes and their variations by providing us with an interactive 

route-planner, which can be filtered to some extent in order to accommodate our 

preferences. 

To solve the problem of getting from point A to point B, we no longer seem to need 

to possess the knowledge — either in its most impressive or in its more humble form — 

of where do bottlenecks form, which are the least congested routes at the rush hour, or 

which streets are suitable alternatives if we encounter an accident. Mobile devices and 

algorithms produce, aggregate, and reproduce information, triggering a change: from 

possessed knowledge to accessible information. 

Connecting two points in a map in the most effective way belongs to a particular 

set of problems commonly known as optimisation problems: i.e. finding the best solution 

to a given problem from the set of all feasible solutions. As the medieval proverb praises, 

“all roads lead to Rome”, but if you are subjected to some constraints — time, for example 

—, you may want to find the fastest path that will get you there: you will need to select, 

from the set of all possible options, the fastest one. And even though we humans face this 

kind of problems on a daily basis, when it comes to optimisation artificial intelligence 

seem to be unbeatable. This is, indeed, what enables the transition described above from 

knowledge to information: the fact that powerful algorithms can solve hard problems or 

make sense of big amounts of data which would otherwise be incomplete, even 

intractable, to us. 

Yet the main concern when it comes to optimisation problems is not to find the best 

answer, but actually to raise the appropriate question. In this regard, in the following 

discussion I evaluate some of the challenges and consequences of picking an optimisation 

strategy by means of an example: search algorithms in navigation systems. 

To do so, I begin in Section 1 by providing a brief overview of optimisation 

problems regarding route-planning algorithms. Then, in Section 2, I discuss three possible 

strategies to solve such problems — individual, collective and hybrid —, which I present 

graphically in order to better understand how these three approaches relate to each other 

and to two further constraints: practicality and legality. To finish, I also discuss the 
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feasibility of each group of strategies according to how traffic is conceived. Finally, in 

Section 3, I insist on the relevance of the example of navigation systems, from which 

valuable insights can be drawn in order to ensure the future of safe developments in AI. 

Along these lines, I stress the need to rule out antisocial behaviours in current low-impact 

applications in order to prevent more dire consequences in future developments. 

 

§1. BEHIND THE SCENES OF ROUTE-PLANNIG ALGORITHMS  

Search algorithms are a subset of computational tools that find — or at least aim 

for — the most efficient connection between two nodes in a graph. In short, a graph is a 

set of nodes (or states) connected by paths (or actions). To build search algorithms each 

path in the graph has an associated cost allocated in turn by a path cost function. Thus, a 

given problem may have multiple solutions, yet all solutions must be action sequences 

that take from the initial state to a final state (or root and goal state respectively). From 

the set of all such possible solutions, the optimal one will be the one that has the lowest 

cost. (Russell and Norvig, 2010:68-9) 

 
Figure 1. A simplified weighted graph between some Spanish cities. Source: the author 

A search algorithm can be fed either the root state, or both the root and goal states. 

In the first case, the algorithm provides what is commonly known as the shortest-path tree 

— a tree-like map connecting the source with every other node in the graph in the most 

efficient way. However, if the input consists of both the root and the goal states, the 

algorithm outputs the optimal path between such nodes. In any case, a search algorithm 

needs a search strategy, i.e. some criteria to guide which node is to be expanded next. 
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According to the search strategy, the algorithm will perform differently depending on 

various features such as the branching factor (or the maximum number of successor 

nodes), the depth of the shallowest goal (or how many nodes must the algorithm go 

through before finding the first goal) or even the amount of memory needed to perform 

the computations. (Ibid., 80) 

In connection therewith, a simplified model of any route-planning service can be 

thought of as a search algorithm that knows both the root and goal state, and that defines 

a path cost function according to constraints that are already set, such as open roads or 

one-way streets, together with those defined by the user like a preference for routes that 

avoid tolls or motorways, for example. If problem-specific knowledge like this, and not 

just the definition of the problem is available, algorithms rely on what is known as 

informed search strategies. Such information boosts the programme to find a solution to 

the problem in a more efficient way. (Ibid., 92) 

Some candidate algorithms for modelling route-planning services are Dijkstra’s 

Algorithm, which is usually taken as the benchmark for comparison, some variation of it, 

heuristic approaches such as A* algorithm, or combinations of speedup techniques to 

improve the performance of the strategy. (Sanders and Schultes, 2007:24-8) The technical 

differences behind these strategies, however, are only tangentially relevant to the 

philosophical question that motivates this exercise. But the idea that search algorithms try 

to minimise the cost of connecting two nodes in a graph will need to stick around until 

the end. In the concrete example of navigation systems, the graph represents a network 

of locations connected by roads. Thus, the algorithm is tasked with finding the least costly 

path between the user’s starting point and the destination. Once this is done, the journey 

can start.  

 

§2. CHOOSING A STRATEGY 

 Suppose you want to cook a particular dish. A quick search on the internet may 

provide you with multiple entries: hundreds, maybe thousands. Some versions of the 

recipe will prime time over taste; others will focus on the benefits of slow-cooking some 

of its parts. Yet you must pick one: you need to define your goal. One possible way to 

tackle this problem is to pick a single objective. If your main concern is time, you may 

want to find the recipe that allows you to spend the least time possible cooking the dish. 
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This may entail a cost in terms of energy or sophistication — but however costly, these 

are not set as relevant goals. Consistently, a single-objective optimisation problem usually 

yields a single solution, which is the optimal. (Deb, 2014:V)  

But it is also possible to optimise your solution with multiple goals in mind. In such 

case, multi-objective optimisation strategies try to strike a balance, finding solutions 

capable of accommodating more than one competing goal. The price to pay for that is that 

such solutions are rarely ‘optimal’ — in the sense that conflicting objectives cannot be 

optimised simultaneously — but rather ‘pareto optimal’, or non-dominated. Moreover, 

multi-objective optimisation does not propose a single solution, but a set of non-

dominated alternatives derived from a strategy which attempts to optimise all relevant 

goals, but since it fails to do so, it proposes a set of trade-offs. (Ibid.) Hence, pareto 

optimal solutions are not better than the optimal solution in each one of the relevant 

senses, but better compared to the optimal if the problem is defined in terms of multiple 

goals.  

At this point, however, it is worth noting that optimisation problems are not single-

objective or multi-objective: strategies are. Thus, the way in which a given problem is 

defined and addressed — say cooking a dish or going from one point to another —  

determines the nature of the possible solutions. It is with this that the philosophical 

relevance of picking a search strategy is made clearer. 

 

§2.1. INDIVIDUAL STRATEGIES  

When we use a navigation system we look for the best way to get from A to B. 

Once we set the general question to a particular one by providing the input data (i.e. the 

root and the goal states), the search algorithm begins operating in order to optimise the 

route. Nonetheless, this optimisation process is subject to certain constraints: existing 

roads, whether such roads have one or two sides, speed limits… 

Some constraints are the consequence of cars driven by humans being non-

cooperating objects. As such, each car has certain degrees of freedom, which are in turn 

not bound by the degrees of freedom of other cars. Take for example the driving speed. 

A particular car’s speed does not determine unequivocally the speed of the other cars; it 

does, indeed, influence it if drivers aim to avoid accidents, but a car circulating at a low 

speed does not impede other cars to overtake it or drive at a different velocity — and the 
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same goes for direction. It is before this non-cooperating nature of cars that driving rules 

are necessary. Speed limits and recommendations, or the direction of different roads are 

introduced as mechanisms to facilitate the circulation of free objects that would otherwise 

be unable to operate in a given space. Because of this, driving in the wrong direction or 

traversing non-paved ways are options that the search algorithm does not even consider.  

Navigation systems make use of data available to them in order to optimise the 

solution to the problem raised by the user. Traffic congestion, for example, is estimated 

by gathering and interpreting GPS tracking units, mobile phones, or real time video 

surveillance. (Petrovska & Stevanovic, 2015:1489) With this, navigation systems alter 

the cost values associated with each action, informing the search algorithm to find a better 

solution for the driver in a more efficient way. Hence, and by stipulating the optimisation 

problem as one to be tackled from an individual perspective, traffic is treated as a part of 

the environment in which the problem must be solved, a boundary condition, and not as 

a set of coupled problems with competing interests.  

These algorithms tend to work fine in normal conditions: the solutions they propose 

satisfy the needs of the user without causing any further disruptions in the general traffic. 

Limit cases such as heavy traffic or accidents, however, put individual strategies between 

a rock and a hard place. By means of a practical experiment, Aya Kojima et al. found that 

some navigation systems encourage a practice called rat-running, which consists of using 

narrower streets — mostly in residential areas — in order to avoid congested arterial 

roads. (Kojima et al., 2015:15) However, and even though the central claim in Kojima et 

al. is that intelligent rat-runners expose pedestrians to a higher risk of suffering an 

accident, their results can also be interpreted in terms of traffic management.  

In 1968, Dietrich Braess observed how adding one or more roads to an existing 

congested traffic network does not speed up, but actually slows everyone down. 

(Steinberg & Zangwill, 1983:302) Thereafter, the so-called Braess’s Paradox affected 

research in multiple fields, but its impact became most notorious in a particular class in 

game theory called congestion games. Congestion games are particularly useful when it 

comes to traffic problems, since they model non-cooperative resource allocation in large-

scale networks. Each player in the game selfishly selects a strategy from those available, 

trying to minimise her individual cost. (Frank, 1981:283) Even though there are cases in 

which Braess’s paradox does not occur — e.g. if the network is series of linearly 



When Accidents Become Design Choices: Navigation Systems, Rat-Running, and AI Safety 

 43 

independent (SLI)2 —, the practical prevalence of this problem is well recorded. In 

Europe, the United States of America or even South Korea, instances of road-removal 

leading to better traffic flows are legion.3  

Thus, intelligent rat-runners and, consequently, navigation systems force the 

paradox by introducing new routes into the network — this is especially visible in 

congested highways, where drivers take exits to cut traffic and re-enter the highway —, 

causing a disruption in an already fragile equilibrium such as heavy traffic. A key factor 

here is that players do not cooperate. In a framework where drivers are, de facto, non-

cooperating agents, individual strategies seem the most reasonable strategies for 

optimising route planning problems. But maybe something more could be done. One 

particular line of research to address this fact has focused on the use of connected 

autonomous vehicles to stabilise traffic, for even though human drivers do not cooperate, 

they react to the vehicles preceding them.4 Thus, and by embedding controlled 

autonomous vehicles within traffic, disruptions are mitigated. In this scenario, however, 

strategies can no longer focus on the individual: they must be defined collectively.   

 

§2.2. COLLECTIVE STRATEGIES 

A natural alternative to single objective optimisation strategies would be multi-

objective strategies. These find, from the set of possible solutions, not the optimal one (in 

terms of a single parameter) but rather a set of trade-offs that satisfy multiple goals at the 

same time. Along these lines, if a given navigation system did not optimise a user’s route 

from one point to another taking traffic as a constraint, but actually considering its impact 

on the traffic which the user is part of as another goal to be minimised, some of the 

problems described above would not even arise. However, a mere shift from single to 

multi-objective optimisation strategies would be insufficient for multiple reasons, 

considering the way in which current traffic and navigation systems operate. 

First, navigation systems are designed to make the driving experience easier for 

their users. Maybe drivers do not know how to get to a given destination, or maybe they 

 
2 See Acemoglu et al., 2018:898 for an exhaustive discussion on Series of Linearly Independent 
networks 
3 The Cheonggyecheon restoration project in Seoul is a good example of an initiative to revert the 
Braess’s Paradox  
4 See Vinitsky et al., 2018 or Wu, 2018 for further discussion  



When Accidents Become Design Choices: Navigation Systems, Rat-Running, and AI Safety 

 44 

know multiple alternatives and expect the algorithm to find the one that is best for them. 

Therefore, a stark shift from single to multi-objective optimisation strategies would not 

be enough: it could work if it came accompanied by an increased reciprocal altruism. But 

that, simply put, seems too much to ask for. Second, and in line with this, navigation 

systems are commercial products developed by private companies that expect a benefit 

from drivers using them. Thus, asking, or even forcing them to provide a “worse” service 

to their users — even if it is collectively convenient — seems to stand contrary to any 

business purpose. Last, the advantages of moving beyond single-objective optimisation 

strategies would only be truly significant if all the navigation systems did so. If not, 

services grounded on individual search strategies would compete with a rather non-

competitive alternative in terms of “user experience”, and the problem of intelligent rat-

runners causing traffic jams, for example, would reappear quickly.  

Such problems prevail for the same reasons single-objective optimisation 

algorithms do: drivers — or cars, for that matter — do not cooperate. Consequently, 

traffic services for different users and the search-strategies behind them need to be 

conceptualised as independent from car to car. One consequence of this, as we have seen, 

is that algorithms learn to prompt abnormal behaviours such as rat-running, which may 

occasionally benefit some, causing nonetheless larger scale problems.  

But the days for this may be numbered. We seemingly are at the brink of a paradigm 

shift: for decades, since vehicles powered by engines appeared, the idea of driverless cars 

has been fuelling the research agendas of many. It has been, however, with the latest 

developments in self-driving technology that what once seemed a mere fiction is now 

closer to reality.5 Driverless cars raise legal, technical, or even ethical questions. 

Nonetheless, and besides the challenges that will need to be faced, these technologies also 

have significant upsides. 

Researchers working on self-driving vehicles develop and assess different protocols 

to deal with all the manoeuvres that any car must be able to execute. In short, protocols 

are standard sets of rules that enable the communication between objects. Therefore, one 

of the foundational premises of driverless technology is that objects are not independent: 

they conform to a mesh. Shunsuke Aoki and Ragunathan Rajkumar, for example, 

developed a merging protocol for self-driving vehicles in order to avoid collisions when 

 
5 The American company Waymo, for example, released a service of driverless taxis in Arizona in 
2020 
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two vehicles intend to occupy the same spatial area at the same time. (Aoki and Rajkumar, 

2017:219) But perhaps the most relevant thing here is that the idea behind their work is 

fundamentally at odds with the principles that guide road traffic nowadays: while 

driverless cars will inevitably need to negotiate and cooperate, traffic as we know it is not 

based on cooperation. 

The fact that different agents bear dissenting goals encourages drivers to constantly 

engage in cooperative and competitive strategies in order to increase positive outcomes 

or decrease negative ones respectively. (Vanderhaegen et al., 2006:192) But when 

competitive behaviours are reinforced by systems that are not based on a conception of 

traffic as a coupled problem, undesirable outcomes like the ones discussed above arise. 

While multi-objective optimisation strategies could indeed eliminate these problems, 

implementing them in an environment of non-cooperating objects would be detrimental, 

for there would be a conflict between self-driven and regular cars. 

 

§ 2.3. STRIKING A COMPROMISE: HYBRID STRATEGIES 

 If we consider the discussion so far, it is possible to represent search strategies in 

two different sets. In the first set we find individual strategies, which prime the benefit of 

one individual or user inspired by single optimisation strategies. The second set comprises 

collective or multi-objective optimisation strategies, which yield Pareto-optimal 

solutions. 

 
Figure 2. Optimisation strategies for navigation systems (areas are not to scale). Source: the author. 
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The figure above displays the relationships between two approaches to optimisation 

strategies and two further constraints: legality and practicality. In accordance, the set of 

individual strategies comprises optimal and sub-optimal solutions to the navigation 

problem when tackled form the perspective of a single individual within an external 

environment — i.e. the rest of the traffic. Furthermore, the set of collective strategies 

captures a similar variety with a slight methodological difference: traffic is not seen here 

as an aggregation of single problems that constraint each other, but as a larger-scale 

problem with individual, yet dependent, actors. From both of these sets, and from a 

developer’s perspective, the orange and red areas that comprise illegal and/or impractical 

solutions should be disregarded.  

The individual optimum may be one that infringes traffic regulations. If that is the 

case, however, unconstrained solutions should not be considered, and thus the resulting 

set of individual strategies available decreases. In a similar way, the collective optimum 

for cooperating cars may imply a complete root out of traffic. But this is impractical, for 

even though congestion problems, emissions or accidents would indeed disappear, it 

would not solve the problem: it would just dismantle it by means of a trivial solution. 

Moreover, some strategies could be both impractical and illegal, a status that applies to 

the three subsets represented in Figure 2: individual strategies, collective strategies, and 

their intersection. 

Current approaches to navigation systems most likely fall within the kind of 

Individual Legal Optimum approaches.6 They abide by the law and take the user’s 

command as their main priority. On the other hand, developing frameworks for 

autonomous cars belong to the set of collective strategies. Consequently, self-driven cars 

are not treated as independent objects, but rather as decentralised units in a centralised 

co-operation scheme ruled by protocols that allow for planning and anticipation, but also 

for the mitigation of the effects of traffic anomalies caused by other drivers in mixed-

autonomy traffic. (Wu, 2018:6012) But with the fully automated traffic paradigm still far, 

and before the problems that individual approaches to traffic entail, a compromise beyond 

individual strategies and collective ones needs to be reached.  

 
6 Google, for example, does not disclose what algorithms does Maps run on. However, it probably 
relies on a modified version of A* or Dijikstra’s algorithms. (Mehta et al., 2019) 
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In this regard, at the intersection of both sets we find an area containing a group of 

hybrid strategies that take an individual’s objective as their main optimisation goal 

without disregarding, at the same time, the collective effects of optimising such goal. In 

contrast with collective strategies, hybrid strategies enable a decentralised co-operation 

scheme, one in which traffic is conceptualised as the aggregation of multiple competing 

interests instead of as a boundary condition to an individual problem. When interpreted 

from a collective perspective, hybrid strategies contemplate multiple objectives which are 

not collectively evaluated, but rather fragmented into interactively conditioned 

optimisation sub-routines, which tackle narrower problems. However, this interpretation 

does not capture the full picture: hybrid strategies are a subclass in their own right. 

Continuing with the example of navigation systems, if the search strategy 

implemented was a hybrid one, it would still aim to minimise the cost of the path between 

the starting point and the destination of a given user, in order to provide the best solution 

to her. Even so, the benefit of the solution proposed would be assessed against the costs 

that it would involve for traffic in general: the cost would not solely be computed as the 

time, tolls, or fuel needed between two nodes, but by means of a combined metric that 

contemplates such cost and its effects on the overall traffic. Hence, engaging in rat-

running to bypass a congested section — e.g. if one is driving upon a highway and before 

the evidence of heavy traffic, takes a small diversion to then merge back — would be 

ruled out as an unacceptable praxis. This is neither Pareto optimal nor the best solution 

for the individual: my taking a certain road may impose an additional cost to other users 

that could be minimised via a collective approach, while it neither nudges me to engage 

in rat-running and, therefore, save some time. On the contrary, it tries to optimise the goal 

of a single user without putting them before the general interest, ruling out seemingly 

feasible solutions and behaviours that, regardless of the benefits they entail for the 

individual, end up triggering larger-scale problems.  

Hybrid strategies strike a balance between local benefit and global cost: the forces 

behind the optimisation strategy are adopted from individual approaches, but the 

assessment of the performance is inspired by collective ones. They cannot be simply 

thought of as single-goal optimisation strategies with mere constraints, for the constraints 

here do not pick key features for the definition of the graph like speed limits, road 

networks or tolls, but rather the interests of other actors. Moreover, they cannot be 

conceptualised as multi-objective optimisation strategies either, for they do not aim for 
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the best collective solutions: the objective is to maximise the local benefit without 

imposing too high a global cost. Thus, hybrid strategies are those that yield solutions to 

the navigation problem which satisfy an individual’s interests by means of actions that 

are constrained by the effect they have on the overall ecosystem. 

In the article “Urgency-aware Optimal Routing in Repeated Games through 

Artificial Currencies”,  Mauro Salazar et al. show a possible path towards materialising 

such hybrid strategies. Mirroring their results, navigation systems could be compelled to 

modify the ponderation — i.e. the cost allocation — of several alternatives via an artificial 

currency. Originally, such currency would be equally distributed  and could not be bought 

or exchanged, but only spent or gained when traveling. (Salazar et al., 2020) In 

accordance, hybrid strategies would impose a higher cost to those alternatives that 

prompted the least beneficial behaviours from a global perspective. With this, users would 

be inclined to adopt prosocial alternatives that contributed to the overall benefit — which 

would not only be substantially cheaper, but even rewarded —, for otherwise they should 

have to bear a cost proportional to the global burden entailed by their decision. 

Consequently, users would need to selfishly evaluate whether the cost associated to their 

individual preferences and circumstances was acceptable relative to the tokens they had 

left, boosting in turn the motivation to save the most tokens to spend in the future, when 

they really were in need.  

In conducting a numerical simulation of a similar incentive mechanism in a two-

arc network via artificial currencies, Salazar et al. found that such mechanism attained a 

system-optimal solution with a substantial reduction of the agents’ perceived discomfort, 

in comparison with a centralised optimal solution insensitive to the urgency of the agents. 

(Salazar et al., 2020:1) This suggests that artificial currency mechanisms could indeed be 

a feasible way to incorporate the principle underlying hybrid strategies, reflecting a 

weighing of the global cost of any single decision against its local benefit.  

In this regard, intelligent rat-running would be one of those cases in which the local 

benefit would not justify the global cost it entails, and thus the price to pay in terms of 

the artificial currency would be higher. There may be other examples too. The key point 

here, however, is to acknowledge the impossibility of anticipating all of them. 

Consistently, when developing search strategies, the identification of highly rewardable 

or punishable behaviours should be understood as an iterative and interactive process, and 

not as an all-or-nothing approach to design. Algorithms will continue to be flawed — this 
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is unavoidable. Nonetheless, if antisocial behaviours are detected, developers should be 

obliged to eliminate them. 

 

§3. MAPPING THE PROBLEM ONTO THE FUTURE  

Current navigation systems nudge drivers into undesirable behaviours, and even 

though such behaviours do affect overall traffic, identifying what portion of the cost is 

directly caused by such services is no easy task. But beyond the difficulties to break down 

the economical or social burdens of such systems, the philosophical relevance of this 

example resides in the fact that it allows singling out some of the hazards of strategy 

selection in optimisation problems in general, well beyond the case at hand.  

Together with the multiple technical challenges that artificial intelligence presents 

to researchers, the philosophical questions regarding this growing technology are 

complex and rarely explored in detail. That algorithms are value neutral is common belief. 

Computational tools are mathematical tools: they take an input and, according to their 

internal structure, they manipulate it to deliver an output. One clearly identified as a 

possible source of bias is the data used to train the algorithms; but the discussion of both 

the effects of biased datasets and the value neutrality of algorithms as ground truth falls 

outside of the scope of this particular paper. However, in focusing on navigation systems 

as a practical implementation of a search algorithm, some of the pitfalls of poorly 

selecting a search strategy have become clearer: by means of trying to avoid a specific 

behaviour — induced rat-running via navigation systems — and its consequences — 

traffic disruption —, a deeper philosophical puzzle has emerged. 

As I have insisted at the beginning of Section 2, problems of optimisation are not 

single- or multi-objective: strategies are. Moreover, the selection of the goal [or goals] to 

be optimised and thus, the strategy, likewise constrains the set of possible solutions. 

Hence, and in order to avoid undesirable recommendations or other negative side effects, 

the goals of such programs should be defined beyond the mere interests of their users. 

But if we fail to do so, we may soon encounter several technologies reinforcing and 

reproducing selfish behaviours that work against the common good — something that, 

over the longer term, could derive into overreaching and unsafe AI applications. 
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In this regard, AI safety is a line of research that aims for the alignment of AI 

technology with the fundamental values of our current societies. Its main purpose is to 

avoid harmful technologies that, if sufficiently widespread, would jeopardise social 

organisation as we know it. However, and perhaps due to an excessive influence of 

fiction, most discussions tend to gravitate around dystopian futures, even if such futures 

are far-fetched. AI is growing fast, but even though there is a possibility that general 

artificial intelligence explodes, the actual dangers of AI cannot be reduced to such 

possibility. In fact, the real dangers of AI start with minor drifts embedded in successful 

products, and navigation systems, going back to the question raised at the beginning of 

this section, present a vivid example of unsafe AI hiding in plain sight. For maybe the 

overt hassles of poorly chosen search strategies are heavier traffic and higher greenhouse 

gas emissions, yet the latent danger is the precedent they set.  

In the article ‘Concrete problems in AI safety’, Dario Amodei et al. discuss the 

impact of “accidents” derived from the implementation of machine learning algorithms 

that yield harmful behaviour — albeit unintended — from poorly designed real-world AI 

systems. (Amodei et al., 2016:1) Such accidents can be the consequence of a wrongly 

defined objective function, an objective function that is costly to evaluate frequently, or 

an undesirable behaviour during the design phase. (Ibid.) In line with this, and even 

though search algorithms are not machine learning algorithms but symbolic systems, the 

aim of this paper has been to emphasise the problems entailed by the definition of the 

objectives of a given program and the strategies implemented to reach such objectives. 

With this, I have tried to draw the line between accidents and sloppy design a little bit 

clearer. 

Harmful behaviour can indeed start as an accident. However, when designers 

choose not to fix them, accidents are integrated into products as design choices: just like 

in performance optimisation, which is pushed until the cost of a better trained ML 

algorithm surpasses its benefits, accepting some unwanted consequences as affordable 

byproducts becomes part of the design. To address such negative side effects, Amodei et 

al. propose multiple strategies. Most of them draw on the impact of a reinforcement 

learning agent on the environment in which it acts, but they are suitable beyond 

reinforcement learning problems. (Ibid., 3-5) 
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One of the main obstacles to get rid of such behaviours is that applications and 

programmes — as commercial products in a market — fight a battle for dominance.7 

Consequently, when companies have successful products that solve a given problem and 

that are well-positioned within the race for market dominance, the cost of re-developing 

them — in terms of positioning or economical benefit — seems to surpass the social 

advantages of more prosocial versions of the software. Moreover, and since the 

“problem” behind a given product is hard to pinpoint and even harder to solve, unwanted 

effects remain as “the price to pay” for a great service.  

The long-term dangers of accommodating unwanted suggestions in relatively low-

risk products can be better understood from a psychological perspective. On the one hand, 

the effect of navigation systems that nudge users into selfish behaviours with negative 

consequences for the overall traffic works as a foot-in-the-door technique. If we accept 

the thesis that unaddressed accidents become design choices, what antisocial navigation 

systems do — at least from a social perspective—, is to normalise certain behaviours that 

are collectively undesirable. By accepting such “unfair” albeit affordable consequences, 

we are lowering the bar that could alert us before future and more harmful products, 

forfeiting the ability to go back if necessary. On the other hand, and if we stand by the 

view that accidents are just that, unpredicted effects, a conformity problem remains, for 

products — and the algorithms they run on — contribute to the process of forming the 

intuitions and expectations of users. Thus, if we decide not to address such effects now, 

when they are still minor, perhaps some of the tragic consequences that we fear in future 

technologies will irretrievably be taken as given once they appear, for we will have been 

renouncing the tools to confront them with every step into the future. 

 

§4. CONCLUSION  

Practical implementations of artificial intelligence are spreading rapidly: we are 

facing a technological boom that will undoubtedly modify how countless things have 

been done up until now. However, and far from dystopian fictions, such changes shall 

continue to be subtle. Navigation systems provide a good example of this paradigm shift: 

what once required vast collections of road maps and guides can now be done via an 

 
7 For a comprehensive theoretical framework regarding battles for technological dominance, see 
Suarez, 2003. 
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intuitive programme that not only knows all possible routes, but also updates continually 

the state of traffic or the road system. With this in mind, and throughout the discussion 

above, I have raised two main claims regarding the nature and the perils of this shift: on 

the one hand, strategy selection in optimisation problems does affect the social nature of 

an algorithm. On the other, when antisocial behaviours — even if accidental — are not 

properly addressed, they become design choices that, if incorporated as normal design, 

may hinder the path towards safe AI technologies in the future. 

I have first provided a short introduction about search algorithms. In section 2 I 

have then considered three different approaches to optimisation problems: individual, 

collective and hybrid strategies, which differ in their goals. While individual strategies 

focus on the best solution for a single user — treating overall traffic as a boundary 

condition —, collective strategies reach trade-offs between multiple objectives, offering 

non-dominated or Pareto optimal solutions. Hybrid strategies, on the contrary, prioritise 

a user’s individual goal insofar it does not impose too high a cost on the overall 

environment, striking a balance between the local benefit and larger scale burdens. One 

possible way to implement such hybrid strategies is by means of artificial currencies, 

which allow a fair and decentralised computation of the trade-off between local benefit 

and global cost. 

Individual strategies like the ones used now work well until the traffic network is 

stressed. But with heavy traffic, for example, the cost of a given road increases, and 

single-objective strategies try to avoid it by nudging users into behaviours such as rat-

running. Trying to minimise the local cost of a particular user in this fashion creates larger 

scale problems, such as an increased overall cost of road navigation. To counter this, a 

possible solution for the future would be to develop a network of cooperative driverless 

cars based on collective strategies. In the meantime, navigation systems should adopt 

hybrid strategies that treat traffic as a coupled problem and not a boundary condition, 

which would in turn foster more prosocial behaviours.   

Finally, in section 3, I have outlined some of the ways in which analysing current 

search strategies in navigation systems can inform the discussion on AI safety. By 

tackling a rather affordable example, I have delved on the importance of properly defining 

the problem that is to be optimised when choosing a search strategy. Yet even then, 

accidents can and will happen: negative side effects will keep prowling the 

implementation of new algorithms. Yet this cannot justify the acceptance of such effects 
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as the cost of progress: once a flaw is detected, if nothing is done to redress it, it remains 

in the product as a design choice of the developers. This, however, entails serious 

hindrances for a safe development of AI, for if we decide not to revert negative side 

effects now, we may lack the resources to detect and disarm unsafe behaviours later.  
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