SHORT COMMUNICATION

CROSSTALK BETWEEN FIBROBLASTS AND ENDOTHELIAL CELLS PROMOTES ANGIOGENESIS IN VITRO: PUTATIVE ROLE OF ALKA-LINE PHOSPHATASE, GROWTH FACTORS AND COLLAGEN

Guerreiro SG^{1,2,3}, Unger RE⁴, Sartoris A⁴, Martins MJ³, Barbosa MA^{1,2,5}, Soares R³, Granja PL^{1,2*}, Kirkpatrick CJ⁴

¹INEB - Instituto de Engenharia Biomédica, Biomaterials Division, Universidade do Porto, Rua do Campo Alegre, 823, 4150 Porto, Portugal. E-mail: guerreiro.su@gmail.com ²Universidade do Porto, Faculdade de Engenharia, Porto, Portugal. ³Universidade do Porto, Faculdade de Medicina, Departamento de Bioquímica (U38-FCT), Porto, Portugal. ⁴REPAIR-Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany. ⁵Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.

Interactions between the different cell-types, growth factors and extracellular matrix components involved in angiogenesis are crucial in the mechanisms of new vessel formation for tissue regeneration. The aim of the present study was to investigate if cocultured fibroblasts and endothelial cells (from macroor microvasculature) could modulate growth factor production (VEGF, bFGF, TGF-b1 and IL-8), influence the formation of microcapillarylike structures by endothelial cells and affect fibroblast differentiation. Results obtained show that the two cells types interact with each other through exchange of growth factors (e.g., fibroblasts produce VEGF, which is known to influence angiogenesis). Fibroblasts promoted the formation and organization of capillary-like structures by endothelial cells, increased the amount of collagen in the cocultures and determined the expression of alkaline phosphatase. High alkaline phosphatase expression could be co-localized with capillary-like structures and the interaction between the two cells types induced fibroblast activation near microvessel-like structures.calcification.