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SUMMARY 
Water discharges into the Ter river have a strong influence on the water chemistry and on the dynamics of 

benthic cornmunities. For this reason, the temporal pattems followed by monthly runoff from 1 954 to 1 988 have 
been studied. From a statistical point of view, discharges show a very regular seasonal cycle, but in practice, 
climatic events introduce a source of variability on runoffs. To determine whether the series of 420 monthly 
discharges fluctuates with sorne regularity or at random, a rescaled range analilsis was made. The persistence (H) 
of the series of discharges was measured by the equation R / S = (T / 2) . In fact, H is a measure of the 
existence of clear trends or periodicities in the records of persistent stocastic processes. An additional measure of 
the persistence was obtained by means of the relationship D = 2 - H, where D is the local fractal dimensiono For 
comparative reasons, a random series of the same length, mean and standard deviation was generated and 
analysed in the same way as the Ter discharges were. The results were H = 0.68 and D = 1 . 38 and H = 0.44 and 
D = 1 .52, for the Ter data and for the random series respectively. These results show that the simulated series is 
a case of ordinary Brownian motion while the Ter discharges series has an intermediate value of persistence. 
Because of the value of H in the Ter series, there are periods whose values were estimated by the autocorrelation 
function and the periodogram of the series. The results show the existence of short fluctuations of 3, 6 and 1 2  
months deterrnining the seasonality of the annual cycle, and large fluctuations with periods of 5.5, 8 .6, 1 0. 1  and 
1 1 .7 months which can be considered an expression of cycles of circa 7 and 1 1 years. 
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. . . In the case of the landscape, rain falling at random and moving from each point of the surface along the 
steepest pro file, through eros ion and convergence of runoffs, generates a secondary "hydrologic" relief Will the 
fractal quality be preserved ? (MARGALEF, 1 988) 

INTRODUCTION 

In Mediterranen ecosystems , annual 
cyc1es are always described in terms of 
regular fluctuations associated with 

seasonal c1imatic changes. Nevertheless, 
this pattern i s  usuall y modified by irregular 
climatic fluctuations that cause sudden 
changes in their dynamics. Temporal ponds 
and rivers are among the most affected 
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ecosystems because they are mainly 
controlled by the periodicity and intensity 
of the rains. The tumover time of the water 
acts as a key factor in most of the processes 

2 5 0  

A 
2 0 0  

(") 1 5 0 S 
:::c 
a 1 0 0 

5 0  

3 

2 

- 2  

- 3  

1 955 1 960 1 9 65 

ARMENGOL, SABATER, VI DAL & SABATER 

taking place (SCHINDLER, 1 988;  
ARMENGOL, 1 988).  

In rivers, strong rains increase the 
intensity of the advective transport of solid 
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FIGURE 1 . River Ter monthly discharges for the 1 954 - 1 988 periodo A) original series of data in Hm
3 

month- I . 
B) normalized series by Y = XO.22 . C) the standardized sequence. 
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and dissolved substances. Because of this, 
the spates act as huge inputs of external 
energy that simplify the structure of the 
river. Most of the organisms are carried 
down and the chemical composition of 
water beco mes more similar along the ri ver. 
The annual cyc1e of the cornmunities can 
be seen as a sequence of populations with 
short life span, well adapted to seasonal 
changes but able to reconstruct the 
cornmunity after each event (MARGALEF, 
1 980). If longer periods of time are 
considered, changes in the communities can 
be seen as a sequence of periods of 
organisation (secondary successions) 
followed by quick disruptive episodes 
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(backward steps) (MARGALEF, 1 977).  
In the Ter river, water flow is  the most 

important factor determining the annual 
variability in the environmental conditions 
(SABA TER & ARMENGOL, 1 986) and in 
the dynamics of phytobenthic (SABA TER 
et al., 1 988) and macroinvertebrate (PUIG 
et al., 1 987) communities. These relation
ships are well established for short periods 
of time, such as the annual cyc1e, but for 
longer periods it is assumed that c1imatic 
fluctuations have a similar effect. If we 
accept these relationships for the Ter river, 
the long-term study of a record of 
hydrological events as large as possible can 
provide us with sorne insight into how it 

1 9 7 5  1 9 8 0  1 9 8 5  

FIGURE 2 .  Simulated sequence o f  420 values (35 years x 1 2  months) nonnally distributed with the same mean 
and standard deviation as the data of figure l B  . B) the standardized series. 
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functions from an ecological point of view. 
For longer periods it is wel l establ ished that 
the water discharges affect the chemical 
pol lution and the eutrophication levels in 
the reservoirs situated in  the middle stretch 
of the river (VIDAL, 1 977, 1 987, 1 989; 

ARMEN GOL et al.,  1 986).  

Long-term records of hydrological 
events show erratic behaviour at different 
t ime scales (FEDER, 1 98 8) .  These record s 
can be studied by means of the rescaled 
range analysis (HURST et al. , 1 965 ) and 
characterized by an exponent H, cal led the 
H urst exponent, which is a measure of the 
persistence or "memory" of one series 
(MANDELB ROT & VAN NESS, 1 968) .  

MAN DELB ROT ( 1 985)  has shown that 
this  record is a self-affine fractal curve with 
a dimension D = 2 - H .  For a practical 
perspective, the H exponent measures how 
far a temporal series of data departs from a 
random series. 

We have used a record of 35 years of 
monthly average discharges to analyse the 
persistence in the data sequence. The aim 
of this study is to determine the temporal 
trend fol lowed by the series and how this  
key factor carried weight on the river 
considered as an ecosystem. It is well 
known that wet and dry years appear in 
clusters, the "Joseph effect" 
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(MANDELB ROT & WALLIS ,  1 969) ; for 
this reason the existence of temporal 
"cycles" has been studied here by mean s of 
autocorrelation and spectral analysis.  

MATERIAL AND METHODS 

The record of hydrological data used in 
this study is composed by the monthly 
discharges at Roda de Ter station from 
1 954 to 1 988 (Fig. l ) . The data were 
obtained from the Dirección General de 
Obras Hidráulicas gauging yearbooks 
(D.G.O.H . ,  1 972, 1 973,  1 974 and 1 975 ;  

D.G.O.H. ,  1 976) for the period 1 965- 1 977, 

and were provided by the Servei Hidrologic 
de la General itat de Cata]unya for the 
periods 1 954- 1 965 and 1 978- 1 988.  

Roda de Ter is  situated in  the middle 
stretch of the Ter river, 88.6 Km from the 
source (river length 200,3 Km), where it 
has a drainage area of 1 ,476.8 Km2 

(48. 1 1  

% of the total) . At this  point the Ter is  a 
fourth order river. This  station was selected 
because it is situated aboye the reservoirs, 
thus excluding their regulatory effect, and 
at the same time the drainage area is large 
enough to avoid the effect of sudden 
discharge due to a local rainfall .  

The hydrological characteristics o f  the 
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FIG URE 3 .  Average annual cycle showing the mean monthly discharges with 95 % confidence interval: A) rol' 
Ter discharges (Fig. l B) and B )  for random series (Fig. 2 A). 
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Ter are typical of the Mediterranean region, 
but the proximity of the Pyrenees also has 
an influence. The annual cyc1e is 
characterized by two periods of maximum 
water flow; the first, in May (28.6 ± 6.0 
Hm3 month- 1 , p <0.05 for all the data of 
this paper), is the highest due to the effect 
of the spring rains plus the thaw of the 
snow accumulated in the Pyrenees, while 
the second, in November¡ is less important 
( 1 7 .6 ± 5 .7 Hm3 month- ) and exc1usively 
due to the autumn rains. 

Two minima are situated in between, the 
lower in August ( 1 1 .4 ± 2.6 Hm3 month- Id 
and the other in February ( 1 4.2 ± 3 .9 Hm 
month- 1 ) .  The average monthly water flow 
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for the period studied was 4 l .3 ± 3 .74 Hm3 

with ranges between 23 l .4 Hm3 and 0.70 
Hm3, while, if the data are grouped by 
years, a mean of 554.6 ± 35 .7 Hm3 is 
obtained with a maximum of 1 1 80 Hm3 in 
1 972 and a rninimum of 258 Hm3 in the 
year 1 957.  

The Ter hydrological record does not 
follow a Gaussian distribution (the kurtosis 
is 4.9 1 2  and the skewness is 2.00 1 ) . For 
this reason, it is not possible to use many of 
the parametrical statistical methods. In 
order to transform the original data into a 
new series with a near normality 
distribution, a power transformation has 
been sought by means of the Box & Cox 
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FIGURE 4 .  Mean annual water flow with 95 % confidence interval: A )  for Ter series (Fig. l B ) and B )  simulated 
sequence (Fig. 2A) . 
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method (BOX & COX, 1 964) .  The c10sest 
transformation to near normality of the data 
is y = x 0.22

. The new series (Fig. 1 )  has a 
mean of 2 . 1 1 2 and an standard deviation of 
0.449, while the kurtosis and the skewness 
measure 0.058 and 0.028, respectively. 
Finally, the series used in the analysis has 
been standardized (Fig. 1 ) . 

To illustrate how far the hydrological 
series departs from a random record, a new 
Gaussian series of the same length, mean 
and standard deviation has been 
constructed, but following a random walk 
process (Fig. 2). 

For comparison of the two series the 
seasonal and annual distribution of the data 
are shown in figures 3 and 4. 
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RESULTS 

Not all the rainfall runs immediately into 
the rivers; a certain amount of water 
remains stored in the watershed and 
contributes to the discharge in the driest 
months. In the same way, during dry 
periods, the waterflow is higher than 
expected due to rainfall .  As a first 
approach, there is a buffer effect on 
discharge due to the storage capacity of the 
drainage basin. The rescaled range analysis 
measures the importance of this effect by 
means of the Hurst exponent. 

If X l , X2, . . .  XT is a series of monthly 
discharges for a period of time T, it may be 
characterized by the mean ex), the standard 

- 1 5 
1 9 5 5  1 9 6 0  1 9 6 5  1 9 7 0  1 9 7 5  1 9 8 0  1 9 8 5  

FIGURE 5.  Accumulated departures from (zero) mean for: A) the Ter hydrological data, and B) the random 
series. 
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deviation (S) and the range (R), which is 
the difference between the maximum and 
the minimum departures of the water flux 
(Xi ) from the mean (x). Formal ly, . 

_ T 
x = L (Xi) / T ( 1 )  

i= l 

i= l 

T _ 
x(t) = L (Xi-X) 

i= l 
(3)  

generating this kind of curve for a given 
value of H, although there are many other 
ways of doing so (e.g. KIRKBY, 1 987). 
From the practical point of view, the case 
H = 0.5 is ordinary Brownian motion, and 
when 0.5 < H :::; 1 the curves show a 
persistence as high as the value of H. 
Finally, it  has been demonstrated 
(MANDELBROT, 1 985) that these curves 
are statistically self-affine scaled sets and 
their fractal dimensions are not uniquely 
defined. In other words, there is no global 
fractal dimension, but there are local ones 
and this is because the fractional Brownian 

T T 
R(T) = Max X (i) - Min X (i) 

i= l i= l 

motions are scaled in two variables; in this 
(4) case river discharge and time. For each case 

the fractal dimension is: 

The rescaled range, RlS, 
described by the empirical 
(HURST et al. ,  1 965) :  

R / S = (a  T)H 

where H is the Hurst exponent. 

I S  well 
relation 

(5) 

In figure 5 the accumulated departures 
from the mean, X (t), are plotted against 
time for the standardized discharges of the 
Ter river (Fig. 5a) and for the random 
series (Fig. 5 b). The figures obtained are 
two cases of fractional Brownian motion, 
and are generalized random functions, X (t), 
each one characterized by the exponent H, 
which ranges between O and 1 
(MANDELBROT & VAN NESS, 1 968; 
MANDELBROT, 1987). Fractional 
Brownian motions are very useful to 
describe time series followed by various 
natural phenomena such as river discharge, 
rainfall, tree rings, distribution of varves in 
lake sediments or the frequency of sun 
spots (FEDER, 1988).  This kind of motion 
can also be used to generate new surfaces 
like watersheds or continents, mountain 
profiles, the shape of lakes or the form, 
number and distribution of islands in 
archipelagos (MANDELBROT, 1 975) .  
VOS S ( 1 985) has introduced an algorithm 
called successive random addition for 

D = 2 - H (6) 

At this point it is interesting to describe 
how figures 5a and 5b were obtained. We 
began with two series of data and after their 
transformation into fractional Brownian 
motions they had the appearance of profiles 
or chains of mountains. In fact, these are 
generated irrespective of whether the data 
series are real or simulated. Can we 
consider that these profiles reflect 
something intrinsic or characteristic of the 
basin? 

Obviously they cannot be considered as 
an idealized reconstruction because we 
have time series and the basin has a spatial 
plan. Nevertheless, our tentative answer is 
affirmative. Can the path of the runoff to 
the rivers be imagined from figures 5a and 
5b? The answer is yes, we only have to 
imagine how the water runs through the 
artificial landscapes of figure 5. The 
random series (Fig. 5 b) shows a more 
abrupt relief, high peaks and narrow 
valleys, suggesting a quick response to 
rainfalls and low storage capacity. In other 
words, there is no persistence or memory. 
On the other hand, the real series (Fig . 5 a) 
has a more even profile, with large plateaus 
and wide valleys, where water can be 
retained or stored for more time, meaning 
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persistence or memory. 
In practice the H urst exponent is  

ca1culated fitting the power equation 
RJS=(aT)H to a set of values of RJS and T 
obtained from different time l ags. In figure 
6 the results for the Ter hydrological data, 
H = 0.68, and random series, H = 0.44, are 
shown.  As was expected, the random series 
has a value of H near 0.5 which 
corresponds to ordinary random motion. On 
the other hand, the Ter data show an 
intermediate value of H which is very 
similar to the value found by HURST 
( 1 965), H = 0.72 using 94 series of 
di scharges ranging between 10 and 1 00 
years of data. For comparison, the Loire, 
using the mean monthly flow between 1 863 
and 1 966, has H = 0.69, the Rhine at Basle 
for the period 1 808- 1 966 has H = 0 .5 ,  
whi le for the Nile the value of 0.9 i s  the 
highest measured to date ( MANDELB ROT 
& W ALLIS ,  1 969) .  

It is  possible to achieve a complemen
tary measure of the H urst exponents for the 
hydrological and random series by means 
of the relationship D = 2 - H, in which D i s  
the local fractal dimension of  each record 
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FIGURE 7. Number of "boxes" N (b) as a function of 
the t ime scale obtained for the accumulative 
normalized departures of the Ter series (Fig, 5A), and 
of the simulated seguence (Fig. 5B) , In both cases a 
min imum "box" of T = 1 month and a = 0.00 1 Hm3 

have been used and i ts size was i ncreased by 1 3  
different multiplicative values of b. The curves are 
fitted to the eguation N (b) = b-D . In the Ter series 
( A) the box dimension is 1 . 38 with a correlation 
coefficient of 0.997 . In  contrast, in  the random series 
(B) these values are 1 ,52 and 0.998 respectively. 

of accumulated departures, x(t) (Fig. 5) ,  
considered as  a Brownian function. As 
these functions are self-affine record s 
scaled in two variables, x(t) and t, only 
local fractal dimensions depending on time 
lags can be ca1culated. The box counting 
method to determine the fractal dimension 
considers that if we cover the x (t) record s 
with a grid of boxes of width bt in time, 
and of length ba in ordi nates, the box 
dimension (D)  is defined by the equation, 

N (b; a' , t) = b-D (7) 

where N (b;  a' , t) is the number of boxes 
we need for covering the record, a and t are 
the minimum values of the parameters x (t) 
and t respectively, whi le b is a multipli
cative factor which determines the 
increasing size of the boxes .  In practice, 
the box dimension (D) is obtained by fi tting 
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the equation (7) to a series of values of 
N(b) and b by linear regression . 

Figures 7 a and 7b show the results we 
obtained using the box-counting method 
from data in figure 5. Because time is an 
integer, the minimum box width selected 
was t = 1 month, while a value of 0.00 1 
Hm3 was chosen for height. The obtained 
results for these values of a and t are 
indicated in figures 7 a and 7 b. The fractal 
dimension for the Ter hydrological record 
is 1 .38  and for the random series 1 .52. Both 
results comply with the expected fractal 
values according to equation (6) showing 
slight differences due to the statistical 
approach. 

Since both H and D change when 
another scale of boxes is taken, the 
evolution of the box dimension for other 
sizes of boxes is considered. The value of 
D remains almost constant when the height 
of the box is between 0.0 1 and 0.000 1 
Hm3. However, D grows very quickly 
when the time scale is changed and values 
higher than two months are considered as 
the minimum width of the boxes. In figure 
8 the values of D are always higher for 
random series than for the Ter discharge 
series, but both curves grow asymptotically 
towards a theoretical maximum of D = 2 
(MANDELBROT, 1 987). In conclusion, 
there is a loss of the sensitivity of method 
when the selected time lag is longer than 
the minimum time intervals of the data. 

High values of persistence can be 
considered as a measure of the strength of 
the periodical cycles throughout time - the 
"Joseph effect"- but they do not give 
information about the frequency of such 
cycles. To determine these frequencies, we 
have ca1culated the autocorrelation function 
(ACF) and the periodogram of the original 
series of hydrological data. The results of 
the ACF are shown in figure 9. Because of 
the noise of the series, the ACF (Fig. 9 a) 
does not show any characteristic periodo To 
avoid this effect, the series was filtered by 
moving average (MA) process using three 
different spans: 3 months (MA3), 6 months 

(MA6) and 1 year (MA 1 2). In each case, a 
certain amount of information is lost but 
the most important cycles persist (Fig. 9 
b-d). The results show the existence of high 
correlations for periods of 1 ,  2 and 3 years, 
then there is a gap until around 5.5, 8.6, 
1 0. 1  and 1 1 ,7 years. These longer term 
fluctuations can be considered as an 
expression of the cycles of cirea 7 and 1 1  
years that are characteristic in many 
climatic events in all the Mediterranean 
region (MARGALEF, 1 977). B ecause of 
the high correlations obtained for short time 
periods, these cycles do not appear in the 
ACF. For this reason the periodogram and 
the spectral density of the Ter discharges, 
logarithmically transformed, have been 
ca1culated by Fourier analysis. In the 
spectral density a Tukey window 
(DENMAN, 1 975) with a span of 1 2  was 
used. The results (Fig. 1 0) show little 
difference from the values obtained by 
ACF for long-term cycles, that is 5 .8 ,  8.7 
and 1 1 .7 years. Nevertheless, this method 
gives a more precise measure of the 
importance of seasonal cycles. The cycles 
of 3 and 6 months are the most persistent, 
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FIGURE 8. Evolution of the box-dímension as a 
function of the time sc ale of the "boxes" : A) for the 
Ter data (fi lled circles) and B) for the random 
sequence (hollow circles). In both cases a mínimum 
value of 0.00 1 for x (t) have been taken. The data are 
fitted to a logaríthmic equation to show their trend .. 
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but there are also other short cycles of 
around these periods which can be 
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produced by small differences In the 
seasonality of each year. 
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FIGURE 9 .  Autocorrelation functions o f  the River Ter monthly water flow (A) and the same series but filtered 
by a moving average process with a 3 month span MA (3), 6 month span MA (6) and a 1 year span MA ( 1 2) .  
The periods which represent the most conspicuous peaks are indicated. 
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DISCUSSION 

To date, the morphology of the 
catchment has been considered the main 
cause of the persistence in hydrological 
fluctuations. This is the simplest version of 
the storage model: the water runs off more 
slowly in the floodplains and even reliefs 
than in mountainous areas with high slopes. 
In a more realistic model the discharges are 
the sum of a series of independent 
processes in decreasing order of 
importance. For instance, the first factor 
may be the existence of natural stores of 
geological origin (karsts) ;  the second, 
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morphology (the slopes);  the third, climatic 
factors (snow accumulation); the fourth, 
microc1imatic factors (soil moisture), and so 
on, until all possible factor s have been 
taken into account. The fractal nature of the 
basin may also contribute to the fractal 
behavior of the river discharge (FEDER, 
1 988).  The result is that the discharge of a 
river depends not only on recent 
precipitation but also on earlier rainfalls 
and, at a theoretical limit, it will be 
independent of recent rainfall. 

In lakes, the intensity of the fluctuations 
produced by c1imatic oscillations is 
regulated by their size (GOLDMAN et al., 
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FIGURE 1 0. Periodogram (A) and spectral density (B) plots of the results obtained by a Fourier analysis from 
the original Ter data, logarithmically transformed. The periods which correspond to the Iargest cycles are 
indicated. 
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1 988 ;  POWELL, 1 989).  In a similar way, 
the size of the catchment is  an i mportant 
factor determining the persistence of the 
hydrological series due to the possibil ity of 
integrating events taking place in different 
subbasins.  

It is interesting to consider the effect of 
various human activ ities on the basin to 
determine what effects may be expected on 
persi stence. The channeling of rivers leads 
to destruction of fIoodplains;  the pumping 
of groundwater destroys various natural 
stores, while the construction of reservoirs 
i ncrease them. In a similar way, the areas 
without vegetation and with eroded soi l s  do 
not have water retention capacity and the 
persistence is c lose to values of 0.5.  

As for the communities, hydrological 
events are a key factor in determining their 
persistence in the river. According to 
MARGALEF ( 1 980), the organisms make 
their own Fourier analysis to foresee the 
environmental fluctuations . In fact, first 
they make a factorial analysis to identify 
the key factor and the correl ated ones . 
Accordingly, communities in a river are an 
example of physical - biological coupling. 
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