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ABSTRACT 
Physical, chemical, or biological exchanges that occur between the groundwater system and surface waters 

pass through the interstitial sediments underlying the river channel. This paper assesses the role these interstitial 
sediments can have in lotic ecosystem functioning. In addition to regulating energy and material exchange in 
lateral and upstream-downstream linkages, hyporheic sediments support an important biocenosis and can be an 
important site for evolution and colonization. The hyporheic zone is a transitional zone of boundary control 
between adjacent ecological systems and may be considered as an ecotone. 
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INTRODUCTION 

Interstitial alluvial sediments of lotic 
systems and sediments associated with 
riverine aquifers harbor numerous fauna 
(KARAMAN, 1 935 ;  HERTZOG, 1 936; 
CHAPPUIS, 1 946; MOTAS, 1 958 ;  
HUSMANN, 1 966) . Previous studies have 
been descriptive and have emphasized the 
organisms' vertical and horizontal 
distribution. While the habitat has been 
considered as a biocenosis, liule attention 
has been given to the role the biocenosis 
has in fluvial system dynamics. 

This artiele considers the hyporheic 
habitat as an ecotone and emphasizes the 
importance of hyporheic sediments on 
mediating interactions between running 
waters and contiguous groundwaters. 
Similarly, W ARD ( 1989) conceptualized 
the vertical dimension in lotic systems as 

exchanges of matter and energy between 
the channel and contiguous groundwater. 
S ince interstitial alluvial sediments may 
extend laterally from the river channel for 
large distances (ST ANFORD & W ARD 
1 988), they may have a large influence on 
neighboring regions and impact lotic 
function. 

THE HYPORHEIC ZONE AS A 
SUPPORT FOR AN IMPORTANT 
BIOCENOSIS 

Since the 1 950' s, European and North 
American researchers have reported an 
important biocenosis, called hyporheos, in 
the gravel beds of rivers and lake shores 
(ORGHIDAN, 1 955 ;  WILLIAMS & 
HYNES, 1 974). SCHWOERBEL ( 196 1 )  
defines the hyporheic zone as a practical 
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term for a superficial groundwater habitat 
underIying a running water bed. 
Subsequent work has indicated a true 
hyporheal fauna confined below the 
water-substrate interface (HYNES, 1 983) .  
Besides an important b iomass of  bacteria 
and fungi, common fauna are protozoa, 
invertebrate worms, rotifera, crustacea and 
insect larvae, which may be distributed as 
deep as 70 cm vertical ly within the 
substrata (ANGELIER, 1 953)  and up to 60 
cm laterally on the shore ( HYNES, 1 970). 

There is a numerous and widespread 
fauna in the hyporheic zone. For example, 
O' DOHERTY ( 1 988) and PERLMUTTER 
( 1 988) describe a cornmunity rich i n  
species and with densities o f  u p  t o  40,000 
ind m-2 in the low order streams of the 
Southem Appalachian Mountains, U.S .A.  
A remarkable example is  given by 
STANFORD & GAUFIN ( 1 974). In their  

N 
t 

SABATER & V ILA 

study the stonefIy Paraperla frontalis i s  
found only in  subsurface samples and 
leaves the interstitial medium for 
emergence. A large variety of taxa 
(Sabater, unpubli shed data) were obtained 
at eighteen s ites along the river Ter (Spain)  
from a depth of 20-50 cm with a Bou 
Rouch pump (BOU, 1 974). Proportions of 
each taxon at each site are shown in figure 
1 .  

In rivers with extensive hyporheos, 
standing crop biomass could easily exceed 
benthic epigean biomass.  For example, 
STANFORD & GAUFIN ( 1 974) found 
that the hyporheic zone extends late rally up 
to two km and to a depth of 1 0 m from the 
river. As expected when sampling a new 
habitat, new species not found in surface 
water are encountered in the hyporheic 
layers (DUMONT, 1 983 ;  SABATER 
1 987a, 1 987b; SABATER & DE 
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FIGURE l .  Different proportions of each taxon of meíofauna found along the Ter river ( location in inset). Chir, 
Chironomidae larvae; PI, Plecoptera larvae; Ep, Ephemeroptera larvae; Ro, Rotífera; Ne, Nematoda; 01, 
Oligochaeta; Ta, Tardígrada; Cy, Cyclopoida; Hp, Harpacticoida; Chy, Chydoridae; Os, Ostracoda; Is,  Isopoda; 
Am, Amphipoda; Sy, Syncarida; Hy, Hydracarina. 
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MANUEL, 1 989). 
A mixed community of stygobiont and 

epigean river species colonize the 
hyporheic zone temporarily  or permanentIy 
(CHAPPUIS, 1 950; WILLIAMS & 
HYNES, 1 974; DANIELOPOL, 1 976, 
1 984, 1 989; DOLE, 1 983 ;  PENNAK & 
WARD, 1 986). Hypogean (subterranean) 
taxa, cal led stygobionts, are abundant in the 
hyporheic zone. These organisms have 
developed specific morphological 
specializations and requirements (see 
MARGALEF, 1 976; HOLSINGER, 1 988) .  
An important reference on stygofauna is  
BOTOSANEANU ( 1 986) . 

Surface animal s may enter the interstitial 
medium to find food or refuge from 
physical (SLACK,  1 955)  or biological 
adversities. ST ANFORD & W ARD ( 1 988) 
observed overlap between epigean and 
stygobiont taxa in several wells  located in 
the hyporheic zone . CREUZE des 
CHATELLIERS & MARMONNIER 
( 1 990) found that physical perturbations 
caused high numbers of Cladocera and 
Ostracoda to enter interstitial layers. VILA 
( 1 989) considered that the large number of 
Cladocera species found in the surface 
sediments of several Indiana streams could, 
in  part, be explained by retreat to deeper 
sediments after an increase in discharge. 

THE ROLE OF THE HYPORHEIC 

HABITAT IN PROVIDING A 

PATHWAY FOR ACTIVE 

COLONIZATION 

Surface flow and groundwater have a 
dynamic and seasonally variable influence 
on the hyporheic habitat due to hydrologic 
disturbances such as spates and droughts, 
that alter the physical structure of hyporheic 
sediments. A disturbance can affect energy 
flows into and out of the sediments. For 
example, high discharge could restructure 
sediments and either deplete or recharge 
sediments with detritus.  ConsequentIy, 
community structure and faunal distribution 
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i n  the hyporheic zone are dynamic and vary 
between sites and seasonal ly within a site 
depending upon the disturbance regime 
( DOLE, 1 983, 1 985 ; WILLIAMS, 1 984) .  
Sampling regimes must be structured 
accordingly and such dynamics complicate 
extrapolations of the results of studies that 
only consider a s ingle point in time or 
space. 

B iota may navigate through the 
interstitial waters by fol lowing several 
factors or combination of factors; thermal 
or ion concentration gradients 
(ST ANFORD & W ARD, 1 988) ;  food 
quality or quantity (e.g. detritus);  or by 
following a preferred prey species. 
Organisms can also transform their 
environment, e.g. pelletization of sediment 
that affects water circulation 
(DANIELOPOL, 1 984) . 

The hyporheic zone can be a mixing 
ground important in evolution, large scale 
m igratory patterns and survival in a habitat 
without large predators . RUFFO ( 1 96 1 )  
considered that the interaction of 
groundwaters and water in the hyporheic 
zone could allow for the migration of 
organisms between different aquatic 
systems on an evolutionary time scale (Fig. 
2). So, although not presently connected, 
modern faunal assemblages may have been 
shaped from interactions permitted by this 
" interstitial highway" (WARD, 1 989) . 
ROUCH & DANIELOPOL ( 1 987) 
suggested that sorne surface species 
inhabiting interstitial waters are already 
preadapted morphologicall y and 
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FIG URE 2. Scheme showing pathways on an 
evolutionary time scale for the migration of organisms 
between groundwaters, hyporheic zone, and surface 
waters. 
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physiologically to colonize groundwater 
habitats. For example, SKET ( 1 985) 
pointed out that several crustacean species 
are able to tolerate low oxygen conditions. 
DANIELOPOL ( 1 989) mentioned other 
examples. 

The study of phylogenetically related 
species may give an insight into the origin 
and evolution of the stygobionts as well as 
the degree of adaptation to the subsurface 
environment. MARGALEF ( 1 983)  
suggested that many hyporheal species 
found refuge from cold weather in 
meridional basins during the Pleistocene 
glaciations. These basins were later centers 
of dispersion and recolonization. 

IMPORTANCE OF THE HYPORHEIC 

ZONE IN AFFECTING PROCESSES 

OCCURRING IN THE RIVER 

CHANNEL 

The hyporheic zone can have a dynamic 
flow regime. At high discharge, water 
moves from the river channel into the 
hyporheic zone, whereas at low discharge 
groundwater is discharged from the 
hyporheic zone into the river. Groundwater 
outflow contributes to the basal flow in 
most river channels (HYNES, 1 983). There 
is evidence that the thickness of the 
hyporheic zone is related to the amount and 
extent of discharge and recharge areas in 
the river channel (GODBOUT & HYNES, 
1 982). Larger areas of discharge and 
recharge occur in coarse sediments than in 
sandy sediments (MESTROV & 
LATTINGER-PENKO, 1 98 1 ) . 

Changes in the geomorphology along the 
longitudinal river profile result in a pattern 
of alternate areas of upwelling and 
recharge. Further understanding of species 
distribution and processes such as nutrient 
dynamics will require more detailed 
knowledge of matter flux and 
hydrodynamics at each hydrologically 
distinct stream section . For example, 
preliminary mass transport ca1culations 
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indicate that nutrient discharge from the 
hyporheic zone may be crucial for the 
enhancement of phytobenthos production 
(STANFORD & WARD, 1988). The 
nutrient flux in upwel ling zones may 
potentially result in biological "hot spots" 
(increased production, high species 
number), paralleling those reported in the 
upwelling are as of marine systems. In 
streams, however, site specific variables 
such as strong lateral or upstream inputs 
may prove to be overriding factors. 

The hyporheic zone may also be a 
nutrient sink. HILL ( 1 98 1 )  reported a fifty 
percent reduction in nitrate attributed to 
bacterial denitrification in deep sediments. 
Hyporheic metabolism may contribute 
significantiy to total metabolism and could 
impact surface recharge nutrient dynamics. 
However, few studies have considered its 
importance (GRIMM & FISHER, 1 984).  

Conversely, nutrient uptake in surface 
waters may impact recharge waters. For 
example, GRIMM et al. ( 1 98 1 )  attributed 
nitrate uptake in desert stream reaches to 
algal acti vity. There has been little work 
on the role of potamoplankton on nutrient 
or carbon dynamics, especially in the lower 
reaches of large rivers. Transfer of 
floodplain bacterial inputs into ciliate 
biomass (CARLOUGH & MEYER, 1989) 
would increase carbon spiraling distance as 
animals drift downstream. As in lakes, there 
may also be tight coupling between the 
"leaking" of nutrients from zooplankton and 
phytoplankton excretion and uptake as the 
"slugs" move downstream. Recent 
channelization and reduced floodplain 
interaction due to human activities in lower 
reaches may have reduced the role of the 
hyporheic zone in mediating interchange 
between surface and groundwater and 
increased the importance of water column 
processes. 

WILLIAMS & HYNES ( 1 974) 
considered the hyporheic zone as a sink for 
fine particulate organic matter (FPOM; e.g.  
< 50 �m) from the channel. However, 
FPOM decomposition supports the ground 



THE HYPORHEIC ZON E  AS AN ECOTONE 

water food chain and could constitute a 
nutrient subsidy to primary production in 
areas of the river channel where hyporheic 
waters are discharged (ST ANFORD & 
WARD, 1 988) .  STANFORD & WARD 
( 1 988) found that the annual nitrogen load 
to channel water in the Flathead River is 
increased 75% at baseflow due to aquifer 
discharge. RUTHERFORD & HYNES 
( 1 987) suggested that dissolved organic 
carbon (DOC) fluctuations at baseflow can 
be explained by the stream beds capacity to 
remove surface water DOC. LUSH & 
HYNES ( 1 978) and LOCK et al. ( 1 984) 
observed rapid DOC uptake by substrata 
suggesting an active biological uptake in 
the hyporheic zone. 

HUSMANN ( 1 978) has stressed that 
well oxygenated hyporheic areas are 
biologically active zones that contribute to 
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the self purification of organically polluted 
waters; similar processes occur in waste 
treatment plants. Such considerations 
cannot be ignored in studies related to the 
spiraling concept (NEWBOLD et al. ,  
1 982). However, CROCKER & MEYER 
( 1 987) have stressed the important role of 
hyporheic sediments in generating DOC 
from in situ POM decomposition. 

In general, nutrient concentrations are 
significantly higher in interstitial waters 
than in surface waters (HYNES, 1 983 ; 
V ALET et al., 1990). Phosphate and 
nitrogen concentrations in the River Ter are 
higher in the hyporheic than in surface 
waters (Fig. 3) .  Given the importance of 
nutrients to productivity, a large hyporheic 
nutrient pool could result in an important 
contribution to the system metabolismo 
This suggests that physical and biological 

FIGURE 3 .  Comparison of phosphate, nitrate and arnmonium concentrations between hyporheic (Hy) and 
surface (Su) waters along the Ter river. 
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processes occurring with in  the hyporheic 
zone should be i nc1uded in a 
conceptualization of stream ecosystem 
function. Even preliminary research 
comparing nutrient levels in interstitial 
waters with levels entering the river 
channel would increase our understanding 
of nutrient dynarnics in streams.  

The great variety of organisms 
inhabiting the hyporheic zone util ize food 
carried by both active ( i .e. ,  mediated by 
organisms) and passive transport in  waters 
moving vertically and laterally from the 
stream channel . The vertical distribution of 
these ani mals is deterrnined by external 
energy, the velocity of flow, and the 
diffusion of gases or matter through the 
alluvial sediments along the river 
(MARGALEF, 1 983) .  Distinct vertical and 
horizontal faunal distribution patterns may 
even be strongly correlated with 
environmental gradients (FENCHEL, 1 978 ;  
WILLIAMS, 1 989) . Even though standing 
crop biomass in the hyporheic zone may or 
may not exceed benthic biomass in  surface 
sediments, the impact of the interstitial 
organisms on ecosystem processes could be 
substantial .  For example, meiofauna were 
estimated to account for approximately one 
half the carbon assimilation in Mirror Lake 
(STRA YER & LIKENS, 1 986). 

THE HYPORHEIC ZONE WITHIN A 

BOUNDARY PERSPECTIVE 

The hyporheic zone has the fol lowing 
features (DANIELOPOL, 1 982;  HYNES,  
1 983 ; B OTOSANEANU, 1 986) : 

Darkness . It is functionally  a s ink for 
organic matter. B y  affecting water turnover 
rate the hyporheos can impact energy and 
matter transport through the hyporheic 
zone. It i s  an open functional system since 
it mediates physical, chemical and 
biological exchange between the ground 
water system and the surrounding surface 
environment; it is trophically impoverished 
and energy is  mainly,  or exc1usively, 
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allocthonous ;  physical variations in factors 
such as temperature and water flow are 
dampened and lag behind those occurring 
in  neighboring surface habitats ;  there are 
gradients or discontinuous patches in 
physical parameters such as granulometry, 
conductivity or water sal inity. 

The widespread distribution and mobil ity 
of the hyporheic fauna coupled with the 
spatial and temporal independence of major 
external inputs of physical and chemical 
parameters from the sediments suggests that 
a precise definition and demarcation of the 
borders of the hyporheic zone is  difficult, if 
not i mpossible (WILLIAMS, 1 984; 
STANFORD & WARD, 1 988;  
DANIELOPOL, 1 989; TRISKA el  al . ,  
1 989) . I t  i t  therefore difficult to define 
ecological l y  a distinct hyporheic zone. 

We propose that the hyporheic zone be 
viewed in a functional process framework 
as a significant component of the riverine 
landscape. U sing ideas presented in 
NAIMAN el al . ( 1 988), we believe that the 
hyporheic zone can be envisioned as a zone 
of transition between adj acent ecological 
systems. The hyporheic zone provides an 
example of boundary control on the 
function of the lotic ecosystem, s ince i t  can 
modify the direction, character and 
magnitude of materials and information 
exchanged between surface and 
subterranean zones along the river. 
Knowledge of the degree and strength of 
surface and groundwater i nteraction with 
the hyporheic zone would help us to 
understand processes such as nutrient 
loading and the regulation of matter and 
exchange i n  lateral and upstream­
downstream l inkage's. 

THE HYPORHEIC ZONE CON-

SIDERED AS AN ECOTONE 

As a transitional zone, the hyporheic 
zone possesses specific physical , chemical 
and biological properties defined by space 
and time scales that can regulate the flow 
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of energy and matter between different 
resource patches. The functional properties 
are as follows : 1 )  It can support high faunal 
den sities and pro vide a critical habitat for 
sorne species . 2) It may be a refuge in 
which riverine zoobenthos escape 
environmental disturbances (e.g. ,  spates, 
drought). 3) It contains a mixed assemblage 
of aquatic epigean fauna and other fauna 
from surrounding systems. 4) It contains a 
genetic pool for evolution. 5) It extends 
spatially allowing for species migration. 6) 
It is an important area for energy and 
material flux ·· (e .g. ,  nutrient cycling and 
decomposition) .  7) It contains high 
concentrations of biologically important 
resources (e.g. ,  nutrients, carbon) . 8) It 
influences and is impacted by the 
hydrologic regime in the surrounding 
surface and groundwater areas. 9) It tends 
to dampen the amplitude of physical 
parameters. 1 0) It possesses the ability to 
resist change or a resilience to disturbance. 

Finally, groundwater studies have two 
main aims of fundamental biological 
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