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ABSTRACT

Ecological flow networks are described by means of the Theory of Graphs and characterised by two
quantities of the Mathematical Theory of Information, namely the Internal Information Transfer (a measure of
the Specialization) and the Joint Entropy (a measure of Connectivity). Both indexes fall into a narrow interval of

values. This tendency of
principles.

real stable ecosystems is interpreted in the light of

two variational adaptative

KEY WORDS: Flow-network, information, ecosystem modelling.

INTRODUCTION

The use of Shannon’s entropy,

S (1, p=-2 pilogapi (1)
i=1

as a measure of ecological diversity was
first introduced in the 50s by MacArthur
and Margalef and extensively used later in
the study of real ecosystems. Applications
of this concept are today numerous and
varied. Shannon’s entropy provides, in
physical sciences (WEHRL, 1978), a good
approach to the equilibrium states in
isolated systems. The final statistical
structure in these situations can be obtained
by means of the maximization of (1) under
some physical constraints. For example, if

pi is the probablility of finding a given
particle of a dilute gas (confined in a box)
in the interval of energy (Ej, Ej+AE;j), we
can use the constraints of normalization of

{pi} -set,

£ pi=1 @
i=1
and the energy-conservation condition,

2 piEi=E 3)
i=]
(here E is the mean amount of energy) to
find the equilibrium probability distribution,
{pieq} . We then have,

S[S+a(l-2p)+PBE-ZpiEN=0 (4)
i=1 =1

and performing the variation of (4), we
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obtain the best known Gibbs canonical
distribution

-EvkT

Pi=-¢ (5)

N | —

where Z is the sum 3 e BT

i=1

called the

partition function.

Entropy-like functions (1) can be defined
in several systems where {pi} is known.
Then, with appropriate constraints, it is
possible to derive the equilibrium
distributions in, for example, ecological
systems when an extensive quantity is
defined. The maximum entropy
(MAXENT) principle, due to Jaynes,
allows one to make these unbiased
estimates of which otherwise only some
averages (corresponding to macroscopic
measures) are known. The MAXENT
principle provides very elegant access to
basic relations and  concepts  of
thermodynamics and other fields (JAYNES,
1985) and has been applied in recent years
in the study of biomass distribution and
ecological adaptation. The use of
correlation i.e. Fij = <qigj> as constraints
allows us to extend this approach to
systems far from equilibrium (HAKEN,
1985, 1987) as for example in laser
physics, in a quite straightforward form.

The MAXENT algorithm has been used
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(LURIE & WAGENSBERG, 1983) in the
study of the statistical structure of biomass
diversity in fish populations.  Defining
probabilities as pi = P [mj, mj + Am], and
using (2) and constant value of mean
biomass,
S pmi=M (6)
i=l
as constraints, it can be shown, by using
this variational procedure, that
b mit—
pi=— € 'm
74
where now Z is the equivalent partition
function defined as

7 ;"% e—mi/a
1=

and this predicted probability distribution
was proved to conform closely to fishery
data. Other applications of MAXENT
theory also showed the possibility of
recovering other real macroscopic results
from this approach (WAGENSBERG &
VALLS, 1988). We will now consider the
problem of structure and organization of
flow networks in ecosystems, using some
concepts of information theory and physics.

(7

FLOW-NETWORKS IN ECOLOGY

An ecosystem can be shown as a set of
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components {Ci} i = 1,2, ..., n between
which an  extensive quantity (energy,
carbon, etc.) is exchanged. This picture can
be represented by an oriented graph as is
shown, for example, in figure 1. Here the
arrows give the direction and magnitude of
the flows. In our formal description, we
will consider the boundaries (i.e. the origin
and sink of resources) as another
compartment and the system of figure |
will now be represented by a graph as in
figure 2.  Physically, this consideration
enables us to talk of a closed system. Two
sets of probabilities of emission or
reception of energy at nodes i =1, 2, .., n
and a set of conditional probabilities, {pij}
that gives the amount of energy transfer
between nodes i and j (i,j = 1, 2, ..., n) are
necessary in our description.

Some studies of matter and energy flow
in an ecosystem (ULANOWICZ, 1986)
provide some regularities for this structure.
But is it possible to define macroscopic
quantities useful to describe a network-
flow in an ecosystem? It has been found
(WAGENSBERG et al., 1989) that two

central magnitudes of Mathematical Theory
of Information such as the joint entropy
H(X,Y):

FIGURE 2. Graph representation of Cone Spring
ecosystem including surroundings. 1, plants. 2,
detritus. 3, bacteria. 4, detritivores. 5, carnivores.
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H(X,Y)= -2 pj logz pj -XX p; pij logz pij (8)

and the information transfer, I (X,Y),

I(X,Y)=-Z pj logz pj -Z X pj pij log2 pij (9)
i ij

provide us a general
approach to this problem.
Calculations of H(X,Y) and I(X,Y) from
some real ecosystems showed important
regularities (Table I). Real data provides us
with the set of probabilities pij of the
interaction matrix, say X. We can now
generate all the possible states compatible
with X, as is shown in figure 3. The steady
state appears on this "space of states"
indicated by a cross. Two essential facts
should be emphasized after inspection of
Table I: (1) Hgtat always falls in a quite a
narrow interval around the 3 bits and (2)
Istat tends to attain the maximum value that
is compatible with the given Hgiar except in
the case of Wingra Lake. The case of this
lake is quite important in our interpretation
of these data. We believe that I (X,Y)
values are some kind of measure of the
global fitness of the ecosystem, as the result
of a mechanism of selection. Wingra Lake
is an eutrophic lake, and in this case a

and interesting
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FIGURE 3. Domain of available states derived from
the Cone-Spring matrix. The cross is the position of
real stationary state.
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TABLE I. H and I values at the stationary state (when
the inflow equals the outflow at each node) for six
different well known ecosystems (RICHNEY er al.,
1978; ULANOWICZ, 1986).

ECOSYSTEM Nodes Hstat Hmax  Istat  Imax
Findlay Lake 4 308 328 1.16 1.25
Mirror Lake 5 317 3.57 1.25 1.38
Cone Spring 5 3.07 3.55 1.32 1.40
Wingra Lake 5 295 3.64 0.76 0.99
Arion Lake 5 3.01 3.63 0.97 1.13
Crystal River 7 293 408 1.25 1.35

strong hydrodynamic instability generates
continuous resuspension of sediments.
These data enable us to talk about two
"magic numbers" in ecological systems, in
this sense of significant tendences in
ecosystem organization. The first one, the
joint entropy H(X,Y) (say entropy of
connections) can be interpreted as the result
of thermodynamical obliged dissipations at
each node. If we look at the compartments
as thermodynamic machines, in the light of
the second law of the thermodynamics,
some part of the inflow energy will always
be lost in form of dissipation. The second
one, the values of I(X,Y), are in agreement
with our proposal of information transfer as

a relevant quantity suggestive of an
underlying variational principle.
MAXIMUM INFORMATION
TRANSFER

We will now try to apply the MAXENT

approach to our last results. Physical
constraints are limiting factors on the
entropy of connections H(X.,Y). If we

consider this fact as a constraint itself, we
can find the maximum value .of information
transfer under the next set of conditions:

a) normalization of probabilities:

Epi)=1}j=12..0 (10.1)
i=1
and

(10.2)

and:
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b) a fixed given value of H(X,Y), say Ho. If
we perform the variation:

O [-Z pi log2 pi + Z X pj pij log2 pij +
i i)
+0. (Ho + Z pj log2 pj + X X pj pij log2 pij+
i i

+IB - pip+y(L-Zppl (D)
J i J
we obtain the following equations:

(I +log2 pi) pj + pj (1 + log2 pij) (1 +
a)-— Bj=0 (12.1)

and

- (I +log2 pij) pij - H (x/j) + o (1 + log2
pj) + « Hx/j) - y=0 (12.2)

Equations (12) are difficult to solve, but
a solution of this system with theoretical
implications can be obtained by considering
that: (a) In real ecosystems at stationary
state, probabilities of inflows equal
probabilities of outflows at each node; (b)
H (X,Y) values suggest that essentially only
three levels are significative in the energy
transfer through the flow network, and (c)
If H (X,Y) = Ho, maximization of I (X,Y)
implies in fact maximization of H(X) +
H(Y) + Ho, i.e. of H(X) + H(Y). It can be
shown that, under the above-mentioned
conditions, max {H(X) + H(Y)} holds for
equal probabilities of inputs and outputs
(uniform distributions) and X normalized by
arrows and columns.

TABLE II. a) Flow matrix of the Cone Spring
ecosystem. b) Interaction Matrix.

a)
Producers Consumers Environment
0 0 11184 Producers

8881 2815.7 635 Consumers
2303 9516 0 Environment

b)

Producers Consumers Environment

0.0000 0.0000 0.9463 Producers
0.7941 0.2283 0.0537 Consumers
0.2059 0.7717 0.0000 Environment
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2815

FIGURE 4. A typical three-compartment ecological
graph corresponding to the Cone Spring ecosystem. 1,
environment. 2, producers. 3, consumers.

If we describe the Cone Spring case
using a three-level model, where only
surroundings, primary producers and the
others are considered (typically as in Fig.
4), approximately uniform distributions are
obtained and the interaction matrix appears
normalized by arrows and columns.

In Table II we can see the energy-flow
matrix, the corresponding interaction matrix
Y; the probabilities of inflows (outflows) at
each node in the stationary state are p(l) =
0.3165, p(2) = 0.3490 and p(3)= 0.3345.
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DISCUSSION

Ecological flow-networks seem to be

self-organized in a particular way,
characterized by a high information
Transfer value compatible with a

thermodynamically limited Joint Entropy.
This tendency is especially apparent when
we reduce our description of an ecosystem
to a graph with only three nodes: primary
producers, consumers and surroundings. In
the Cone Spring case, real data are close to
theoretically  predicted  values.  The
preliminary analysis of some other real
systems suggests that this might be a fairly
general tendency in the organization of
flow-networks in ecosystems. Our proposal
is that some kind of global efficiency is
related to I(X,Y) and has been maximized
in biological evolution. Interaction between
sub-levels at the third node may have been
selected to provide an adequate quantity of
energy cycling. A compromise between
persistence and global efficiency can
explain then the special features of the X
energy transfer matrix and the tendency
towards the maximization of Information
Transfer.
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