
	

The contents of this journal are covered by the Creative Commons International Attribution 4.0 licence (CC BY 4.0)

	

	

	

	

	
Cybersecurity and Simondon's Concretization Theory:
Making Software More Like a Living Organism

Ziyuan Meng
Drew University

Jon K. Burmeister
College of Mount Saint Vincent

DOI: https://doi.org/10.1344/jnmr.v3i1.38956

	

Abstract

The cybersecurity crisis has destabilized the field of informatics and called many of

its foundational beliefs into question. This paper argues that Gilbert Simondon’s

theory of the origin and development of technical objects helps us identify faulty

theoretical assumptions within computer science and cybersecurity. In particular,

Simondon’s view is that the process of the ‘individuation’ of technical objects can have

similarities with the development of living beings – a view that stands in stark contrast

with hylomorphic and reductionist views of technical objects currently common in

computer science. We argue that those common hylomorphic approaches to software

development lead to excessive modularity in software applications, which in turn

results in less secure systems. To investigate a new ontological basis of software

security, we look to Simondon’s ontology to reconsider what makes a piece of

software vulnerable in the first place, and we focus on two concepts in his general

theory of ontogenesis – ‘individuation’ and ‘associated milieu’. By examining a case

study of a malware infection attack, we show that the event of a cyberattack

unleashes a ‘co-concretization’ process of software applications and their associated

milieu, namely, their operating system. Both the application and the operating system

evolve from an abstract form to a more concrete form by re-inventing their own

interiors and re-orienting their relationship to each other. We argue that software

development will be more secure if it takes inspiration from the development of living

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

2

beings and refocuses on the dynamic reciprocal relationship between software

applications and their technical and social environment.

Keywords

Individuation; Information; Cybersecurity; Simondon; Associated Milieu; Software.

Introduction

What does cybersecurity have to do with the highly abstract ontological categories of

form and matter, universal and individual? The eminently practical domain of

computing and cyber defense might appear to be miles away from the heady heights

of metaphysics and ontology. Yet any attempt to understand technical beings and

technical processes in a foundational way will go astray if it is founded upon a faulty

theory of being. We wish to argue that the current dominant mode of thinking about

computers and cybersecurity is in fact based on such a faulty theory of being, and we

look to Gilbert Simondon's ontological categories for a stronger account. Simondon’s

critique of hylomorphism (viewing objects as a combination of form and matter;

Simondon, 2009a, p. 4), along with his quasi-biological conceptualization of technical

evolution, shed light on the mode of existence of technical beings not as stable

individuals with inherent properties, but as a dynamism of restructuring operations

which are entangled with their environment. This new temporal, relational ontology of

technical beings shares an anti-substantialist theme with new materialism’s concept

of intra-action (Barad, 2003).

Simondon’s unique approach to technical beings is rooted in his deep critique of the

alienation between culture and technicity (Simondon, Malaspina, & Rogove, 2017, p.

15). His exhortation to re-integrate technical beings into the web of meaning in the

cultural sphere resonates with new materialism’s post-anthropocentric stand on

harmonious modes of human and nonhuman relationality. The cybersecurity domain

can borrow these concepts to critically examine the hylomorphic, reductionist

paradigms in computer science and software engineering practice with respect to

their effects on software security. The ultimate aim of this paper is to explore a non-

instrumentalist, techno-social normativity for cybersecurity research. Software

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

3

developers and security engineers can view the maturation of software applications

as a process of orienting toward a greater degree of integration, one which resembles

the development of living beings.

To develop this argument, in the second section, we will provide an overview of

Simondon’s theory of ‘individuation’ in its most general sense – that is, his theory of

the process through which an individual develops itself over time (Simondon and

Adkins, 2020). We focus on his critique of what we call ‘naive hylomorphism,’ and

examine his view that the traditional concepts of form (hyle) and matter (morphe) are

too static to explain the dynamic phenomena of change and development seen in the

world. More specifically, we show how Simondon – in a foreshadowing of the new

materialism movement – critiques the common idea that form is the sole active and

shaping force in a thing’s development while matter is merely passive, inert, and what

is shaped. Building on this, we explain the emergence first of vital (biological)

individuation, and then of psycho-social individuation (third section). We then take up

Simondon’s theory of the individuation of technical objects (fourth section), focusing

on his concept of concretization, i.e., the development of an object from a more

abstract stage to a more concrete stage, using an air-cooled engine as the central

example. This leads into a discussion of his concept of ‘associated milieu,’ as

exemplified in the traction motor in a train.

In fifth section, we move to the realm of computing and explain how a Simondonian

ontology illuminates the individuation of operating systems and software applications

as potentially mimicking some elements of the individuation of living beings. We first

provide a brief overview of the history of operating systems to reveal the hylomorphic

ideology built into the design of modern digital systems. We then use a case study of

a malware attack to illustrate that a software application can – like a biological being

– become more individuated, more concrete, and more coupled with its technical

running environment precisely through being attacked and then responding to that

attack.

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

4

Simondon’s Theory of Individuation

French philosopher Gilbert Simondon (1924-1989) is a unique figure in intellectual

history for his lifelong dedication to both philosophy and a detailed, hands-on study of

technology. His Individuation in Light of Notions of Form and Information (Simondon &

Adkins, 2020) presents his general ontological theory of individuation -- how

individuals come into being. In this section, we provide a brief introduction to his

theory of individuation, explaining four key concepts to prepare for a later discussion

of his theory on technical individuation: pre-individual, transduction, information, and

associated milieu.

Simondon’s main target of critique in Individuation in Light of Notions of Form and

Information is hylomorphism, a doctrine of being originating in Aristotelian

metaphysics, which explains the constitution of an individual being as the union of its

‘matter’ and its ‘form.’ In our view, Simondon’s critiques apply less to Aristotle’s own

highly sophisticated hylomorphic theory and more to a simplistic form of

hylomorphism which developed later in western philosophy, which we will call ‘naive

hylomorphism.’ This naive hylomorphism understands matter to be a completely

passive element of a thing, a pure potentiality to become something different. Under

this view, form is the organizing principle which actualizes the potentialities of the

matter upon which it is acting. A simple example is a wooden mold (form) used by a

brick-maker to shape clay (matter).

For Simondon, however, an individual can rarely exist in a finished form that

completely exhausts the potential of its materiality, in part because this materiality is

not in fact something purely passive. Rather, an individual is always in the process of

inventively developing itself through both its form and its matter, a process which he

called individuation. If we closely follow the technical operations involved in

brickmaking, we see that a sharp distinction between form and matter cannot be

maintained. The mold is not a pure form, nor is the clay formless matter. Rather, the

mold must be prepared as a form that has its own materiality. “In order to produce a

form, one must construct a certain defined mold, prepared in a certain fashion with a

certain type of matter” (Simondon & Adkins, 2020, p. 23). The clay is matter that

already possesses a certain form, which is then given a new and different form. Then

in a heating process, there is an energy exchange between clay and mold. Contrary to

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

5

naive hylomorphism, the material of the clay is not passive in this process, but rather

expands toward the wall of the mold. The wooden wall of the mold reacts to oppose

the pressure from the clay. This exchange of force and energy makes clay into a

hardened shape of brick. In other words, what gives rise to the individuation of a brick

is the material activity of both the mold and the clay, and the resolution of the tensions

between those two initially disparate domains of potentialities.

Ingenuity of human labor does play its own part in the emergence of brick, but that

labor must work in cooperation with the inventive operations already immanent in both

the clay and the mold to bring about a real change. The language of naive

hylomorphism cannot grasp this active character of matter; it can only think of an

abstract matter and abstract form which are already individuated. To provide a more

adequate account, Simondon’s theory of individuation emphasizes the dynamic,

continuous process in which various forms of individuals emerge from relations

between multiple fields of potential. In this process, matter is no longer ‘a pile of dead

stuff.’ Rather, it provides a profound creativity to processes of change, along with the

capability of problem solving.

Broadly speaking, Simondon’s individuation theory is intended to give ontogenetic

accounts of beings at different levels. These include physical, biological, psychic, and

social levels of individuation. In all forms of individuation, the same material,

operational “formula” is at work. Individuation begins with a system in a primitive state

of being called ‘pre-individual.’ A system in its pre-individual state is abundant with

potential and yet does not have a distinct identity. It is “more than unity and more than

identity” (Simondon, 2009a, p. 6). That is to say, it contains the potential to begin

transformation in multiple directions. Here, Simondon’s primary source of inspiration

for the concept of pre-individual state of being came from the notion of metastability

in thermodynamics. A metastable system is the one that is in an equilibrium which is

neither completely stable nor completely unstable. As Muriel Combes summarizes, “a

physical system is said to be in metastable equilibrium (or false equilibrium) when the

least modification of system parameters (pressure, temperature, etc.) suffices to

break its equilibrium” (Combes & LaMarre, 2013, p. 3).

The ontogenetic process begins after an event introduces disparity into the

metastable pre-individual system. Then the system begins a series of phase

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

6

transitions to resolve the disparity. In each phase of this process, a distinctive kind of

individual emerges in the system. This individual, in its structure, preserves some of

the potential from the initial pre-individual state, and thus is capable of further

individuation.

The growth of crystals is Simondon’s paradigmatic example of an individuation

process springing out of a metastable pre-individual system. The genesis of a crystal

begins in a supersaturated liquid known as a ‘mother liquor.’ The introduction of a

‘germ’ – such as a particle – disrupts the equilibrium and polarizes its surrounding

mother-liquor. This singular event triggers the process of crystallization, “starting from

a tiny germ, increases and extends following all the directions in its supersaturated

mother liquor: each previously constituted molecular layer serves as the structuring

basis for the layer in the process of forming; the result is an amplifying reticular

structure.” (Simondon and Adkins, 2020, p. 13)

Naive hylomorphism cannot explain the emergence of such a crystalline structure.

The material operation involved in crystallization can hardly be accounted for in terms

of a force imprinting a form onto inert, passive matter. In contrast, Simondon’s richer

conception of matter can make sense of this process, by noting that the operation

propagates and amplifies its activity through the very structure it is creating.

Simondon replaces the overly simplistic duality of active form and passive matter with

the more nuanced duality of ‘operation’ and ‘structure,’ both of which actively

contribute to the development of the individual.

Borrowing a term from physics, biology, and electrical engineering, Simondon refers

to the interaction between structure and operation as transduction. In electrical

engineering, an example of a transducer is a device which translates energy from one

form to another, such as an antenna, which translates radio waves into electrical

signals. Simondon ontologizes the general concept of transduction to describe the

duality and interplay between operation and structure that is present in any

individuation process:

By transduction we mean a physical, biological, mental, or social operation

through which an activity propagates incrementally within a domain by basing

this propagation on a structuration of the domain operated from one region to

another (Simondon and Adkins, 2020, p. 13).

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

7

For Simondon, the concept of form in hylomorphism cannot adequately account for

the transductive process, so he proposes that “the notion of form must be replaced

with that of information” (ibid., p. 16). By information, he does not mean encoded

messages passing from a sender to a receiver through an established communication

channel, a narrowly defined concept which came out of the early cybernetics

movement. Rather, his notion of information has an operative sense of in-formation,

namely, the operation of form-taking! In the example of the brick-making process,

mold and clay initially exist as two disparate systems. Each system is metastable with

the potential to be deformed. When the two join together in the heating process, they

begin to act upon, or in-form, each other. In their transductive exchange, the

individuality of the brick emerges when the two systems are eventually stabilized in a

new equilibrium. As Simondon puts it, “Information is therefore a primer for

individuation” (Simondon, 2009a, p. 10). This reconceptualized notion of information

is clearly different from the early cybernetic model of information, which is inherently

substantialist in assuming the unchanging individuality of sender and receiver. This

model of communication claims that there is a one-to-one correspondence between

two individuals that does not structurally change either of them; yet, this is a

mathematical myth. The operation of information only emerges in the exchange

between “two different orders that are in a state of disparation” (ibid., p. 9) – that is, a

state of disparity. Metastability and disparity are the conditions of information. In a

real information exchange, as Andrea Bardin summarizes, “there is no univocal

transmission, nor a one-to-one correspondence between the systems, but rather we

have a concurrent reciprocal influence, and therefore a macro-system composed by

A, B and their interaction” (Bardin 2015).

The Theory of Vital and Psycho-Social Individuation

The individuation of living beings is based on the same ‘interplay of operation and

structure’ as seen in the individuation of merely physical beings (such as crystals).

What is different about the individuation of living beings is that they can do more than

merely adapt to their milieu in an external way. A living being actively invents its own

exteriority and interiority: “the living being solves problems not only by adaptation, that

is, by modifying its relation to the milieu, but by modifying itself, by inventing new

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

8

internal structures, by inserting itself completely in the axiomatic of vital problems”

(Simondon and Adkins, 2020, p. 28). In contrast, during growth of a crystal, the

individuating activity only occurs at the ever-expanding surface of the crystal. Its

interior does not participate in further individuation. That is, within the crystal there is

no true interiority:

...the physical individual has no veritable interiority; on the contrary, the living

individual has a veritable interiority because individuation takes place from

within; inside the living individual, the interior is also constitutive, whereas in the

physical individual only the limit is constitutive (ibid., p. 8).

With the invention of interiority, living beings begin to possess the autopoietic

character, a power to differentiate the internal and the external. This can be observed

in even the most basic form of living being such as a unicellular organism. The

membrane selects which elements can be integrated into the interior, and which

cannot (ibid., p. 250).

In addition to facilitating the emergence of individuals, the initial pre-individual milieu

itself also goes through substantial change. Individuation “does not break the system”

(ibid., p. 53) into an individual and a leftover milieu exhausted of its potential. Rather,

it introduces a new individual-milieu relation. In the individuation of living beings, there

is the emergence of an associated milieu as the complement of the living individual.

For a living being, its associated milieu is a pathway connecting its interior to a greater

domain of being. Through its associated milieu, a living being is able to conserve and

renew some remaining potential from the initial pre-individual milieu and carry on the

individuation at its own pace:

...the principle of individuation…is the complete system in which the genesis of

the individual takes place; that, moreover, this system outlasts itself within the

living individual as a milieu associated with the individual in which individuation

continues to take place (ibid., p. 51).

Moreover, an associated milieu is not something pre-given. Rather, it is invented by a

living individual as “a synthetic grouping of two or several levels of reality without

intercommunication before individuation” (ibid., p. 383). Simondon often describes

the relationship between a living being and its associated milieu as possessing

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

9

recurrent causality. The living being creates its associated milieu which, in turn,

conditions its existence.

With this view of vital individuation in mind, we can see how psychic (psychological)

individuation is based upon it. Here, it is important to know that Simondon rejects any

substantial separation between the psychic and the vital, emphasizing the continuity

between two regimes of individuation. To continue its individuation, a living being

engages in vital activities to regulate the relations between its interior and exterior

milieu and between what is already individuated and the pre-individual potential.

Simondon believes that psychic reality arises from these activities to perpetuate the

vital individuation. For example, perception emerges from the vital activities to resolve

the conflicts which it encounters with the surrounding milieu. ‘Affection’ emerges from

the vital being’s effort to coordinate sense perceptions and actions, and from its effort

to regulate the individual-milieu relationship.

The introduction of the psychic domain helps the vital being to maintain its resonance

with its milieu, therefore prolonging the vital individuation. But it also poses new

problems which a psychic individual cannot solve within itself. When perceptivity and

affectivity become incompatible, a psychic individual cannot resolve the problem

within itself. It must participate in and be integrated with the individuation of the

broader milieu of the collective (i.e., the social) to resolve the tensions and to continue

its own individuation. For Simondon, the individuation of psychic beings and

individuation of their collective are two poles of one process. Between the

individuation occurring in the interior of psychic beings and the individuation of their

collective milieu which exceeds the individuals, there is a fundamental unity which he

calls the transindividual relation.

Above we have examined Simondon’s theory of individuation in three levels: the

physical, the biological, and the psycho-social. He believes that these three levels, in

combination, constitute ‘nature’ as a whole. Now we are prepared to consider how his

theory of technical individuation relates to and builds off of these concepts.

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

10

The Theory of Technical Individuation

Naive hylomorphism is inadequate for understanding the ontogenesis not only of

physical, vital and psycho-social beings but also of technical beings. The process of

engineering a technical being is often viewed as a direct imposition of a model in the

mind of the designer onto inert material elements. Simondon rejects anthropocentric

views of technology which tend to reduce technical beings to instruments. For him, an

ontological theory of technical objects must trace the dynamical evolutions that take

place in their technical lineages through their own necessity and normativity. As Jean-

Hugues Barthélémy (2015, p. 20) points out, the individuation of living beings provides

the model to reason about the process of technical evolutions.

Levels of Technical Reality

Simondon categorizes technical objects into three levels of existence: the element, the

individual and the ensemble. Springs, screws, and transistors are examples of

technical elements – simple tools. Technical elements are the carriers of immediate

technical operations. A technical element is “free” and “universal” in the sense that it

can be integrated into any technical system. When technical elements are organized

into a system, the result is a technical individual. For instance, an engine is made up

of multiple elements or tools. A technical ensemble comes into being when multiple

technical individuals coordinate through a communications network. An example of a

technical ensemble is a factory made up of multiple machines connected via a

communications network. But in Simondon’s theory of technical evolution, technical

individuals are the central focus. At this level of technical reality, the evolution of

machines demonstrates an orientation toward a structure which resembles organic

beings (Simondon, Malaspina, & Rogove, 2017, p. 60).

Concretization

Concretization is the most important concept in Simondon’s theory of technical

individuation. This concept describes how a technical object evolves from a more

abstract stage to a more concrete stage, i.e., toward coherent technical individuality.

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

11

In the abstract stage, different elements of the technical object are linked together but

are not fully integrated. The object becomes more concrete when its elements take on

a higher degree of structural and functional convergence. Simondon illustrates these

concepts by tracing the genealogy of the combustion engine. He observes that in a

more primitive engine, “each element intervenes at a certain moment in the cycle, and

then is expected no longer to act upon the other elements” (ibid., p. 27). By contrast,

in a more advanced engine, “each important item is so well connected to the others

via reciprocal exchanges of energy that it cannot be anything other than what it is”

(ibid., p. 26).

For Simondon, a higher degree of integration within a technical object has genuinely

practical consequences. This greater integration perfects that object by making it

more autonomous and more secure. Simondon’s language on this point is noteworthy:

he speaks of an object’s greater integration leading to the emergence of “defense

structures” within that object. For example, in the early air-cooled engines, the cooling

fins were attached to the engine’s cylinder from the outside and only served one

function: cooling. The two systems, the cylinder and the cooling system, functioned

independently and this meant that the engine lacked integration. But in a more

advanced engine, the cooling fins are more integrated with the overall structure of the

cylinder because the fins play more than one role. They act as fins to lessen the heat

generated by the cylinder but they also act as ribs that “resist the deformation of the

cylinder head under the pressure of the gasses” (ibid., p. 27). Concretization is thus

the process in which technical beings evolve “into a system that is entirely coherent

within itself and entirely unified.” (ibid., 2017, p. 29) In this process of evolution,

concretized technical objects come to partially resemble natural living beings, even if

they can never be identical to the living beings (which are the original concreteness).

Associated Milieu

Concretization increases the internal coherence of the technical object and creates a

surrounding milieu for it. This milieu enables a technical object to simultaneously

adapt to both the technical and the natural environments in which it is operating. It

consists of elements from the natural milieu grouped and synergized with the

technical components to support its function. A river dam needs an artificial lake or

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

12

reservoir to store water for electricity generation. Simondon calls the kind of milieu

that is integrated with a technical object an ‘associated milieu.’ The associated milieu

of a technical object is the necessary condition of the very possibility of its existence.

However, Simondon is clear that an associated milieu is not merely a means of

adaptation for a technical object. An associated milieu must be invented for a

technical object and is also conditioned by it. Simondon describes this co-conditioning

relationship between technical objects and their associated milieu as recurrent

causality (ibid., 2017, p. 60). He uses the example of a traction motor to illustrate the

concept of recurrent causality between a technical object and its environment. A

traction motor is an electric engine used to propel a train along the track, and it must

maintain the speed of a train in as constant a manner as possible as the train travels

over a variety of geographical terrains: contours, elevations, sharp turns, etc. A traction

motor not only converts electrical energy into the mechanical forces that pull a train

on the track, but also adjusts the supply voltage depending on the resistance it

receives from the natural environment. In a traction motor, a part of its technical

interior must be synergized with the external geographical environment to enable the

reciprocal relationship. This relation between the motor and the environment is the

associated milieu of a traction motor, the condition of its function (ibid., pp. 55-56).

Although Simondon certainly does not equate concretized technical beings with

natural living beings, he sees important similarities between the evolution of technical

individuals and the evolution of living beings. Like biological evolution, technical

evolution tends toward greater integration by resolving the incompatibility among

disparate elements. Like living beings, technical beings stand in relation to an

associated milieu. And like living beings, technical beings develop into more mature

forms out of an internal necessity contained with them. In other words, for Simondon

concretization is not ultimately due to social and economic factors. The functional

convergence during the concretization process takes place, in part, due to the non-

human factor of an internal necessity of the technical being itself (ibid., p. 29). In fact,

some human interventions are actually detrimental to a technical object’s

concreteness. Simondon observes that when many customer requests are imposed

on the design of a car, “its essential characteristics are encumbered with external

servitude” (ibid., p. 30). In other words, the technical object in such a case has become

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

13

less integrated, due to humans failing to bring forth the potential unities that lie within

the materials with which they are working.

The reason why Simondon insists upon a non-anthropogenic account of technical

evolution can be found in his overall view of alienation in modern age. For him, culture

has alienated technicity by reducing it to the domain of mere usage, or instruments.

Built into culture is a systematic defensive attitude which rejects the possibility of

technical beings providing any cultural significance. Simondon found this wall

between kingdom of ends and kingdom of means to be a fundamental blockage in

resolving the alienations between humans and alienation between human and nature.

He calls for a new technical culture that can "incorporate technical beings in the form

of knowledge and in the form of a sense of values" (ibid., p. 15). The first steps toward

this reconciliation are to suspend the merely instrumental attitude toward technical

beings, and to look seriously at the genesis of technical beings in terms of their own

intrinsic necessity.

Some scholars have claimed that Simondon’s approach has its blind spots. Daniela

Voss (2019, pp. 292-296) argues that Simondon has overlooked the way capital and

institutional powers shape the form of technical developments. In contemporary

cognitive capitalism, new forms of exploitations are often disguised as technical

innovations. Without properly analyzing the social and economic dimensions of

technical developments, interweaving human life with networked informational

devices can develop into new forms of oppressions and alienations. In his analysis of

the concretization of social software platforms, Simon Mills (2011, pp. 215-216)

argues that “associated milieu [of a social software platform] that is invented and

maintained is constructed in association with the regime of the psycho-social and not

just that of the physical”. To understand digital technicity, we still need to take into

consideration social and economic factors as well. As Mills (2011, pp. 224-225)

illustrates in his case studies of Twitter and electronic exchange market system, we

can further develop Simondon’s concretization theory by expanding the concept of

associated milieu to social environments. Such inclusion does not contradict his

philosophy of nature. After all, Simondon’s concept of ‘nature’ includes all three

regimes of individuation: the physical, the vital, and also the psychosocial.

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

14

We recognize the strengths but also the historical limitations of Simondon’s approach

to technical evolutions. We argue that with a broadened concept of associated milieu,

along with considerations of the social and economic factors in technical evolutions,

concretization theory can still shed light on the nature of contemporary technologies,

and in particular the cybersecurity operations of digital environments.

The Individuation of Software Applications

Simondon’s theories of biological and technical individuation illuminate the study of

cybersecurity in several ways. First, Simondon’s arrangement of technical beings as

element/individual/ensemble provides a helpful way to conceptually categorize

software applications. In the context of software, a digital technical element is a

carrier of the most basic computing operations. It can be an instruction in a program,

or a system function used by the program during its runtime execution. They are “pure”

and “context-free”, and can be integrated into any software system. A digital individual

comprises a set of organized elements. The most common example of a digital

individual is an individual software application such as a text editor, a web browser, or

an email server. A digital ensemble consists of a set of individual software

communicating through a network. A web-based medical information system, for

example, consists of three individual pieces of software: a web browser enabling user-

interactions, a web server for processing users’ requests, and a database system for

data storage. Our focus in this paper is security at the level of individual software

applications. An individual software application is a technical individual in a proper

Simondonian sense. It is also the central focus of software security. In most cases,

security problems do not result from the faults of digital elements but rather from the

ways in which they are integrated within the digital individual of a piece of software.

At the level of digital ensembles, one vulnerable software subsystem can lead to the

compromise of a whole networked ensemble. This has been demonstrated by

malware propagation and the recent rise of software supply chain attacks.1

																																																								
1 In 2020, for example, a group of hackers gained access to the updating server of network management software firm
SolarWind and injected malicious logic into the update package DLL of the network monitoring software product Orion.
Since Orion is widely used by multiple key departments of the U.S government, it became a “trojan” for the hackers to
further compromise the security of these organizations and perform cyber espionage (Rasner, 2021).

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

15

Secondly, Simondon’s concepts of biological individuation and the concretization of

technical beings are helpful in understanding the evolution of software in response to

a cyberattack. Each cyberattack such as a malware attack is an informational event

in Simondon’s sense. It exploits the incompatibilities among the digital elements

which software applications base their runtime execution on, structurally deforming

them to the brink of disintegration. Unwittingly, a cyberattack also unleashes a chain

of security engineering operations which further concretize the vulnerable software.

Software applications must reinvent themselves, structurally and functionally, to

resolve these incompatibilities. The concretization of a software application is like a

vital individuation in that it is an inherently relational being and process. Its

individuality depends on its relationship with an associated milieu: a running

environment called an operating system. The concretization of a software application

is always a co-concretization with its OS. Simondon’s concept of associated milieu

can be applied to investigate the dynamic, reciprocal relationship between individual

software applications and operating systems in the context of cybersecurity.

The paradigm of vital individuation is more important in thinking about software

security than other domains of technology. Due to the inherent flux of its social and

technical environment, software is in a state of metastability. Its internal functional

unity is only provisional and is subject to perturbation caused by cyberattacks. Like

living beings, software has no choice but to continue its concretization to maintain its

integrated form or face total dissolution in the event of a cyberattack.

Case Study

In this section we will use a famous malware attack case study, “Dynamic Link Library

(DLL) injection,” to examine the cyberattack’s effect on the concretization of software

applications and their relationship with the operating system. DLL injection is a form

of malware attack in which an attacker inserts malicious code into a running process

of a software application. Our goal in this paper is not to propose any new security

solution, but rather to use DLL injection as an empirical study to illustrate the relevance

and helpful insights from Simondon’s theory of individuation.

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

16

A Primer on Operating Systems

To understand the mode of existence of software, one cannot evade the topic of

operating systems as their technical running environment. In this section, we will

briefly review the history of operating systems and explain the basic structure and

functions of modern operating systems. The goal is to illustrate how the ideology of

naive hylomorphism, the alienation between culture and technicity, and the power of

capital has shaped the design of the operating system and the mode of its relationship

with application software.

A digital object such as a computer program cannot exist without a milieu in which to

operate. It might appear as if one physical milieu is the hardware platform on which

an application is executing. However, most programs do not directly interact with

hardware, because there is a mediator between software programs and their physical

milieu. In the early history of computers, running a program was far more complex and

indirect than today. While the first generation of computers such as ENIAC had already

outperformed humans in the speed of calculation, it still required human operators to

manually input the programs into the electronic computer. The early society of the

computing profession very much resembled the naive hylomorphic model of labor

conditions in ancient Greek society. A ‘rational mastermind,’ usually a mathematician

or scientist working in defense projects, gave a computing task to ‘lowly technical

operators’ and had them compile the concrete procedure of computing steps to

complete the task. At that time, it was women who assumed the role of the technical

operators (Light, 1999). Female technicians were simultaneously programmers,

hardware operators, and file organizers. By outsourcing the ‘dirty’ work to the female

operators, the ‘rational minds’ could dedicate themselves to much more ‘abstract’

thinking tasks without being entangled with the ‘messy’ physical reality of the

electronic hardware. Up until the late 1950s, most of the early pioneers of computer

programming were women. It is thus not surprising that female programmers made

significant contributions to the invention of what is now known as operating systems

– an automated version of their own human labors.2

																																																								
2 One example of this transition from female computer operators to non-human operating systems is seen in the work of Mary
Allen Wilkes. From 1959 to 1963, Wilkes designed and wrote the operating system for LINC (Laboratory Instrument Computer)
computers, which is the precursor of modern-day operating systems. (Wilkes, 1970)

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

17

Immediately after their concrete inception, the subsequent development of operating

systems quickly shifted toward more hierarchical structures. With the rise of the

modular software engineering approach and the development of high-level

programming languages in late 1960s, there was an increasing demand for operating

systems to support the concurrent executions of multiple programs and to allow

programmers to choose among different programming languages. Operating system

design began to adopt a more reductionist approach by separating its core

functionality called OS kernel from the users’ own programs and from programming

languages. Operating systems thus became generic machines which provided more

abstract interfaces to the software developers. Software applications became more

abstract and more distant from physical hardware. The introduction of personal

computers (PC’s) and the internet in the 1980s prompted even more complex and

diverse demands from PC consumers and business organizations. These demands

drastically increased the burden laid on operating systems (Hansen, 2011). A modern

operating system must be able to support a large variety of software applications,

ranging from 3D video games to web browsers.

To meet the vast and incoherent requirements from application software

development, a typical operating system today like Windows provides a set of

application programming interfaces (APIs) for a software developer to be able to use

hardware resources more efficiently (McHoes & Flynn, 2010). Suppose a programmer

is developing an application, and a part of its function is to store a piece of data on a

computer’s storage system. Instead of writing her code to deal with the complexity of

a solid-state drive, she can have her application call APIs to create a new file, and then

write data to the file. As servants to the application, the APIs will handle all the physical

tasks of communicating with and controlling a disk drive. Like their human operator

ancestors, an operating system hides the messy materiality of a computer and

provides an abstract representation of a physical machine to an application program.

For most applications and for ordinary human users today, the operating system is

the most immediate milieu. Without its support, a computer is merely a collection of

raw physical devices. The relationship between ordinary users (including application

software developers), applications, a modern operating system, and hardware is

depicted in the following figure:

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

18

Figure 1. Relationship between users, applications, OS, and hardware.

This allows us to see that modern operating systems have inherited the naive

hylomorphic ideology in their very structure. An operating system is a passive ‘servant’

which facilitates the execution of a developer’s application program without having to

know the meaning of the program. When an application program starts running, the

operating system will begin a chain of material operations: allocating memory space,

loading the application’s program code to the memory, preparing the CPU to execute

the code, etc. With the operating system’s support, software application developers

can operate the computer system through APIs without having to know the operations

carried out inside the OS. They can dedicate their work on constructing the narrative

and meaning at the level of application software – the appearance of user interfaces,

the mode of communication among users, etc. The separation between an operating

system’s internal operations and the application-level software reflects what

Simondon refers to as the alienation between culture (apps) and technicity (OS and

hardware) in the modern age.

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

19

The development of an operating system does not depend exclusively on the

hardware and on the minds of the OS engineers. Its development also involves a much

larger social and economic context. Operating systems vendors such as Microsoft or

Google have been using APIs as an effective way to attract developers to their

platforms. For an operating system, more developers using it means that more

software applications are running on the system. This, in turn, means greater market

share. In the past decades, there have been API wars between different competing

operating system platforms (Spolsky, 2004). How to design new attractive APIs is

becoming an integral part of business strategy for many software platforms vendors

(Jacobson et al., 2012). Each year, hundreds of conferences are held to attract

software developers to learn newly released APIs by various vendors. Communities of

developers are built around sets of APIs provided by different platforms. With the

enlargement of the developer community for a given operating system, there are also

increasing demands to further expand its APIs. An operating system is always

incomplete. An operating system and its developers constitute a vibrant, open techno-

social system.

As a consequence of these dynamic social interactions, the operating system has

become increasingly complex over the last two decades. In each new version of the

Windows operating system, there are approximately 1,000 new system APIs added. In

the year 2003, Windows XP had little over 2,000 APIs. By the year 2020, Windows 10

has more than 10,000 APIs! In addition to the growth of the API population, modern

operating systems also encourage code sharing and modularization. Through the

mediation of the operating system, a software application can even share its code

with other applications. In Windows, this is done via the use of dynamically linkable

library (DLL). A DLL is a program that can be shared by multiple running applications

at the same time. From the perspective of software developers, re-using DLLs reduces

the programming effort to develop an application. Instead of programming everything

from scratch, a programmer can have an application load a DLL during the runtime.

For example, when a drawing application needs to print an image during its execution,

it can simply request a Windows API, LoadLibrary, to load a DLL specialized for

printing and use the program contained in the DLL to complete the task. The same

DLL can be shared by various software applications which need to print images. And

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

20

one running application on Windows typically loads multiple DLLs during its

execution.

Rich APIs and DLLs provide software application developers with greater coding

productivity. They are also a means to control the community of developers. APIs are

the primary means to regulate and settle different demands from developers, and they

reflect the will of the majority in the community. However, the techno-social system

built around Windows APIs can never reach a complete, stable closure. Due to the

incoherent demands from developers, the functions of APIs are often incompatible

with one another. The disparities among APIs leave the Windows system in an

unstable state. It is in this context of instability that hackers invent creative ways of

linking Windows’ system features and turn it into a dangerous milieu for applications.

In the next section, we will visit a classic example of a malware infection technique to

examine the relationship between software applications and their milieu. We will show

that hackers defy the hylomorphic techno-social order, travelling across the border

between application level and operating system level. A cyberattack event is a germ

of change. It triggers a chain of operations to secure the system. It brings a whole

community of developers and system engineers together to solve a security problem,

and their collaborative engineering effort radically restructures an operating system

and its relationship with software applications. As a result of this restructuring, a

software application integrates a part of the operating system within itself to fend off

malware infection, essentially creating a tighter association with the operating

system. Cyberthreats and security engineering responses begin to erode the wall

between software applications and operating systems, thus concretizing both of

them, and making their relationship partially resemble the one between living beings

and their associated milieus. As we will suggest below, software engineers can

cultivate software and its environment in such a way as to increase this resemblance

to living beings, and thus increase the level of security.

Study of a Malware Infection Attack

The running activity of an application’s code is called a “process” (McHoes & Ballew,

2012). With the support of an operating system, one machine might have multiple

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

21

processes running simultaneously. Typical running processes in a Windows machine

are file explorer, web browsers, etc. Nevertheless, an operating system as a milieu

does not sufficiently protect the individual running process of an application from the

harmful behavior of malware. Stealth malware often employs a technique

called ‘process injection’ to inject malicious code into a running process (Monnappa,

2018). 3

Once it lands in a target Windows machine, malware can use legitimate APIs provided

by Windows to inject malicious code into the memory space of a running application

and to execute that code. Since the injected malicious code runs in the memory space

of a benign application such as Notepad or the Firefox web browser, it can evade anti-

malware detection systems. One of the most popular and straightforward types of

process injections is DLL injection. The malware first drops a malicious DLL file into

the victim’s file system. Then, it uses the following four steps to complete DLL

injection:

Step 1: The malware uses a Windows API, OpenProcess, to attach to the

running process of a victim application, such as Notepad. The

OpenProcess API is by no means a malicious function. It was intended to

facilitate system administration. A system administration tool often uses this

API to monitor all the running processes in a windows system, profiling their

performance and resource utilization.

Step 2: The malware uses another Windows API, VirtualAllocEx, to allocate a

piece of memory within the victim process. The malware will then issue

WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware uses a Windows API, LoadLibrary, to load the malicious

code contained in the DLL file into the memory space of the victim process.

Step 4: Once in the victim process, the malicious code will carry out malicious

operations. In some advanced malware attacks, the injected code will delete

the malware and the original copy of the malicious DLL file. The whole

procedure of DLL injection is depicted in Figure 2.

																																																								
3	Process injection attacks have been reported in all three major operating systems -- Windows, Linux, and macOS. We
will focus on Windows in this article.
	

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

22

Figure 2. The steps in DLL injection procedure.

Like OpenProcess API, neither VirtualAllocEx nor LoadLibrary APIs are malicious, nor

are they insecure by themselves. They are all created as the operating system's routine

services to help software developers express their ideas and translate them into

material reality at the hardware level! Any software application can

use VirtualAllocEx to allocate the memory space that it needs during the execution.

Any running software application can use LoadLibrary API to load a DLL that it needs.

It is the incompatibilities among them as technical elements and the way in which they

are exploited by the malware in its interaction with the target application that cause

security problems.

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

23

Software Security through the Lens of Simondon

The interaction between a malware and its target program cannot be explained by the

early cybernetic notion of information as the transmission of encoded messages from

sender (malware) to receiver (target application). From the perspective of this

impoverished notion of information, there is no difference between the scenario where

two benign software applications are exchanging data and the one where a malware

is infecting a target program. Simondon’s view of information is that it is a form-taking

operation which emerges between two disparate systems, and this view offers a

better model to understand the mutual restructuring and deformation between a

malware and its victim during the infection.

As the result of the deformation due to malware infection, the victim process loses its

concreteness. For example, once the injected malicious code starts running in the

memory space of a victim application, it can perform many different types of covert

activities. It can secretly collect all the users’ bank account data stored in the same

operating system and send them to the hacker’s web server via a covert network

connection. Some malware can even use the infected software application as a host

to further propagate the malware itself to other applications in the same computer

system or even other computer systems through network connections. In any case of

malware infection, injected code lives as a parasite within the process of the original

application, causing the original application to lose its functional integration.

To thwart malware attacks, cybersecurity engineers must find ways to protect the

functional integration of the software applications running in an operating system.

Microsoft, for instance, has created what is called the AppLocker subsystem since

Windows 7 (Corio, 2009). With the AppLocker, a software application developer can

pre-program a security rule in the code of her application which tells Windows a list of

DLLs that the software application is expected to use. When the application begins its

execution, its pre-programmed security rule will be sent to the Windows operating

system. The Windows operating system, in turn, will use the rule to monitor each DLL

the application is attempting to load during the process of its execution. If the

application is trying to load a DLL that is not specified in the list, this indicates that the

application has been injected by malicious code, and begins to perform a computing

task unintended by the developer. For example, if a simple application such as

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

24

Notepad is trying to load a DLL for network communication, it is highly suspicious.

The system thus detects a potential process injection attack and blocks the

execution.

Through the lens of Simondon’s theory of concretization, the above cybersecurity

engineering method can be seen as a process of concretization. The software

application that was previously vulnerable to the disintegrating power of malware

gains a greater level of functional integration. This concretization is achieved by

inventing a greater reciprocal relationship between a software application and its

milieu. Now, the execution of an application reconfigures parts of the OS’s

functionality according to specified security rules. The reconfigured OS, in turn,

safeguards the execution of the application. The operating system is transformed

from a generic platform which blindly accepts any application into a more concrete

milieu that is more tightly coupled with specific applications. Unlike other domains of

technology, software applications run in an inherently metastable milieu. With the

ever-increasing expansion of APIs in Windows, one can only anticipate more

sophisticated malware attacks will emerge in the future, exploiting the

incompatibilities among new and old APIs. For software applications, continuing the

concretization is a matter of ‘life-or-death’. This dimension of ‘existential struggle’

makes the concretization in the context of software security closer to Simondon’s

concept of vital individuation. A software application must perpetually re-invent its

interior and re-define its relationship with the milieu in the process of resolving the

disparities that are causing vulnerabilities. With the increased association with its OS,

the software application gains greater functional unity and is better able to survive

malware attacks. In other words, a software application paradoxically maintains its

individuality not by being closed up within itself, but by being open to the broader

milieu and by participating in the concretization of the whole collective of software,

similar to transindividuation in the psychic-social domain.

Conclusion

As this article has shown, a deep understanding of cybersecurity attacks and solutions

must rest upon a sufficiently sophisticated general theory of being. More specifically,

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

25

such an understanding must rest upon an ontology that is complex enough to account

for processes of change that involve reciprocally causal elements and dynamically

shifting relations. We believe that Simondon’s general theory of ontogenesis is a

powerful starting point for such an ontology. His theory not only provides a nuanced

account of how technical objects develop over time, but it also proposes the bold idea

that, as some technical beings mature, they begin to resemble biological beings in

certain important ways. Rejecting the common hylomorphic ontology which reduces

entities to abstract form/matter relations, he works to establish an ontology that can

account for beings that become more concrete over time by means of their own

internal resources and also by means of their reactions to the environment that they

themselves are altering. In so doing, Simondon better explains the active dimensions

of materiality, the recurrent causality between object and environment, and the

dynamic relations of operations and the structures in which those operations act. This

general ontology allows Simondon to develop a theory of technical objects which

clarifies important aspects of cybersecurity threats and solutions that other theories

overlook, such as how a cyberattack (reminiscent of threats to biological beings) can

be the occasion for a software application to become more integrated and more

secure.

In addition to the engineering insights, the study of cybersecurity can benefit from a

new norm of thinking and practicing technology which Simondon (2009b) refers to as

the technical mentality. This emerging technical mentality has a single criterion: “that

of the opening” (Simondon & De Boever, 2009b, p. 24). Secure software development

needs to move beyond the paradigm of the automata, the self-enclosed cybernetic

“blackbox”, and embrace what Simondon describes as open objects. An open object

is always in progress. It is open to its milieu and to further perfection, like a growing

organism. (Simondon, 2014, p. 401). An open digital object concretizes relationally, by

penetrating into its milieu like a plant stretching its roots.

Future researchers can build upon this essay, in combination with other research, in

several ways. Yuk Hui’s Existence of Digital Objects deals with the individuation of

structured data and metadata (Hui, 2016), while our essay focuses on software

processes; an account is needed that would encompass data and software into a

larger holistic picture specifically in terms of cybersecurity. Simon Mills’ study on the

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

26

co-evolution of social software platforms with the psychosocial domain of their users

(Mills, 2011, 2016) can also benefit from our study in terms of social software security.

With the proliferation of APIs, the social software platforms are becoming unstable

and will certainly face more security problems in the future. Our study can provide

insights on how cyberattacks affect the individuation of the platforms in relation to

both users and application developers.

Bibliography

Barad, Karen (2003). Posthumanist performativity: Toward an understanding of how

matter comes to matter. Signs: Journal of Women in Culture and Society, 28(3), 801–

831. https://doi.org/10.1086/345321

Bardin, Andrea (2015). reforming the concepts of form and information. In

Epistemology and political philosophy in Gilbert Simondon individuation, Technics,

social systems (pp. 21–34). essay, Springer Netherlands.

Barthélémy, Jean-Hugues & Norman, Barnaby (2015). Aspects of a Philosophy of the

Living. In Life and technology: An inquiry into and beyond simondon (pp. 15–20).

essay, Meson Press.

Combes, Muriel (2013). In T. LaMarre (Trans.), Gilbert Simondon and the philosophy

of the transindividual (pp. 3–4). The MIT press.

Corio, Chris (2009, May). An introduction to security in Windows 7. TechNet Magazine,

13–20.

Hansen, Per B. (2011). The Evolution of Operating Systems. In Classic operating

systems: From batch processing to distributed systems (pp. 1–34). Springer New

York.

Hui, Yuk (2016). On the existence of digital objects. University of Minnesota Press.

Jacobson, Daniel, Woods, Dan & Brail, Greg (2012). Apis: A strategy guide. O'Reilly.

Light, Jennifer S. (1999). When computers were women. Technology and Culture,

40(3), 455–483. https://doi.org/10.1353/tech.1999.0128

 Cybersecurity and Simondon’s Concretization Theory	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

	

27

McHoes, Ann M. & Ballew, Joli (2012). process and threat management. In Operating

systems demystified (pp. 78–102). McGraw-Hill.

McHoes, Ann M. & Flynn, Ida M. (2010). Windows Operating System. In Understanding

Operating Systems (sixth edition, pp. 464–494). South-Western.

Mills, Simon. (2011). Concrete Software: Simondon's mechanology and the techno-

social. Fibreculture Journal, (18).

Mills, Simon. (2016). Toward a Theory of Media. In Gilbert Simondon: Information,

Technology and Media (pp. 173–206). essay, Rowman & Littlefield.

Monnappa, K A (2018). Code Injection and Hooking. In Learning malware analysis:

Explore the concepts, tools, and techniques to analyze and investigate Windows

Malware (pp. 283–327). Packt Publishing Ltd.

Rasner, Gregory C. (2021). Cybersecurity and third-party risk: Third party threat

hunting. Wiley.

Simondon, Gilbert. (2009a). The position of the problem of ontogenesis .

Parrhesiajournal, (7), 4–16.

Simondon, Gilbert (2009b). Technical Mentality. Parrhesiajournal, (7), 17–27.

Simondon, Gilbert (2014). Sur La Technique: (1953-1983). Presses universitaires de

France.

Simondon, Gilbert (2017). On the mode of existence of technical objects. (Malaspina

Cécile & J. Rogove, Trans.). Univocal Publishing.

Simondon, Gilbert (2020). Individuation in light of notions of form and information. (T.

Adkins, Trans.). University of Minnesota Press.

Spolsky, Joel (2004). How Microsoft lost the API War. Joel on Software, 295–312.

https://doi.org/10.1007/978-1-4302-0753-5_42

Voss, Daniela (2019). Invention and capture: A Critique of simondon. Culture, Theory

and Critique, 60(3-4), 279–299. https://doi.org/10.1080/14735784.2019.1679652

Wilkes, Mary A. (1970). Conversational access to a 2048-word machine.

Communications of the ACM, 13(7), 407–414.

https://doi.org/10.1145/362686.362690

Ziyuan Meng and Jon K. Burmeister
	
	

Matter: Journal of New Materialist Research, vol 3 no 1 (2022): 1-28
ISSN: 2604-7551(1)

28

Author Information

Ziyuan Meng (zmeng@drew.edu)

Ziyuan Meng is Assistant Professor of Computer Science at Drew University, New

Jersey, United States. Since 2014, Ziyuan Meng has helped multiple institutes to

develop cybersecurity curriculum with emphasis on an interdisciplinary approach. His

main research focus is to bring insights from continental philosophy and

constructivist psychology to develop a non-reductionist approach to cybersecurity.

	

Jon K. Burmeister (jon.burmeister@mountsaintvincent.edu)

Jon K. Burmeister is Assistant Professor of Philosophy at the College of Mount Saint

Vincent, in New York City. His dissertation was on Hegel’s idea of a 'living' logic and

what this entails for philosophical language. His research combines a background in

the history of philosophy with investigations of emerging digital technologies and their

social and ethical impacts. Jon K. Burmeister was the recipient of a 2016 - 2017

National Endowment for the Humanities “Enduring Questions” Grant on the subject of

Work and Leisure.

