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ABSTRACT: Abi Muhammad Jabir b. Aflah, a 12th-century Andalusian mathematician and
astronomer, is recognized for his influential work al-Kitab fr I-Hay’a, a work today better
known as Islah al-Majistr. Jabir b. Aflah’s al-Kitab fi I-Hay’a is a reedition of Ptolemy’s
Almagest in which he also included a number of criticisms of Ptolemy’s work. The pre-
sent study focuses on Jabir b. Aflah’s criticisms of Ptolemy’s theory of solar eclipses,
highlighting three key objections: two on Ptolemy’s choice of the mid-heaven instead of
the mid-heaven of the ascendant to obtain the parallax in longitude and its effect on solar
eclipses; and an additional one on Ptolemy’s treatment of the lunar parallax in latitude.
While two of these criticisms appear unjustified, they offer insight into Jabir’s methodol-
ogy and his reliance on defective or abridged manuscripts. Jabir’s novel approach, par-
ticularly in his use of the new trigonometry, together with his disregard for certain celes-
tial motions, reveal both his mathematical strength and his limitations in practical
astronomy. His failure to account for the Sun’s additional motion in the computations of
solar eclipses further underscores his inexperience. Nevertheless, Jabir b. Aflah emerges
as a creative astronomer, whose work demonstrates a deep engagement with and unfre-
quent understanding of Ptolemy’s Almagest, albeit with notable oversights in the practical
aspects of astronomy.

KEYWORDS: Astronomy, Greek Astronomy, Medieval Astronomy, al-Andalus, Ptolemy,
Jabir b. Aflah, Almagest, Islah al-Majistt, Eclipse Theory, Solar Eclipses, Criticisms of
Ptolemy’s Almagest.

REsum: Abi Muhammad Gabir b. Aflah, matematic i astronom andalusi del segle xi1, és
autor de al-Kitab fi I-Hay’'a, una obra avui més coneguda com Islah al-Magisti. El al-Kitab
fi I-Hay a de Gabir b. Aflah és una reedicié abreujada de I’ Almagest de Ptolemeu, en la
qual Gabir també va incloure de critiques matematiques a 1’astronomia ptolemaica. El
present estudi se centra a les critiques que Gabir b. Aflah fa a la teoria dels eclipsis solars
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de Ptolemeu, destacant tres objeccions principals: dues sobre I’eleccié de Ptolemeu del
mig cel en lloc del mig cel de I’ascendent per obtenir la paral-laxi en longitud i el seu
efecte sobre els eclipsis solars; i un altre sobre el tractament de Ptolemeu de la paral-laxi
lunar en latitud. Tot i que dues d’aquestes critiques semblen injustificades, ofereixen una
visié de la metodologia de treball de Gabir b. Aflah, aixi com del fet que moltes de les
seves critiques de 1’astronomia ptolemaica estiguin motivades pel manuscrits defectuosos
amb els quals treballava. El nou enfocament de Gabir b. Aflah a ’astronomia de Ptole-
meu, especialment en el seu ts de la nova trigonometria, juntament amb el fet de no tenir
en compte certs moviments celestes, revelen tant la seva capacitat matematica com les
seves limitacions pel que fa a 1’astronomia practica. El fet que no tingués en compte el
moviment addicional del Sol en els calculs dels eclipsis solars subratlla la seva inexperi-
encia. No obstant aixo, Gabir b. Aflah emergeix com un astronom creatiu, el treball del
qual demostra una profunda familiaritat i poc habitual comprensié de 1’Almagest de Pto-
lemeu, tot i que amb oblits notables en els aspectes practics de 1’astronomia.

PARAULES CLAU: astronomia, astronomia grega, astronomia medieval, al-Andalus, Ptole-
meu, Jabir b. Aflah, Almagest, Islah al-Majistt, teoria d’eclipsis, eclipsis solars, critiques
al’Almagest de Ptolemeu.

1. INTRODUCTION

Abt Muhammad Jabir b. Aflah, commonly referred to in Latin as Geber, was a
mathematician and theoretical astronomer from al-Andalus, likely active in Se-
ville during the early 12th century (6th century aAH). He is best known for his
work al-Kitab fi I-Hay'a (The Book on Astronomy)," a reworking of Ptolemy’s
Almagest, which is currently widely known as Islah al-Majistt (Correction of the

I. For general introductions to Jabir b. Aflah, see Richard P. Lorch, «The Astronomy of Jabir
b. Aflah», Centaurus 19 (1975), pp- 85-107; José Bellver, «On Jabir b. Aflah’s Criticisms of Ptol-
emy’s Almagest», in Emilia Calvo et al. (2008), A Shared Legacy: Islamic Science East and West.
Homage to professor J.M. Millas Vallicrosa, Barcelona: Publicacions i edicions de la Universitat
de Barcelona, 2008, pp. 230-238; and José Bellver, «El lugar del Islah al-Mayistr de Yabir b. Aflah
en la llamada “rebelién andalusi contra la astronomia ptolemaica”», al-Qantara 30.1 (2009), pp.
83-136. See also José Bellver, «The Arabic Versions of Jabir b. Aflah’s al-Kitab fr I-Hay a», in Dag
N. Hasse et al. (eds.), Ptolemy’s Science of the Stars in the Middle Ages, Turnhout: Brepols, 2020,

pp. 181-199.
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Almagest).” Today, there are four extant Arabic manuscripts in Arabic characters
and two partial Arabic manuscripts in Hebrew characters.” Additionally, Jabir’s
al-Kitab fi I-Hay’a was translated into Latin, and twice into Hebrew.

In the al-Kitab fr I-Hay’a, Jabir revised and adapted Ptolemy’s Almagest for
his contemporaries, omitting practical elements such as calculations and tables,
while streamlining its trigonometric proofs by utilizing the Rule of Four Quanti-
ties. He also introduced several mathematical corrections of «mistakes» that, in
his view, Ptolemy committed, which he listed in his Introduction to the al/-Kitab
Ji l-Hay’a, the most notable being his criticism of Ptolemy’s cosmology. Contrary
to Ptolemy’s arrangement, Jabir argued that the spheres of Mercury and Venus
should be positioned above the sphere of the Sun, rather than below it. Addition-
ally, al-Kitab fi I-Hay’a’s Book I —an introduction to plane and spherical trigo-
nometry —proved to be highly influential in Medieval Europe. An additional
unique aspect of Jabir’s al-Kitab fi I-Hay’a, found in Book V, was the introduc-
tion of a new instrument, similar to the rorquetum, which Jabir claimed could
replace the four instruments described by Ptolemy in the Almagest.

The aim of this article is to study a number of criticisms that Jabir b. Aflah
levels at Ptolemy in his theory of solar eclipses.’

Jabir b. Aflah lists three «mistakes» that in his view Ptolemy made in his study
of solar eclipses: two on the election of the mid-heaven instead of the mid-heaven
of the ascendant to obtain the parallax in longitude and its effect on the solar
eclipse; and one more on the way in which the lunar parallax in latitude should be
considered in the apparent conjunction to determine the value of its argument in
apparent latitude.

2. For the reasons supporting that Jabir b. Aflah’s treatise was known in his own time as al-
Kitab fi I-Hay’a, see Bellver, «The Arabic Versions».

3. In this article, three Arabic manuscripts written in Arabic characters have been taken into ac-
count. These are: MS Escorial, Real Biblioteca del Monasterio de San Lorenzo, ar. 910 (henceforth
referred to as Ea); MS Escorial, Real Biblioteca del Monasterio de San Lorenzo, ar. 913 (henceforth
referred to as Eb); and MS Berlin, Staatsbibliothek Preuflischer Kulturbesitz, Landberg 132 (hence-
forth referred to as B).

4. See G.J. Toomer, Ptolemy’s Almagest, London: Duckworth, 1984, pp. 310-313 (henceforth
referred to as Toomer); O. Pedersen, A Survey of the Almagest, Odense: Odense University Press,
1974, pp- 232-234 (henceforth referred to as Pedersen); and O. Neugebauer, A History of Ancient
Mathematical Astronomy, 3 vols., Berlin: Springer-Verlag, 1975, pp. 134-139 (henceforth referred
to as HAMA).
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As with lunar eclipses, Jabir b. Aflah avoids to resort to the tables that Ptolemy
used to determine the magnitude and duration of the phases of the eclipse. The
main part of Ptolemy and Jabir b. Aflah’s discussions on the topic are devoted to
addressing the effect of parallax on the magnitude and duration of the phases of
the eclipse. Once the effect of the parallax is accounted for, Jabir b. Aflah follows
his method to obtain the magnitude and phases of lunar eclipses to compute solar
eclipses.’

Since neither Neugebauer nor Pedersen study the effect of the parallax in the
solar eclipse, it is thus important to study how Ptolemy tackles this effect before
addressing Jabir b. Aflah’s criticisms of Ptolemy on the topic. Thus, the present
article will focus on both Ptolemy and Jabir b. Aflah’s studies of solar eclipses.

2. PTOLEMY ON THE MAGNITUDE AND DURATION
OF THE PHASES OF SOLAR ECLIPSES

2.1. Terminology and notation

We define «apparent course of the Sun» and «apparent course of the Moon» as the
courses described by the Sun and the Moon during their motion as they appear to
a particular observer.

Regarding the notation, apparent values are noted with an apostrophe. Sub-
scripts «cv» and «ca» make reference to the conjunctio vera and the conjunctio
apparens, i.e., the true and apparent conjunctions. Thus, for instance, D, refers to
the true Moon in the apparent conjunction, and ®’, refers to the apparent Sun in
the true conjunction. p refers to parallax. Thus, for instance, p(®),, refers to the
solar parallax in the apparent conjunction. In turn, p; and pg refer to the compo-
nents in longitude and latitude of the parallax. Lastly, £, and %5, refer to the inter-
section —or node— of the apparent course of the Sun and Moon when the Moon
goes, in the first case, from the south of the apparent course of the Sun to the

5. For a study of Jabir b. Aflah’s treatment of lunar eclipses, see José Bellver, «Jabir b. Aflah
on Lunar Eclipses», Suhayl. Journal for the History of the Exact and Natural Sciences in Islamic
Civilization 8 (2008), pp. 47-92.
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north, and, in the second case, from the north of the apparent course to the south.
The following table summarizes the notation used in this article.

Notation
© True Sun
) True Moon
©’ Apparent Sun
Y Apparent Moon
a Ascending lunar node
(&4 Descending lunar node
I Angle of inclination of the lunar inclined orbit relative to the
ecliptic
cv Time of the conjunctio vera,i.e., the true conjunction
ca Time of the conjunctio apparens, i.e., the apparent conjunction
ca-cv Time interval between the apparent and true conjunctions

Subscript 1

Time of the true conjunction

Subscript 2

Time after the first correction in longitude equivalent to Ap;,
(cf. infra)

Time after the second correction in longitude equivalent to Ap,;

Subscript

ubseript 3 with i = 2 (cf. infra)
Subscript 4 Time after the third correction in longitude
Subscript i Eclipse initial time

Subscript m

Eclipse mid-time

Subscript f Eclipse end time
P Parallax
p’ Variation (derivate) of the parallax over time
Angle between the ecliptic and the altitude circle containing the
y parallax vector
p(D) Lunar parallax
p(O©) Solar parallax
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MD) Longitude of the true Moon
MDY Longitude of the apparent Moon
p True latitude

p’ Apparent latitude

Api, = pi(2), - pi(O),

Difference between lunar and solar parallaxes in longitude in the
true conjunction

Ap;;i = [p:(D) - pi(©)] -
1202y A (O) |

Difference between the lunar and solar epiparallaxes in longitude
between two successive times

i-th difference between the lunar and solar epiparallaxes in longi-

Ap,® tude according to Ptolemy. When there is no superscript, it im-
plicitly refers to Ptolemy’s method
Ap, 059 i-th difference between the lunar and solar epiparallaxes in longi-
P tude according to Jabir b. Aflah as from the Escorial manuscripts
A, 0B i-th difference between the lunar and solar epiparallaxes in longi-
P tude according to Jabir b. Aflah as from the Berlin manuscript
A Difference between the lunar and solar parallaxes in latitude in
e the apparent conjunction
Total epiparallax as the sum of the epiparallax resulting from the
e,=Ap,, +1 first correction in longitude (Ap,,) and the one obtained from

interpolation (/)

I= Ap)@ =m Apkz

Epiparallax in longitude from the interpolation of a previous
parallax

m= Ap}»z / Ap)\.l

Pendant to obtain the interpolated epiparallax

e,=e, (D) —e,(0)

Total epiparallax as the difference between the total epiparallaxes
of the Moon and Sun

wo Motion in longitude of the mean Sun
wd Motion in longitude of the mean Moon
ALY Difference in longitude of the true Moon between the apparent
ey and true conjunctions
Additional time interval in which the Moon traverses with its mo-
A tion in the true conjunction the longitude traversed by the Sun
* during the time the Moon has traversed the difference in apparent
longitude between the Sun and the Moon in the true conjunction
W Argument in latitude
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p Angle between the lunar inclined orbit and the parallax

B’ Angle between the apparent course of the Moon and the parallax

u Immersion

m Magnitude of the eclipse

ry Radius of the Moon

dy Diameter of the Moon

r'e Radius of the Sun

do Diameter of the Sun

rr Earth radius

dye Dis.tance l.)etv.veen the centers of the Moon and the Sun at the
eclipse mid-time

h Geocentric altitude

Ay Observed altitude

e Eccentricity

q Angle of the solar anomaly

R, Radius of the eccentricity

dry Distance of the Moon to the Earth’s center

2.2. Preliminary knowledge

In solar eclipses, since the obscuration of the solar disk depends on the interposi-
tion of the lunar disk between the Sun and the observer’s position, and the posi-
tion of the apparent Moon depends on the position of the observer, the magnitude
and duration of the phases of the solar eclipse are affected by the solar and lunar
parallax. To understand how the parallax evolves over time as a function of the
solar and lunar motions in longitude, we will study how the solar and lunar paral-
laxes change in relation to the motion of the celestial sphere.’

6. For the concept of parallax in Islamic astronomy, see E.S. Kennedy, «Parallax Theory in
Islamic Astronomy», Isis, Vol. 47, no. 1. (1956), pp. 33-53 (reprinted in Kennedy et al., Studies in
the Islamic Exact Sciences, Beirut: American University of Beirut, 1983, pp. 164-184).
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To do so, firstly, it should be pointed out that the zodiac houses in the ecliptic, as
seen by an observer on the Earth’s surface, are arranged from west to east. There-
fore, at any specific time, the more an observed position in the ecliptic falls to the
east, the greater its longitude is. In addition, the celestial sphere, together with the
ecliptic, rotates with its universal motion from east to west. The different planets
seen from the Earth’s surface move from east to west with a motion —in general —
slower than the rotation of the celestial sphere, so that their longitude —except
during their periods of retrogradation— increases over time. Nevertheless, the
Sun and the Moon do not experience periods of retrogradation. And lastly, since
the Sun is always on the ecliptic, its course is always parallel to the celestial equa-
tor, and since the ecliptic is inclined relative to the celestial equator, the azimuth of
the points of intersection of the ecliptic with the horizon changes continuously. The
«ascendant» is defined as the point of intersection of the ecliptic with the eastern
horizon, and the «descendant» as the point of intersection of the ecliptic with the
western horizon. Likewise, the «mid-heaven of the ascendant» is the point of
the ecliptic at 9o° from the ascendant. It is, thus, the point with higher altitude of the
ecliptic. The mid-heaven does not need to coincide with the meridian. The mid-
heaven of the ascendant divides the visible arc of the ecliptic above the horizon into
two quadrants. We will call «first quadrant» to the one delimited by the ascendant
and the mid-heaven of the ascendant, and «second quadrant» to the one delimited
by the mid-heaven of the ascendant and the descendant.

Figure 1 represents these relations as seen from the north of the ecliptic in
the direction of the mid-heaven of the ascendant. Likewise, it also represents the
universal motion of the celestial sphere and the zodiac houses. Figure 2, in turn,
represents these relations as seen from the south of the ecliptic in the direction of
the mid-heaven of the ascendant.

In addition, a node is an intersection of the lunar inclined orbit with the eclip-
tic. The ascending node is the intersection in which the Moon transits from nega-
tive to positive latitude, and the descending node is the one in which the Moon
transits from positive to negative latitude. To the south of the ecliptic, nodal tran-
sits are inverted since the latitude of the observer is negative (see Figure 3).

Next, the effect of parallaxes makes the observed altitude of a body to be
smaller than the true one. Since altitudes are involved, the easier way to represent
the effect of parallaxes would be using horizontal coordinates. Nevertheless, it is
important to know how solar and lunar parallaxes change over time. Since celes-
tial motions are traditionally represented in ecliptic coordinates, we will describe
parallaxes using ecliptic coordinates. Thus, since parallaxes involve a decrement
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A
+ .
Altitude Universal
motion
Mid-heaven
of the ascendant +
Latitude
Direction of the zodiac
+ Longitude -
Ascendant | Descendant
First quadrant I Second quadrant
- Azimuth +
Figure 1. Ecliptic in horizontal coordinates as seen from its north
A
+
Universal Altitude
motion
Mid-heaven
} of the ascendant
Latitude
+
Direction of the zodiac
- Longitude +
Descendant | Ascendant
Second quadrant ! First quadrant
+ Azimuth -

Figure 2. Ecliptic in horizontal coordinates as seen from its south.
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To the north  + a i
of the B
ecliptic

To the south - 1) v
of the B

ecliptic +

Figure 3. Ascending and descending nodes to the north and south of the ecliptic.

of the observed altitude and, additionally, a given observer can be placed at any
point on the surface of the Earth, the components in longitude and latitude of a
parallax can either be positive or negative; that is, the angle subtended by the al-
titude circle in which lays the vector of the parallax and the ecliptic can have any
value. This angle is henceforth referred to as y.’

If, in Figure 1 describing the ecliptic seen from its north, we take a point of the
first quadrant of the ecliptic and we trace a vertical through it indicating a decre-
ment in altitude to account for the effect of the parallax, this vertical would have
a positive component in longitude. In turn, if we take a point of the second quad-
rant and, again, we trace a vertical indicating a decrement in altitude, the vertical
would have a negative component in longitude. Consequently, the quadrant in
which the eclipse takes place affects the components in longitude, either positive
or negative, of the solar and lunar parallaxes. In addition, the position of the ob-
server to the north or to the south of the ecliptic affects the component in latitude
of the parallax. Thus, the angle y is affected by two factors: (i) the quadrant in
which the eclipse takes place; and (ii) the hemisphere of the observer relative to
the ecliptic. Figure 4 represents the ranges of angle v according to both factors.

To show these relations, we present a number of figures in which the true con-
junction takes place before the transit of the Moon through the descending node.
Figure 5 shows this case when it takes place in the first quadrant to the north of
the ecliptic, while Figure 6 shows this case when this takes place in the second
quadrant to the north of the ecliptic. The angle of inclination of the lunar inclined
orbit relative to the ecliptic is exaggerated.

In both cases, the parallax decreases with the altitude. The previous figures
show the apparent node of the lunar inclined orbit located on its intersection

7. See HAMA, pp. 115-116.
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with the ecliptic, for both quadrants, as if the celestial sphere would not experi-
ence any motion.

Second First
quadrant quadrant

To the south
of the ecliptic
+
B <
To the north \
of the ecliptic

Figure 4. Angular intervals of v according to the quadrant and the hemisphere
in relation to the ecliptic in which the eclipse takes place.

v

-

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic

Apparent
course
of the Sun

g ) True
, + Longitude - conjunction

Azimuth  +

Figure 5. True conjunction in the first quadrant
to the north of the ecliptic in horizontal coordinates.

To further our understanding, the next step is to show these relations in eclip-
tic coordinates instead of horizontal ones. Figure 7 shows the true conjunction in
the first quadrant (as of Figure 5) in ecliptic coordinates. Likewise, Figure 8
shows the true conjunction in the second quadrant (as of Figure 6) in ecliptic
coordinates. Both figures show that the parallax in longitude is positive when the
conjunction takes place in the first quadrant and is negative when it takes place in
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DA Lunar inclined

True orbit

conjunction Apparent Ecliptic Apparent
course course
of the Sun of the Moon

Figure 6. True conjunction in the second quadrant
to the north of the ecliptic in horizontal coordinates.

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic

Apparent

course o

of the Sun True v
conjunction

Longitude +

Figure 7. True conjunction in the first quadrant
to the north of the ecliptic in ecliptic coordinates.

the second quadrant. When the parallax in longitude in the true conjunction is
positive —as in the first quadrant—, since the Moon and the Sun move forward
in longitude, the apparent conjunction takes place before the true one. Likewise,
when the parallax in longitude in the true conjunction is negative —as in the second
quadrant—, the apparent conjunction takes place after the true one. Thus, we
should introduce a correction in time contrary to the direction of the parallax to
obtain the apparent conjunction. That is,
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* if the parallax in longitude is positive, the increment in longitude is positive,
and thus the correction in time to obtain the apparent conjunction should be
negative; and

e if the parallax in longitude is negative, the increment in longitude is nega-
tive, and thus the correction in time to obtain the apparent conjunction
should be positive.

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic

—o
Apps e
pparent o, v, \

course
of the Sun True
conjunction

Longitude +

Figure 8. True conjunction in the second quadrant
to the north of the ecliptic in ecliptic coordinates.

Motion of the
celestial sphere
during the
time correction

\

Time
correction

True
conjunction

Direction of | Direction of
the time | the parallax
correction

True longitude  Longitude |
Py,
of the apparent of the
conjunction  true conjunction

- Longitude + - Azimuth +

- Time +

Figure 9. Effect of the motion of the celestial sphere
on parallaxes in the first quadrant to the north of the ecliptic.
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Figure 9a shows this situation for the first quadrant with positive parallax in
longitude, and Figure 10a shows it for the second quadrant.

In turn, Figure gb shows, in horizontal coordinates, the effect of the correc-
tion in time to obtain the apparent conjunction when it takes place in the first
quadrant. Since the correction in time is negative, the longitudes of the Sun and
Moon during this correction decrease and their azimuths increase. However, dur-
ing the same time interval relative to the negative correction in time introduced to
obtain the apparent conjunction, the celestial sphere experiences a negative mo-
tion in azimuth greater than the one experienced by the Sun and the Moon. Hence,
the altitude of the Sun and the Moon in the apparent conjunction is smaller than
in the true one, and, consequently, their parallaxes should be greater than before
the introduction of the correction.

Motion of the
celestial sphere
during the
time correction

/
o Time
] correction

| o, | True
<+ > conjunction
Direction of Direction of
the parallax the time
correction
Longitude True longitude S
of the of the apparent P,
true conjunction conjunction
Longitude + - Azimuth +

Time +

Figure 10. Effect of the motion of the celestial sphere
on parallaxes in the second quadrant to the north of the ecliptic.

In turn, Figure 10b shows, in horizontal coordinates, the correction in time in-
troduced to obtain the apparent conjunction when it takes place in the second quad-
rant. Since the correction in time is positive, the longitudes of the Sun and Moon
during this correction increase and their azimuths decrease. However, during the
interval in time relative to the positive correction introduced to obtain the apparent
conjunction, the celestial sphere experiences a positive motion in azimuth greater
than the one experienced by the Sun and Moon. Hence, the altitude of the Sun and
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the Moon in the apparent conjunction is smaller than in the true one and, conse-
quently, their parallaxes, as in the previous case, are greater than before the intro-
duction of the correction.

Thus, in both quadrants, the parallax in longitude in the apparent conjunction
is always greater than in the true conjunction. That is, it is always true that

o (D

Dila> Do

Thus, changes introduced by the motion of the celestial sphere in Figure 7 and
Figure 8 result in figures in which, for a given observer on the Earth’s surface,
parallaxes change over time in significantly different ways. Figure 11 shows how
the parallaxes change over time when the conjunction takes place in the first quad-
rant. In turn, Figure 12 shows how parallaxes change over time when the conjunc-
tion takes place in the second quadrant.

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic
b — v
Apparent o ) E
course « b
of the Sun True
conjunction
- Time +

Figure 11. Change of parallaxes over time for conjunctions
in the first quadrant to the north of the ecliptic.

Consequently, from comparing Figure 11 with Figure 7, for any positive paral-
lax in longitude —as in the first quadrant—, the absolute value of the parallaxes
decreases over time. In turn, from comparing Figure 12 with Figure 8, for any
negative parallax in longitude —as in the second quadrant—, the absolute value
of the parallaxes increases over time.

Thus, Figure 11 and Figure 12 show the two main situations needed to study
Ptolemy and Jabir b. Aflah’s methods to compute the magnitude of a solar eclipse
and the duration of its phases.
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Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic
Apparent

course o} | I
of the Sun “ True

conjunction

s

Time +

Figure 12. Changes of parallaxes over time
in the second quadrant to the north of the ecliptic.

And last, the following table shows the possible configurations taking into account
the different factors at play. These are: (i) The quadrant in which the eclipse takes
place; (2) the hemisphere delimited by the plane of the ecliptic, either to its north or
to its south, in which the eclipse takes place; and (iii) lastly, the type of the node, either
ascending or descending, in whose close area the eclipse takes place. The quadrant,
which is independent of the hemisphere, in which the eclipse takes place results in a
positive or negative parallax in longitude. In turn, the hemisphere affects whether the
apparent courses are to be found above or below the true ones, as shown in Figure 4.

First quadrant Second quadrant
) True conjunction True conjunction
=2 Ecliptic Q) a, a, Ecliptic 0. Q, a
:0 Apparent Apparent 1
b= course course ’
:_s of the Sun of the Sun
o = Lunar Lunar
s 8 inclined inclined
,& 2 orbit orbit
7]
B Apparent Apparent
g course course
j:) of the Moon of the Moon
=)
5 1) Lunar b} Lunar
=] inclined inclined
5 8 orbit orbit
Z | w0 .
= Apparent Apparent
5 course course
= of the Moon of the Moon
153
Q
7 . .
1) Ecliptic Ecliptic
Q Apparent > v " Apparent o’ v v
course O o course “ U @
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2.3. Phases of solar eclipses

Figure 13. Phases of the solar eclipse.

Lunar eclipses are divided into four phases, since the lunar radius is signifi-
cantly smaller than the radius of the Earth shadow cone. In solar eclipses, since
the radii of the Sun and the Moon are almost identical —although with small
variations owing to their position in relation to their perigees and apogees—,
Ptolemy took only two phases into account defined by three specific times: the
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initial, middle and end times of the eclipse, which define the phases of immer-
sion and emersion.

Thus, considering Figure 13, where S is the center of the Sun and L; is the
position of the Moon at time i, we can define two phases (zaman, pl. azmina) in a
solar eclipse defined by three times:

(1) Beginning of eclipse (awwal al-kusiif); the Moon is on L,.
(2) Eclipse mid-time (wasat zaman al-kusiif); the Moon is on L,.
(3) End of eclipse (akhir al-kusiif); the Moon is on L,.

2.4. The Almagest on the magnitudes of solar eclipses

For the computation of the magnitude of solar eclipses,’ Ptolemy used tables for
solar eclipses —tables I and II—, whose computation and use are very similar to
the tables of lunar eclipses —tables III and IV.’ For the computation of the magni-
tude of eclipses, Ptolemy needs to know the position of the apparent syzygy, which
for the lunar eclipse is equal to the true syzygy. For the computation of the magni-
tude and the phases of the solar eclipse, Ptolemy cannot deem the apparent conjunc-
tion and the true conjunction to be equal because of the effect of the parallax. Thus,
from his initial data —that is, (i) the longitude of the true conjunction, which can
be obtained through computation; and (ii) the position of the observer—, he should
obtain the position of the apparent conjunction relative to the apparent node, so that
he can then follow the same steps as for the lunar eclipse. Consequently, the com-
putation of the magnitude of the solar eclipse is divided into two steps: (i) reduction
of the effect of parallax; and (ii) obtention of the magnitude.

8. On solar eclipses, see J. Mogenet et al., Nicéphore Grégoras; calcul de I’éclipse de soleil du
16 juliet 1330, Amsterdan, 1983; J. Mogenet et al., Barlaam de Seminara. Traités sur les éclipses de
Soleil de 1333 et 1337. Histoire des textes, éditions critiques, traductions et commentaires, Leuven,
1977. For the computation of solar eclipses by Yahya ibn AbT Manstr, see E.S. Kennedy and N.
Fares, «The Solar Eclipse Technique of Yahya ibn Abt Manstr», Journal for the History of Astron-
omy 1 (1970), pp. 20-38 (reprinted in Kennedy et al., Studies, pp. 185-203). For a list of pre-modern
observations of lunar and solar eclipses, see Bernard R. Goldstein, «Medieval Observations of So-
lar and Lunar Eclipses», Archives Internationales d’Histoire des Sciences 29 (1979), pp. 101-156.

9. For the computation of tables I to IV and V1.8, see Almagest V1.7 (Toomer pp. 306-308).
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Effect of the parallax

The initial data are the positions of the Sun and Moon in the true conjunction. For
the computation of the solar eclipse, we need to know their positions in the appar-
ent conjunction. We have to account for the effect of the parallax to obtain the
apparent conjunction from the true one. To obtain the magnitude of an eclipse
with the aforementioned tables, Ptolemy needs the argument in apparent latitude
in the apparent conjunction. To obtain this value from a true conjunction, he
should follow three steps: (i) firstly, he should obtain the position of the true con-
junction in the horizon of the observer; (ii) secondly, he should obtain the longi-
tude of the apparent conjunction; and (iii) lastly, he should obtain the argument in
apparent latitude for the apparent conjunction.

(i) Position of the true conjunction in the horizon of the observer.

Firstly, Ptolemy should find the true conjunction in the horizon of the observer.
To do this, he computes the time before or after midday in the horizon of the ob-
server in which the true conjunction' takes place following these steps:

e Firstly, he finds the difference in equinoctial hours between the true con-
junction and the midday of Alexandria.

* He, then, computes the difference in geographic longitude between the me-
ridian of Alexandria and that of the observer in equinoctial hours.

* He adds or subtracts this difference to the equinoctial hour of the true con-
junction according to the geographic longitude of the observer to obtain the
difference in equinoctial hours between the true conjunction and the midday
of the observer.

(ii) Longitude of the apparent conjunction
In the second step, Ptolemy aims to obtain the apparent conjunction from the true

one. Broadly speaking, he computes the time the Moon needs to traverse a longi-

10. See Almagest V.19 (Toomer pp. 264ff).
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tude approximately equal to the difference in longitude between the true conjunc-
tion and the apparent one with its true motion in the true conjunction. This differ-
ence in longitude is caused by two factors: (i) the effect of the parallax; and (ii)
the distance traversed by the Sun and the Moon during the time between the true
conjunction and the apparent one. Ptolemy discusses both factors separately. He,
firstly, addresses the effect of the parallax; and he, then, addresses the effect of the
additional distance traversed by the Sun and the Moon.

Lunar inclined
orbit

Apparent
course
of the Moon
Ecliptic
Apparent o, I Y,
course : &
of the Sun
Apy p(O),
(D),
True - oTime +

conjunction

Figure 14. True conjunction in the second quadrant in ecliptic coordinates.

To obtain the time of the apparent conjunction for the geographical position of
the observer, Ptolemy, first, finds the difference in longitude between the lunar
and solar parallaxes. To do so,

* he introduces (i) the distance in hours from the meridian, (ii) the point of the
ecliptic where the conjunction takes place, and (iii) the distance of the Moon,
using the local latitude, in the Table of Angles (Almagest 11.13) and the Table
of Parallaxes (Almagest V.18);

* he finds the lunar parallax within the great circle passing through the zenith
and the center of the Moon, that is, p(D), —where p indicates the parallax and
the subscript ‘1’ refers to the initial time, the time of the true conjunction;

* he obtains the difference between the lunar and solar parallaxes—that is,
Ap,— by subtracting the solar parallax —that is, p(©),— from the lunar
parallax —that is, p(D), —. Thus, Ap, = p(D), — p(O),;
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e and lastly, he finds the component in longitude of the difference between the
lunar and solar parallaxes in the true conjunction, Ap,,.

In fact, Ptolemy should have obtained, instead, the difference in longitude
from the difference of the parallaxes in longitude of the Moon and the Sun —that
is, Apy, = pi(D), — py(©),—. Thus, Ptolemy grossly deems that the arcs of great
circle passing between the true and apparent positions of the Moon, on the one
side, and those of the Sun, on the other, are parallel.

Once this difference in longitude is obtained, Ptolemy considers the situa-
tion in which the Moon has traversed in its inclined orbit an argument in lati-
tude equal in value to the difference in longitude between the parallaxes of the
Sun and the Moon. That is, he examines the situation in the degree in longitude
MD,) =MD,) = Ap,,, as shown by Figure 15, where the sign depends on wheth-
er the true conjunction takes place in the first or second quadrants. If the lunar
parallax was constant for any altitude of the Moon —and this is impossible—,
the longitude of the apparent position of the Moon for the new found longitude,
M(D,), —that is A(D’,)— would be equal to the longitude of the apparent posi-
tion of the Sun in the true conjunction, A(®’,). To obtain the apparent conjunc-
tion, we would only need to deal with the correction needed to account for the
traversed distance of the Sun during Ap,,. However, parallaxes change with
altitude. Thus, during the course of the Moon in its inclined orbit from A(D,) to
M?D,), since the lunar altitude changes, there is also a variation in its parallax.
This change is called «epiparallax».'" For this reason, once the component in
longitude of the difference between the parallaxes of the Sun and the Moon is
obtained, Ptolemy:

e adds the epiparallax resulting from the number of equinoctial hours corre-
sponding to the parallax in longitude."

Next, Ptolemy divides the procedure to find the epiparallax into three steps:

11. See Toomer pp. 310-311. For an example of the computation of the epiparallax according
to the Almagest, see Toomer p. 656.

12. «We always add to this [longitudinal parallax] the increment of «epiparallax» corresponding
to the number of equinoctial hours represented by the longitudinal parallax». See Toomer p. 310.
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Figure 15. Intermediate steps to solve the apparent conjunction
from the true conjunction in the second quadrant.'3

* firstly, using the same table, he obtains the difference between the parallax
caused by the zenithal distance at the initial time and the parallax caused by
the zenithal distance after the equinoctial hours have passed;"

e then, he takes the component in longitude of the difference obtained before;"

* and lastly, he adds an additional longitude, if it is significant, corresponding
to the fraction of the difference obtained before, as the latter is of the origi-
nal longitudinal parallax.’

13. In this figure, the solar parallax in the interval between the second situation and the first one
has been deemed as constant.

14. «We take the difference (as determined from the same table) between the parallax corre-
sponding to the original zenith distance and the parallax corresponding to the zenith distance after
the passage of the number of equinoctial hours [represented by the longitudinal parallax]» (Toomer
pp. 310-311).

15. «We take the longitudinal component of this by itself» (Toomer p. 311).

16. «Plus an additional amount (if it is significant) which is the same fraction of the latter as the
latter is of the original [longitudinal] parallax» (Toomer p. 311).
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With these first two steps, he finds the difference between the parallax at the ini-
tial time —the time of the true conjunction, referred to with subscript ‘1’ in Figure
15— and the intermediate step—referred to with subscript ‘2’ — after traversing the
distance Ap,, in longitude—i.c., the difference in longitude between the lunar and
solar parallax in the true conjunction. Ptolemy does not point out the type of parallax
that plays a role in this difference. Nevertheless, taking into account the previous
procedure to find the difference between parallaxes, for parallax he most likely refers
to the difference between the lunar and solar parallaxes at a specific time —that is,
p(D),—p(®),. Thus, the difference that he seeks to obtain should refer to the variation
between times I and 2 of the difference between the lunar and solar parallaxes — that
is, [p(D), — p(©),] - [p(D), — p(©),]. Next, in the second step, he finds the compo-
nent in longitude; that is, Ap,,. Again, this procedure only makes sense if Ptolemy
deems that the meridians passing through A(D,) and A(D,) are grossly parallel in the
interval. In Figure 15, to show the procedure in a clearer way, we obtain Ap,, from
the components in longitude of the lunar parallax at the initial time and after travers-
ing Ap,,, and we deem the solar parallax as constant. In this case, the difference be-
comes Ap;, = [pi(D), — pi(©),] = [pi(D), — pi(©)] = pi(D), — (D).

Since, as pointed out, the parallax in the true conjunction is always smaller than
in the apparent conjunction, the parallactic difference at the initial time, p,(), —
p.(©),,is always smaller than the one that takes place in situation 2, p;(D), — p,(©),,
so that Ap,, is always positive. Even though Ptolemy does not point out that the
parallax in the true conjunction is always smaller than in the apparent one, he does
not consider either the case in which Ap,, could be negative.

Once he finds this difference, Ptolemy finds the epiparallax, e,, as

ep = Apkz +1 (2),

where [ is the longitude added in the previous step, which we will study with more
detail in what follows.

After the true conjunction, Ptolemy deems a second situation, referred to with
the subscript ‘2’, in which the Moon is located at longitude Ap,, from the true
conjunction. In case the parallax would be constant in altitude, the apparent posi-
tion of the Moon for this true longitude would indicate the apparent conjunction
between the Sun and the Moon. However, since the parallax is not constant, we
should take the lunar epiparallax into account. Once the epiparallax of this second
situation —Ap,,— is obtained, we can consider a third situation in which the
Moon is located in the argument in latitude corresponding to the longitude A(D,)
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=MD, £ (Ap,, + Ap,,), as shown in Figure 15. We will refer to this new situation
with subscript ‘3’.

We see that the apparent longitude of the Moon for this longitude, A(D’,), con-
verges with the apparent longitude of the Sun in the true conjunction, A(®”)).
Similarly to the epiparallax Ap, resulting from the distance in longitude Ap;,,
traversed by the Moon, the distance in longitude traversed by the Moon, equal to
the component in longitude of the previous epiparallax, Ap,,, results in an addi-
tional epiparallax, Ap,, whose component in longitude, Ap; ,, can be added —or
subtracted depending on the quadrant— to A(D,); that is, A(D,) = AM(D,) £ (Ap,, +
Ap,, + Ap,;)—, so that the longitude of its apparent position converges with
M®@’,). This is an iterative procedure. Ptolemy only takes the increment Ap;, , into
consideration, and only if it is significant.

As for Ptolemy’s method to compute the increment Ap; ,, Ptolemy does not re-
sort to the tables of parallaxes. Instead, he uses an interpolation. Ptolemy points out:

Plus an additional amount (if it is significant) which is the same fraction of the latter
as the latter is of the original [longitudinal] parallax.'’

Ptolemy, thus, plays with two differences: the «latter» and the «original».
With the «latter», Ptolemy seems to be making reference to the difference ob-
tained in the first two steps during the computation of the epiparallax, that is
Ap,,. And with the «original», he seems to be making reference to the differ-
ence in longitude between the lunar and solar parallaxes in the true conjunction,
that is, Ap,,."* Thus, by «an additional amount (if it is significant) which is the
same fraction of the latter as the latter is of the original [longitudinal] parallax»,
he refers to a function the like of

l:ApM:mApM (3)

where m is the fraction pointed out by Ptolemy with «which is the same frac-
tion of the latter as the latter is of the original [longitudinal] parallax». Therefore

m=Apy, | Ap, @)

17. See Toomer p. 311.
18. See Toomer p. 311 n. 71. The equivalences between Toomer’s notation and the one used
here are the following: /[, = Ap,,,l, = Ap,, + Ap,, and e = Ap, ,.
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and thus

l = Ap}@ = Apkzz/ Apkl (5)

Epiparallax

Ap; 3

Apy,

Correction
in longitude
because of
the parallax

Apy Ap,

2

Figure 16. Epiparallax as function of the correction in longitude because of the parallax.lg

Figure 16 graphically illustrates the procedure followed by Ptolemy. It also
shows that the epiparallax is lineal with the correction in longitude due to the
parallax.

Once the value of Ap;, is obtained and, depending on the quadrant, added to
or subtracted from the longitude 7»()3), we obtain a fourth situation. The resulting
epiparallax is

€p = Ap?»z + Ap)@ = Apkz + Apkzz/ Apkr (6)
and the longitude, A(D,), is
)\'()4) = )\'()1) * (Ap)n + ep) = )\‘()I) * (Ap}\l + Aph + Apkzz/ Ap)\l) (7)
At this point, for a better understanding of Ptolemy’s method, we should exam-
ine what does the longitude M(D ,) refer to. We have seen that, in case the parallax
would not change with the altitude, or with the zenithal distance, the increment

Ap,, would have been enough to obtain the longitude needed to account for the ef-
fect of the lunar parallaxes. In this case, A(D’,) = M©’,). However, since the

19. The axis of the epiparallax has been exaggerated for clarification.
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parallax changes with the altitude, Ptolemy uses Ap;, + Ap,, to account for the
epiparallax. However, in Ap,, + Ap,,, both effects of the lunar and solar epiparal-
lax are taken into account. Thus, the resulting epiparallax can be expressed as

e,=¢,(D)-¢,(0) ®),

where e, (D) is the lunar epiparallax and e, (®) the solar epiparallax. The fact that
the solar epiparallax is included in the epiparallax means that we would not be
able to deem that the apparent longitude of the Moon found, A(D’,), agrees with
the apparent longitude of the Sun in the true conjunction, A(©’)); but that

MDY =MO’) 7 ¢,(0) ).

That is, it agrees with the apparent longitude of the Sun in the true conjunc-
tion, once the effect of the solar epiparallax in the time between the situation 4
and the true conjunction, that is 7, — 7,

(A

is accounted for.

In the previous iterative procedure, Ptolemy refers to the sum of these differ-
ences, would they either be differences between parallaxes —that is Ap,, — or be-
tween epiparallaxes —that is Ap,; with i > 1—with the term «total parallax». This
total parallax is the correction in longitude to account for the parallax that should be
introduced in the longitude of the true conjunction to obtain the apparent one later
on. In the following steps, we will refer to the total parallax with Ap,, so that, after
generalizing the previous equation in case it converges, the total parallax is

AP>L=XI,:APM withiEN,i=1

and
Apy;=Apy,i=1 1 Ap,, 2 (10).

In any case, Ptolemy only consider cases up to i = 3. Thus, as shown by Figure
17,MD,) is

MDY =MD, = Ap, (11).

We should now examine if Ptolemy’s method to obtain the true lunar longi-
tude, whose apparent longitude equals the apparent longitude of the Sun in the
true conjunction, is correct.

234



Ptolemy and Jabir b. Aflah on Solar Eclipses

Broadly speaking, Ptolemy’s method is based on correcting the longitude of
the Moon with the longitudinal distance traversed by the Moon corresponding,
first, to the difference between parallaxes of the Moon and the Sun and, then,
between their epiparallaxes. Firstly, the increments that are not obtained through
interpolation —that is, Ap,, and Ap,,—, since the solar and lunar parallaxes in-
crease when the Sun and the Moon tend to their true position in the apparent
conjunction, the correction resulting from a previous parallax or epiparallax —
that is, always resulting from a closer position to the true conjunction—, is al-
ways smaller than the needed one to obtain the true lunar longitude whose appar-
ent longitude equals the apparent longitude of the Sun in the true conjunction. In
addition, we know that the variation of the parallax in longitude when approach-
ing the true position in the apparent conjunction is also smaller than in the true
conjunction, since the altitude of the true longitude of a true conjunction is al-
ways greater than that of an apparent conjunction. Hence, the iteration of the
procedure an infinite number of times tends to the true lunar longitude whose
apparent longitude equals the apparent longitude of the Sun in the true conjunc-
tion. In turn, the increment resulting from the interpolation—Ap, ., = Ap; 3/ Ap,,—
is greater than the epiparallax between the situations 2 and 3 (¢ |3)—ie., e |} =

[pk())3 _ph(G)g] - [ph())z _p}\(e)z] That iS,
Ap, 31 Apy, > [p(D); — pi(©),] - [p(2), — pi(©),] (12).

The reason lays on the fact that the obtained slope through previous incre-
ments —m = Ap,, / Ap,,— is always greater than the real one, since the variation
of the parallax in longitude when we tend to the true position in the apparent
conjunction is smaller than when we tend to the true conjunction. Hence, the
longitude obtained through the interpolation can be smaller, equal, or greater than
the one being sought, whereas if we would have used (e,|3), the obtained longi-
tude would be, in the first quadrant, greater, and, in the second quadrant, smaller
than the longitude of the true Moon in the apparent conjunction. Whatever the case,
the error is very small. In addition, the smaller the increment affected by the slope
m —that is, the increment Ap;,,, since Ap, , = m Ap,,— is, the error resulting from
the difference between m and the real slope is also smaller.

In the second step, Ptolemy should account, as shown by Figure 17, for the
additional motion of the Sun during the time in which the Moon traverses Ap,. As
usual, Ptolemy approximates the motion of the mean Sun, wé, by 1%, and the
motion in longitude of the mean Moon, ws, by 13°4. Thus, the difference of
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motions between the mean Moon and mean Sun would be of 12%. The steps fol-
lowed by Ptolemy to determine the position of the apparent conjunction from the
true conjunction and the total parallax, Ap;,, are the following:

* firstly, he divides the total parallax (obtained without taking into account the
additional motion of the Sun) by 12 and adds it to itself —that is, (1+1/12)
Ap, =13 Ap, /12,

* and he, then, divides the obtained value by the true motion of the Moon in
the conjunction, thus obtaining the number of equinoctial hours between the
true conjunction and the apparent one.”'

I
(oMM (O} N

\

Ap,/12

- Ti +
Ap, ApJ12 oTime
AMD, ey
Apparent True

conjunction  conjunction

Figure 17. Apparent conjunction in the second quadrant.

Thus, to obtain the increment in longitude of the true Moon in the interval
defined by the true conjunction and the apparent one, AA(D).,.,, Ptolemy estab-
lishes a lineal equivalence; that is,

20. «To the total parallax in longitude, computed in this way, we add the 1/12th of itself to
account for the additional motion of the sun» (Toomer p. 311).

21. «And convert the total to equinoctial hours by dividing it by the moon’s true hourly motion
at the conjunction» (Toomer p. 311).
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M= (A= Ay (13).

However, how does Ptolemy reach this result? To describe this method, we
define At as the time between situation 4 and the true conjunction —At=1¢,— ., —
and At, as the time between the apparent conjunction and situation 4 — Az, = ¢,
— t,—. Likewise, as shown in Figure 18, Ak, is the difference between the
longitude of the Sun and the Moon in the fourth situation; Al is the increment in
longitude of the apparent Moon between the apparent conjunction and the situa-
tion 4; and Alg is the increment in longitude of the apparent Sun between the

apparent conjunction and situation 4.

A,

ca

Moy, Ak

Figure 18. Apparent Sun and Moon between situation 4 and apparent conjunction.

From these variables, we can obtain the time interval, Az, during which the
Moon traverses Ap, knowing that

Ap,=ws At.
During this time, the Sun traverses

Ahoy,=wo At=""/  Ap,,

237



JOSE BELLVER

so that the increment in longitude of the apparent Moon between the apparent
conjunction and the situation 4 —AAy— is

Ahy = Ahgy, + Ahg

Ahy =ws At Wé/wj Ap, +wae At,

Al‘+ = Wé/ - Apk

ws (Ws—we)
Ay =ws Ar,="0/ Ap=' Ap, (14).
ws (Ws—wo) 12
Thus, from Al,, i.e., the increment in longitude of the apparent Moon between

the apparent conjunction and situation 4, Ptolemy finds the total increment in lon-
gitude of the true Moon between the true conjunction and the apparent one by add-
ing it to the total parallax obtained between the true conjunction and situation 4.

AND)opey = Apy + Ahy = Ap, + WO/ Ap,

ws (Ws—wad)

ws 13
= Ap;, = Ap .
/(W5—w®) r /12 * (1s)

ca-cv

Consequently, the lunar longitude in the apparent conjunction is
MO =20 Any (16),

although Ptolemy obtains this value in a later step. Ptolemy adds Aly, an incre-
ment in longitude related to the apparent Moon, to Ap,, an increment in longitude
related to the true Moon. In any case, he should have taken into account the effect
of the lunar epiparallax in the interval At,. This effect is of opposite sign to that
of the epiparallax obtained to compute the total parallax Ap,. Likewise, he does
not take into account the solar epiparallax during the additional motion of the Sun
to obtain the apparent longitude of the apparent conjunction. This epiparallax is
of opposite sign to that of the lunar epiparallax in this interval. Thus, following
Ptolemy’s previous methodology, the longitude of the true Moon in the apparent
conjunction should have been

MO =2t () Ap—ef) a7

where e,|;" is
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ely=e, D} —e, (O (18),

i.e., the difference between the lunar and solar parallaxes in the interval de-
fined by situation 4 and the apparent conjunction.

From the increment of the true Moon in longitude, AM(D),,..,, Ptolemy finds
the number of equinoctial hours related to this increment by dividing it by the true
motion of the Moon in the conjunction. Thus,

At ca-cv = Ax())ca—cv / W()CV) (19)'

Once he obtains this interval, Ptolemy points out whether it should be added
to or subtracted from the time of the true conjunction following the effect of the
parallax.

>,

0. |o,
i =
o O
by U
oTime ApJ127
AMD e
AM )))L aaaaa oTime +
Apparent o True
conjunction conjunction conjunction
Figure 19. Negative parallax in longitude. Figure 20. Positive parallax in longitude.

Generally speaking, the distance traversed by the Sun and the Moon during
the interval between the true conjunction and the apparent one should cancel the
effect of the parallax in the true conjunction. Since the parallax in longitude can
be, either, positive or negative, two different cases can take place:

e If the parallax in longitude in the true conjunction is negative —that is, if
the apparent longitude is smaller than the true one—, we should consider
a positive distance traversed by the Sun and the Moon in longitude that
would account for the negative parallax in longitude, so that the time in-
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terval corresponding to this distance is positive. As a result, the true con-
junction would take place before the time of the apparent conjunction
and, consequently, the true longitudes in the true conjunction would be
smaller than the true longitudes in the apparent conjunction, as shown in
Figure 19.

e If the parallax in longitude in the true conjunction is positive —that is, if the
apparent longitude is greater than the true one—, we should consider a neg-
ative distance traversed by the Sun and the Moon in longitude that would
account for the positive parallax in longitude, so that the time interval corre-
sponding to this distance is negative. As a result, the apparent conjunction
would take place before the time of the true conjunction and, consequently,
the true longitudes in the apparent conjunction would be smaller than the
true longitudes in the true conjunction, as shown in Figure 20.

Ptolemy examines if the parallax in longitude follows the zodiacal signs —
that is, if the parallax in longitude is positive— or is opposite to the zodiacal signs
—that is, if the parallax in longitude is negative—. If the parallax in longitude is
positive, he subtracts the time interval between the apparent conjunction and the
true one, Az, ., at the time of the true conjunction, so that the time of the apparent
conjunction is

tca = tcv - Atca—cv (20)'

With ¢

car

he finds the position of the Moon in the apparent conjunction in lon-
gitude, latitude and anomaly. Likewise, if the parallax in longitude is negative,
the time of the apparent conjunction is

tca = tCV + Atca-cv (21)’
Accordingly, he finds the position of the Moon in the apparent conjunction in
longitude, latitude and anomaly.
(iii) Argument in apparent latitude for the apparent conjunction
Once we have obtained the true and apparent longitudes of the Moon in the ap-

parent conjunction, we should address Ptolemy’s third step to account for the ef-
fect of the parallax in the computation of the magnitude and phases of the solar
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eclipse. In this third step, Ptolemy should obtain the argument in apparent latitude
from the true one. If this argument in latitude is included in the tables,” we can
infer that a solar eclipse will take place and we can obtain its magnitude. Thus,
for any given apparent conjunction close to a node (Figure 21), Ptolemy finds the
argument in latitude of the apparent conjunction following these steps:

Apparent
conjunction

(O, :

PO |

Figure 21. Apparent conjunction.

e firstly, he computes the lunar parallax taking into account the distance in
equinoctial hours between the apparent conjunction and the meridian;

* he, then, subtracts the solar parallax from the lunar parallax, Ap ., = p(D).,
—P(O)u;

¢ he finds the value in latitude of the previous parallax, i.e., Ap B

e and finally, he obtains the argument in latitude in the lunar inclined orbit
from the previous result times 12;

Thus, he, first, finds the lunar parallax in the apparent conjunction, i.e., p(D).,.
Next, he finds the solar parallax, p(®),,, and he subtracts it to the lunar one to
obtain the difference between the lunar and solar parallax in the apparent con-
junction, Ap,, = p(D)., — P(®).,, as shown in Figure 22. From this difference, he
finds the component in latitude in the apparent conjunction, Apy.

Once he has obtained the component in latitude of the difference between
the solar and lunar parallaxes, Apg, he multiplies it by 12, so that he finally finds the
increment of the argument in latitude resulting from the difference between the solar
and lunar parallax, since

I

/. =11;30=12 (22)
sin i

22. See Almagest V1.8 (Toomer pp. 306-308) for these tables.
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with i = 5°, the angle of the lunar inclined orbit relative to the ecliptic. Thus, by
dividing the component in latitude of the parallactic difference by sin i, Ptolemy
deems that the angle of inclination of the true inclined orbit relative to the ecliptic
and the angle of inclination of the apparent course of the Moon are equal, so that
both —the ecliptic and the apparent course of the Moon— are parallel, as he takes
i to obtain an argument in apparent latitude. One possible explanation for the reason
why Ptolemy approximates 1/sin i by 12 and not by 11;30 is that he is introduc-
ing a correction after considering i in the apparent course of the Moon. However,
this explanation should be dismissed since the angle of inclination of the apparent
course of the Moon —let us refer to it as i’ — can either be greater or smaller than
the one of the true inclined orbit. Hence, the value by which the component in
latitude of the parallactic difference, Apﬁ, should be multiplied to obtain the
component in the argument in latitude can be greater or smaller than 11;30.
Consequently, Ptolemy’s use of 12 instead of 11;30 is the result of an approxima-
tion, and not a correction.

Apparent
conjunction

JZ(ON

P D),, :

Figure 22. Argument in latitude of the apparent conjunction.

Thus, considering Figure 22, the difference of the argument in latitude of the
apparent Moon in the apparent conjunction relative to the apparent node is

A0(D’) = Ao(d) + 2P/ (23),
Sin 1

where the signs + or — depend on the position of the observer and on whether the
conjunction takes place close to the ascending or descending nodes.

However, Ptolemy is more concerned by the actual argument in apparent latitude
from the true argument in latitude, rather than by the difference of the argument in
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latitude relative to the apparent node, since the former is the value of the argument
in latitude needed in the tables of solar eclipses. To obtain the argument in latitude
from the previous differences, we should add 9o° in case of a descending node, or
270° in case of the ascending one. Thus, the argument in apparent latitude is

0(D’,) = 0(d,,) £ Apg/sin i (24).

As pointed out before, the sign + in the previous equation depends (i) on the
position of the observer and (ii) on whether the conjunction takes place close to
the ascending or descending nodes. Let us, first, consider the effect of the position
of the observer on whether Apg / sin i should be added or subtracted.”

If the observer is located in a geographical latitude above —that is, to the
north— of the ecliptic, the zenith is located in a positive latitude. Since the true
altitude is always greater than the apparent one, because of the effect of the paral-
lax, and the latitude of the zenith is positive, the apparent latitude is always small-
er than the true one.

In turn, if the observer is located in a geographical latitude below —that is, to
the south— of the ecliptic, the zenith is located in a negative latitude. Since the true
altitude is always greater than the apparent one, because of the effect of the paral-
lax, and the latitude of the zenith is negative, the apparent latitude is always
greater than the true one.

Thus, if the observer is located to the north of the ecliptic, the parallax in lati-
tude is negative. Hence, the apparent courses of the Sun and Moon are found, in
the figure, below the true ones.

In turn, if the observer is located to the south of the ecliptic, the parallax in lati-
tude is positive. Hence, the apparent courses of the Sun and Moon are found, in
the figure, above the true ones.

In addition to the effect of the latitude of the parallax, the sign + also depends
on whether the eclipse takes place close to the ascending or descending nodes,
and if the apparent conjunction takes place in positive or negative latitudes. In
general, for a same situation, if the eclipse takes place close to an ascending or
descending node, the sign of the expression changes. Ptolemy takes into account
four situations depending on whether the effect of the parallax in latitude of
the Moon in the apparent conjunction takes place to the north or to the south of the

23. See Almagest V.19 (Toomer pp. 266-267).
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ecliptic, and on whether it is close to the ascending or descending node. The four
cases are indicated below:

(1) If the effect of the parallax in latitude takes place to the north of the eclip-
tic and the Moon is close to the ascending node, the result is added to the
argument in latitude of the true Moon in the apparent conjunction.

Apparent
conjunction

JZ(ON

P ]

Figure 23. Conjunction before the ascending node
with parallax to the north of the ecliptic.

T 20

PO,

Apparent
conjunction

Figure 24. Conjunction after the ascending node
with parallax to the north of the ecliptic.
In this case, the equation is
0(D’,) = 0(d,,) + Apg /sin i .
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If the apparent conjunction takes place before reaching the node, the differ-
ence of the argument in apparent latitude of the apparent conjunction relative to
the node is smaller than the true one —Aw(D’,) < Aw(D). Hence, the argument
in latitude of the apparent Moon in the apparent conjunction is greater than that
of the true one —w(D’,) > 0(D,,).

In turn, if the apparent conjunction takes place after traversing the node, the
difference of the argument in apparent latitude of the apparent conjunction rela-
tive to the node is greater than that of the true one —Aw(D’,,) > Aw(D.,). Hence,
the argument in latitude of the apparent Moon in the apparent conjunction is also
greater than that of the true one —w(D’,) > w(D). Consequently, in both cases,
Apg / sin i must be added, as Ptolemy points out.

(2) If the effect of the parallax in latitude takes place to the north of the eclip-

tic and the Moon is close to the descending node, the result is subtracted
from the argument in latitude of the true Moon in the apparent conjunction.

. :‘—

P{(O),

Apparent
conjunction

Figure 25. Conjunction before the descending node
with parallax to the north of the ecliptic.

In this case, the equation is
(D) = 0(d,) - Apy/sin i .
If the apparent conjunction takes place before reaching the node, the differ-

ence of the argument in apparent latitude of the apparent conjunction relative to
the node is greater than the true one —Aw(2’.,) > Aw(D,,). Hence, the argument
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Apparent
conjunction

P(O).,

[ nO.

Figure 26. Conjunction after the descending node
with parallax to the north of the ecliptic.

in latitude of the apparent Moon in the apparent conjunction is smaller than that
of the true one —w(D’,,) < w(D.,).

In turn, if the apparent conjunction takes place after traversing the node, the
difference of the argument in apparent latitude of the apparent conjunction rela-
tive to the node is smaller than that of the true one —Am(D’.) < Aw(D,,)—.
Hence, the argument in latitude of the apparent Moon in the apparent conjunction
is also smaller than that of the true one —mw(D’,) < w(D.)—. Consequently, in
both cases, Ap / sin i must be subtracted, as Ptolemy points out.

(3) If the effect of the parallax in latitude takes place to the south of the eclip-
tic and the Moon is close to the ascending node, the result is subtracted
from the argument in latitude of the true Moon in the apparent conjunction.

In this case, the equation is
w(),ca) = w()ca) - Apﬁ /sini .

The situation is similar to the apparent conjunction close to the descending
node and parallax to the north of the ecliptic. That is, if the apparent conjunction
takes place before reaching the node, the difference of the argument in apparent
latitude of the apparent conjunction relative to the node is greater than the true
one—Aw(D’,) > Aw(D,). Hence, the argument in latitude of the apparent Moon
in the apparent conjunction is smaller than that of the true—w(’,,) < w(D.,).
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Apparent
conjunction

P2(O)e,

PO ]

Figure 27. Conjunction before the descending node
with parallax to the north of the ecliptic.

T pO.

P{O),

Apparent
conjunction

Figure 28. Conjunction after the ascending node
with parallax to the south of the ecliptic.

In turn, if the apparent conjunction takes place after traversing the node, the dif-
ference of the argument in apparent latitude of the apparent conjunction relative to
the node is smaller than that of the true one —Aw(D’,,) < Aw(D,,)—. Hence, the
argument in latitude of the apparent Moon in the apparent conjuction is also
smaller than that of the true one —w(D’,) < w(D,,)—. Consequently, in both
cases, Apg / sin i must be subtracted, as Ptolemy points out.

(4) If the effect of the parallax in latitude takes place to the south of the eclip-

tic and the Moon is close to the descending node, the result is added to the
argument in latitude of the true Moon in the apparent conjunction.
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ORI

PO).,

Apparent
conjunction

Figure 29. Conjunction before the descending node
with parallax to the south of the ecliptic.

Apparent
conjunction

JZ(ON

[ pO

Figure 30. Conjunction after the descending node

with parallax to the south of the ecliptic

In this case, the equation is
w()’ca) = ('U()Ca) + Ap[g, /sini .

This situation is equivalent to the apparent conjunction close to the ascending
node and parallax to the north of the ecliptic. That is, if the apparent conjunction
takes place before reaching the node, the difference of the argument in apparent
latitude of the apparent conjunction relative to the node is smaller than that of the
true one —Am(D’,) < Aw(D.,). Hence, the argument in latitude of the apparent
Moon in the apparent conjunction is greater than that of the true —w(’,,) > ®w(D.,).
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In turn, if the apparent conjunction takes place after traversing the node, the
difference of the argument in apparent latitude of the apparent conjunction rela-
tive to the node is greater than that of the true one —Aw(D’,) > Aw(D.,). Hence,
the argument in latitude of the apparent Moon in the apparent conjunction is also
greater than that of the true one —w()’,) > w(D,)—. Consequently, in both
cases, Apg / sin i must be added, as Ptolemy points out.

Thus, after the above considerations, Ptolemy ends up finding an approximation
to the argument in latitude of the apparent Moon in the apparent conjunction.

Finding the magnitude

Once Ptolemy has obtained the argument in latitude of the apparent Moon in the
apparent conjunction, that is, once he has accounted for the effect of the parallax,
Ptolemy finds the magnitude of the solar eclipse following the same method as
with the lunar eclipse.

He uses Tables I and II devoted to solar eclipses, instead.* Firstly, he exam-
ines if the argument in latitude falls within the limits in which an eclipse can take
place.” If this is so, a solar eclipse will take place. He, then, introduces the argu-
ment in latitude of the apparent Moon in the apparent conjunction and finds in
Column III of Table I the magnitude of the eclipse when the Moon is in its apogee.
Likewise, with the argument in latitude of the apparent Moon in the apparent con-
junction, he finds in Column III of Table II the magnitude of the eclipse when the
Moon is in its perigee. Based on both perigee and apogee results, he, then, interpo-
lates them using Table V of interpolation with the lunar anomaly as argument.*’

2.5. The Almagest on the phases of solar eclipses

As a first approximation, to obtain the duration of the solar eclipse, Ptolemy’s
method is the same as with lunar eclipses.”’” That is, with the argument in lati-
tude of the apparent Moon in the apparent conjunction, he finds in column IV of

24. See Almagest V1.8 (Toomer p. 306).

25. See Almagest V1. 5 (Toomer pp. 282-287).
26. See Almagest V1.8 (Toomer p. 308).

27. See Almagest V1.10 (Toomer p. 312).
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Table I the minutes of immersion of the eclipse when the Moon is located in its
apogee. Likewise, with the argument in latitude of the apparent Moon in the ap-
parent conjunction, he finds in column IV of Table II the minutes of immersion of
the eclipse when the Moon is in its perigee. Then, the resulting values should be
interpolated using Table V with the lunar anomaly as argument. He, then, ac-
counts for the additional motion of the Sun, so that he multiplies by 13/12 the
minutes of immersion found with the tables. Finally, he finds the duration of each
phase in equinoctial hours by dividing the minutes of immersion obtained before
by the true hourly motion of the Moon.

However, the method to find out the phases of the solar eclipse is not exactly
the same as with lunar eclipses, since the effect of the parallax should be taken
into account. Two are the effects introduced by the parallax:

(i) Firstly, the duration of the phases would be greater than the ones obtai-
ned with the tables; and
(ii) secondly, the duration of both phases can be different.

Firstly, let us address the effect of the parallax, i.e., that the duration of the
phases would be greater than the ones obtained with the tables. Ptolemy deals
with this effect in the following quotation:

This phenomenon is due to the fact that the effect of the parallax on the moon’s appar-
ent motion is always to produce the appearance of motion which would be in advance
(if one were to disregard the moon’s proper motion towards the rear). For suppose,
first, that the moon’s apparent position is before [i.e. to the east of] the meridian: then,
as it gradually rises higher [above the horizon], its eastward parallax becomes con-
tinually smaller than at the moment preceding, and thus its motion towards the rear
appears slower. Or suppose, secondly, that its apparent position is after [i.e. to the west
of] the meridian: then, again, as it gradually descends [towards the horizon], its west-
ward parallax becomes continually greater than at the moment preceding, and thus, as

before, its motion towards the rear appears slower.”®

Ptolemy’s method is not very clear. To obtain the apparent motion, he knows
an interval obtained with the use of tables, an increment in the parallax related to

28. See Almagest V1.10 (Toomer p. 312).
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this interval, and the true motion of the Moon. The above quotation can be inter-
preted in two different ways:

(i) either, the interval obtained with tables is an apparent interval, so that,
through the parallactic correction, he finds the true interval;

(ii) or,the interval obtained with tables is a true interval, so that, through the
parallactic correction, he finds the apparent interval.

Since the intervals obtained with the use of the tables related to the minutes of
immersion and emersion are equal and the procedure involves apparent radii, the
most plausible hypothesis is that Ptolemy understands the intervals obtained with
tables as apparent intervals.

If the intervals obtained with tables are apparent, how can he find the apparent
motion of the Moon?

Firstly, he should take the minutes of immersion obtained with the tables and
correct them with the additional motion of the Sun. He then considers the initial
and final parallaxes of the apparent interval relative to the minutes of immersion,
and obtains a new interval, that should be deemed as a true one; that is an interval
in the lunar inclined orbit. If he applies the true lunar motion to the interval ob-
tained before, he will be able to find the duration of the phase relative to the inter-
val in question. And last, from the duration of the phase and the —apparent—
minutes of immersion computed with the tables and corrected with the additional
motion of the Sun, he can obtain the apparent motion of the Moon in its apparent
inclined orbit.

The method would, then, be the following:

* With the use of tables, he finds a value that he multiplies by 13/12 and ob-
tains Aw(D’), the interval in the apparent course of the Moon.

* He, then, finds the corresponding true interval, An(D), as Aw(D) = An(D’)
- Ap,, where Ap, is the component in the lunar inclined orbit of the incre-
ment of the parallax.

* He, then, finds the duration of the phase by applying the true lunar motion
as At = Aw(D) / w(D).

* And last, he finds the apparent motion, w(2’), as w(D’) = Aw,, / At.

If, instead of the previous hypothesis, Ptolemy would deem the interval ob-
tained with the use of tables as a true interval and the obtained one after the
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correction with the parallactic increment as an apparent interval, he would be
able to apply the additional information that he has, namely, the true motion of
the Moon, either, to the true interval, obtained with tables, or to the apparent in-
terval. In the first case, both phases would be equal, and consequently, it would
contradict Ptolemy’s premise that the duration of both phases should be different
because of the parallax. In the second case, he would apply a true motion to an
apparent interval, and this makes no sense.

If the intervals obtained with the tables are apparent, we should compare the
results obtained with the aforementioned method with Ptolemy’s ones.

Ptolemy considers two situations:

* When the solar eclipse takes place before the meridian, i.e., towards the east,
as the altitude of the Moon increases over the horizon, the component in
longitude of its parallax towards the east decreases, so that the apparent mo-
tion of the Moon appears to advance relative to the true one. Thus, the
motion of the Moon in the opposite direction appears to be slower.

* When the solar eclipse takes place after the meridian, i.e., towards the west, as
the altitude of the Moon decreases over the horizon, the component in lon-
gitude of its parallax towards the west increases, so that, as in the previous
case, the apparent motion of the Moon appears to advance relative to the
true one. Thus, the motion of the Moon in the opposite direction appears to
be slower again.

Consequently, the motion of the Moon in the opposite direction appears to be
slower regardless of whether the solar eclipse takes place before or after the me-
ridian. However, what does Ptolemy mean by «its motion towards the rear». At
the beginning of the previous quotation, Ptolemy points out:

This phenomenon is due to the fact that the effect of the parallax on the moon’s appar-
ent motion is always to produce the appearance of motion which would be in advance
(if one were to disregard the moon’s proper motion towards the rear).

The Moon appears to be moving «in advance» since, when advancing towards
the meridian, its parallax decreases towards the east; and when descending to-
wards the horizon, the parallax increases towards the west. For this reason, it
appears to advance faster in its course over the horizon. Thus, an apparent motion
«in advance» is a motion relative to the horizontal motion of the celestial sphere.
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Consequently, an apparent motion «towards the rear» should be an apparent mo-
tion relative to a motion in longitude, or, in the case of the Moon, a motion in its
inclined orbit.” Hence, the effect of the parallax results in that the apparent mo-
tion of the Moon in longitude —or accordingly, in its inclined orbit— is slower
than the true one. That is, w(D”) < w(D).

We should now consider whether the hypothesis about Ptolemy’s method
agrees with the previous interpretation, i.e., w(D”) < w(D).

Let us examine the apparent and true intervals. Since the duration of the phase
is the same in the apparent interval and the true one, and the apparent motion is
smaller than the true one, the apparent interval should be smaller than the true
one, because

Ao =w(D)/ At<w(D)/ At = Aw(D) (25).

Thus, we can verify if the apparent motion is slower than the true one if the
apparent interval is smaller than the true one.

Let us first examine the situation in the first quadrant.

We know that

(D%), = (D), +py(D),

o(), = w(D), + p,(D),.

Additionally,

p(l)())l >p0)())2 b

with p, the component of the parallax in the inclined orbit. If we take the incre-
ments, we find

An(D’) = An(D) + Ap,(D).
But since

Ap,(D) <o,

29. See Toomer p. 267 and p. 311.

253



JOSE BELLVER

the apparent interval is smaller than the true one
Aw(D’) < Aw(D) (26).

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic

Apparent
course
of the Sun

Figure 31. True and apparent intervals in the first quadrant.

Graphically (see Figure 31), in a first approximation, given two parallel paral-
laxes defining the initial and end times of an interval, if angle 3, i.e., the acute
angle defined by the lunar inclined orbit and the parallax, is smaller than angle 3’
i.e., the acute angle defined by the apparent course of the Moon and the parallax,
the true intervals should be greater than their apparent intervals. In fact, to be
more accurate, if

B<B <180°-p (27),

the apparent interval is smaller than the true one, so that, accordingly, the appar-
ent motion is also slower that than the true one. In order for the graphical method
to be correct, the acute angles defined by the inclined orbit and the parallax, and
by the apparent course and the parallax should be taken into account, since they
have the two needed characteristics: (i) a negative increment of the parallax as a
function of time—Ap, (D) < o— and (ii) the addition of the component in the
inclined orbit of the parallax to the argument in true latitude to obtain the argu-
ment in apparent latitude —w(’) = w(D) + p,(D)—.
As to the second quadrant, we know that

w()’)n = U)())l _pw())l
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(D()’)z = (D(D)z _pm())z'
Additionally,

Po(D), <Py(D),,

with p, the component of the parallax in the inclined orbit. If we take the incre-
ments, we find that

A(D’) = An(D) — Ap, (D).

But since
Ap,(D)>o,

the apparent interval is smaller than the true one
Aw(D’) < Aw(D) (28),

as in the case of the first quadrant.

If we examine the situation in the second quadrant graphically (see Figure 32),
given two parallel parallaxes defining the initial and end times of an interval, if
angle 3, i.e., the acute angle defined by the lunar inclined orbit and the parallax,
is smaller than angle /3’, i.e., the acute angle defined by the apparent course of the
Moon and the parallax, the true intervals should be greater than their apparent
intervals. In fact, to be more accurate, if

p<p <180°-p,

the apparent interval is smaller than the true one, so that, accordingly, the appar-
ent motion is also slower that than the true one.

For the geometrical procedure to be correct, the following must be taken into
account: the acute angles defined by the inclined orbit and the parallax, and by the
apparent course and the parallax, since they have the two needed characteristics,
namely (i) a positive increment of the parallax as a function of time —Ap, (D) >
0— and (ii) the subtraction of the component in the inclined orbit of the parallax
from the argument in true latitude to obtain the argument in apparent latitude

—0() =) - p,(D)—.
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Figure 32. True and apparent intervals in the second quadrant.

To obtain the true interval from the apparent one graphically, let us consider
Figure 33. If, as a way of approximation, we regard two different parallaxes as
parallel, the true interval is

_ » Sin f3’
Am(D) =An(D’) /sin,B

(29).

Lunar inclined

orbit D,

Apparent course
of the Moon

Time

Figure 33. Graphical resolution of the true interval.

Thus, if the previous condition is met, i.e., 8 < 3 < 180° - 3, we obtain that
sin 8> sin (30)

and, consequently, Aw(D) > Aw(D’).
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Before examining the true motion relative to the apparent one, it may be inter-
esting to consider under which conditions, in case there are, the true motion
would be smaller than the apparent one. In general, we know intuitively that in
most cases it is greater. However, there may be some situations in which this is
not the case.

Lunar
inclined Ao

orbit Lunar

inclined
orbit

Apparent

course Apy

Apparent course }
of the Moon of the Moon
Aw - Ap,
Figure 34. Temporal evolution of the parallax Figure 35. Increment in the evolution
relative to the lunar inclined orbit. of the parallax relative to the lunar

inclined orbit.

Figure 34 shows the evolution of the lunar parallax as a function of the lunar
inclined orbit. We see that, as the Moon increases its altitude, the parallax de-
creases and tends to be a perpendicular relative to the inclined orbit. We can ex-
amine the conditions in which the apparent motion is greater than the true one if
we take one of the figures defined by two successive true and apparent positions
of the Moon, as in Figure 35.

We want to know when

An(D) < An(D’) .

From Figure 35, in which all increments are positive, for infinitesimal incre-
ments, the previous inequality is

WD) dr < [ov(D) dr - P app + (P8 gpyepe (1),
dt dt
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where dp,/dt corresponds to the parallax in the inclined orbit and dpy/dt corre-
sponds to the component in latitude of the parallax relative to the inclined orbit —
and not relative to the ecliptic—. Since all the increments are positive, we can find

<d£w >+<%> (32).

I
2 dpw
dt

w(D) <

If dp,,/dr and dpg/dt tend to zero, the second term of the inequality also tends to
zero. When dpg/dz has a significant value and, in turn, dp,/dz tends to zero, then
the second term of the inequality increases exponentially, so that we would
obtain the values that make the initial inequality true, and, consequently, the appar-
ent interval would be greater than the true one. Let 3 be the angle defined by the
parallax and the lunar inclined orbit. The variation of the parallax in the inclined
orbit is

dpo _ dp _
& = dr CosP—psenp (33).

And the variation of the parallax in latitude relative to the inclined orbit is

dps _ dp _
& =dr B —pcosp (34).

When 3 tends to 0° (8 - 0°),

dp. dp dps
dr ~dr and G P

In addition, the parallax is big, but its variation is minimal. In turn, when
tends to 90° (5 -90°),

dpo dps _ dp
d - -p and dr g dr -

In this case, the parallax is small and its variation is big. We need a minimal
dp,/dt and a significant dpg/dz. A minimal dp,/d¢ is true when f tends to 0% in
turn, a significant dpg/dt is true when f3 tends to 9o°. Thus, according to this first
estimate, it would be difficult to find a situation in which the true motion would
be smaller than the apparent.
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Once we have studied the first effect, we should focus on the second effect
pointed out by Ptolemy: that is, that in general the phases of immersion and emer-
sion are different to each other.

Ptolemy points out that the more the Moon approaches the meridian —that
is, the more it ascends in altitude —, the differences between successive paral-
laxes, defined by equal time intervals, increase, as from the table of parallaxes,” so
that the parallax decreases more rapidly as the Moon approaches the meridian. That
is, the absolute value of its variation with the altitude is greater in areas close to
the meridian than in areas close to the horizon.

Hence, the duration of the phases to the one obtained through the column of
minutes of immersion —column IV of the tables I and II— is not only different
after the correction because of the additional motion of the Sun, but also because
the phases of immersion and emersion of a same eclipse are different between
each other, and thus the closer to the meridian is greater than the farther one.
Lastly, Ptolemy points out that, if the eclipse mid-time happens at the same time
when traversing the meridian, the duration of the phase of immersion should be
equal to the phase of emersion.

Finally, Ptolemy illustrates the effect of the parallax in the duration of the dif-
ferent phases to conclude his exposition on solar eclipses.

Let us consider the second thesis by Ptolemy. To do so, we will first examine
the first quadrant. We will use subscripts ‘i’, ‘m’ and ‘f’ to refer to the initial, mid-
dle and end times of the solar eclipse, and subscripts ‘im’ and ‘em’ to refer to the
phase of immersion and the of emersion.

We know that

w()’)i = (1)())1 + pu)())i
0(D")p = 0Dy + Po( Dy
0(D%); = 0D+ pu(D); -

Additionally,

pw())i >pm())m >pm())f s

30. See Almagest V.18 (Toomer p. 265).
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with p,, the component of the parallax in the inclined orbit. In turn, we know that
the variation of the parallax increases when the altitude increases. Hence,

APo(D)em < Apy( D) <O .

If we take the increments corresponding to the phases of immersion and emer-
sion, we find

AO(D’) en = AO(D) ¢y + APo(D) ey

Aw()’)im = Am())lm + pr())im .

If we take the difference between the intervals of emersion e immersion, we
find that

AD(D’) en = AD(D") i, = (AD(D) ey = AW(D) i) + (AP(D) e = AP(D) i) -

But, since
pr())em < pr())im <o

and, consequently,
Apy(D) en = Apo(D)in >0,
we find that
(AO(D’) o = AD(D") 1) < (AD(D) oy = AD(D) ) -
However, since the apparent intervals are equal, that is
AO(D) oy = AO(D") iy,

then
0 < (AD(D) e — AW(D) ) -

Hence, the true interval in the phase of immersion is smaller than in the phase
of emersion. That is,
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AOD) e > AD(D) i, (35).

Consequently, the duration of the phase of emersion is greater than that of im-
mersion, since

Atem = Aw())em / W(D) > A(J‘)())lm / W(D) = A[im (36)

Thus, when the solar eclipse takes place in the first quadrant, the duration of
the phase of emersion, the closer to the meridian —according to Ptolemy—, is
greater than the duration of the phase of immersion.

As for the second quadrant, we know that

0(D’); = w(D); — py(D);
(D(D’)m = (D())m _pw())m
0(D") =0 D) —pu( D) .

Additionally,

pw())i <pw())m <pw())f ’

with p,, the component of the parallax in the inclined orbit. In turn, we know that
the variation of the parallax is greater as the altitude increases. Hence,

0> Apm()) im > Ap(o()) em *

If we take increments corresponding to the phase of immersion and emersion,
we find

A("‘)(D,)em = Am())em - pr()) em
A(/'\)()’)im = A(D()) im pr())im .

And if we take the difference between the intervals of emersion and immer-
sion, we find

A('[)()’)e,m - A(D(),)im = (A(D()) em Aw())lm) - (Apm())em - pr())lm) .

But since
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0> Apm()) im > Apm())em

and consequently

pr())em - Apm())im <o,

we find that

(AD(D’) oy = AD(D) i) > (AD(D) oy = AD(D) i) -

However, since the apparent intervals are equal, that is
A(D()’) em — A(D(D’) im »

then
0> (A(D()) em A(D(D) im) .

Or similarly, the true interval in the phase of immersion is greater than in the
phase of emersion. That is,

A(D()) im > A(D()) em (37)

Consequently, the duration of the phase of immersion is greater than that of
emersion, since

Atin = A(’I‘)()) im / W()) > A('I‘)())em / W()) = Atem (38)'

Thus, when the solar eclipse takes place in the second quadrant, the duration
of the phase of immersion, which, according to Ptolemy, is the closer to the me-
ridian, is greater than the duration of the phase of emersion.

Graphically, we know that, in general, whenever

p<p <180°-p

is true, the apparent interval is smaller than the true one, so that the apparent mo-
tion is also smaller than the true one.
Given two equal apparent intervals, since
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Ao = Aw(d) 0B,
sin 8

the true interval —Aw(D)— relative to an apparent interval whose angle 3’ tends

to 90° (8” - 90°) is greater than the true interval —Aw(D)— relative to an appar-

ent interval whose angle 3’ tends to 0° or 180° (5” — 0° or 5’ - 180°). That is,

An(D)| > Aw(D)|

sin 7 — 1 sin 7> o0 *

Hence, considering Figure 36, where we deem that the phase of emersion is
closer to the meridian —in fact to the mid-heaven of the ascendant— , we find that
the interval whose 3° - 90° corresponds to the phase of emersion, whereas the
interval whose 3’ - 0° corresponds to the phase of immersion. Thus,

A(}‘)())em = A(D())lsm p -1 > Am())lsm B —o0= A(J‘)()) im (39)

Lunar inclined
orbit

Apparent
course
of the Moon

Time

Figure 36. True intervals from apparent equal intervals in the first quadrant.

Consequently, the duration of the phase of emersion is greater than that of im-
mersion; and, since the eclipse takes place in the first quadrant, the duration of the
phase closer to the meridian is greater.

In short, all of the above confirms the hypothesis that Ptolemy deems that the
intervals obtained with the tables, and corrected with the additional increment of
the Sun, should be considered as apparent intervals. Likewise, it also seems to
confirm that the motion «towards the rear» refers to the lunar motion in longitude
or in its inclined orbit.
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3. JABIR B. AFLAH ON SOLAR ECLIPSES

Once we have studied Ptolemy’s method to obtain the magnitude and phases of
solar eclipses, by expanding Ptolemy’s laconic exposition of the topic —particu-
larly, his understanding of the effect of the lunar parallax —, we will address Jabir
b. Aflah’s method on the topic.

In his Introduction to the al-Kitab fi I-Hay’a, Jabir b. Aflah pointed out a series
of reasons that led him to write this work, including his intention to expand on
some topics that Ptolemy had overly summarized, and to correct some mistakes
that he had found in the Almagest. Jabir b. Aflah both expands and corrects Ptole-
my’s treatment of solar eclipses.

As Ptolemy does, Jabir b. Aflah finds the magnitude and the duration of the
phases of solar eclipses by expanding the method dealing with lunar eclipses. He,
first, accounts for the effect of the parallax and, then, finds the magnitude and the
phases of solar eclipses following the same procedure that he used for the com-
putation of lunar eclipses, avoiding the use of tables.”

To understand Jabir b. Aflah’s criticisms of Ptolemy on the topic of solar eclips-
es, we first need to introduce Jabir b. Aflah’s own method on the topic.

Jabir b. Aflah divides his exposition in different parts. Firstly, he presents a
figure to support his description of the evolution of the solar and lunar parallax
over time. Next, he aims to obtain the apparent conjunction from the true one on
the basis of a geometric approximation in which he only deals with longitudes.
Then, he explains his solution to find the apparent conjunction in order to obtain
the apparent magnitude of solar eclipses using times and motions. He, then, ex-
amines the different duration of the phases of solar eclipses. And lastly, he pre-
sents his criticisms of Ptolemy on the topic.

3.1. Jabir b. Aflah’s method for the computation of Solar Eclipses
Preliminary knowledge
Unlike Ptolemy, Jabir b. Aflah provides a figure (see Figure 37) to support his

exposition.

31. See Bellver, «Jabir b. Aflah on Lunar Eclipses».
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Circle BZGE represents the horizon. Point A is the zenith of this horizon, and
line ZAE its meridian. Arcs BDG and TDK represent two possible dispositions of
the ecliptic above the horizon at two specific times. Arc BDG represents a dispo-
sition of the ecliptic in which the mid-heaven of the ascendant —in this case point
W — is to the east of the meridian —line ZAE—, whereas arc TDK represents a
disposition of the ecliptic in which the mid-heaven of the ascendant —in this case
point H— is to the west of the meridian —line ZAE—. Points G or K are the
ascendant in the true conjunction for both dispositions. Arcs AW and AH of great
circle pass through the poles of arcs BDG and TDK —the visible arcs of the
ecliptic— and the zenith. Thus, points H and W divide the visible part of the
ecliptic into two halves or quadrants. The remaining points on the figure are need-
ed to present Jabir b. Aflah’s procedure for the computation of solar eclipses.

Direction of the zodiac
-—

Figure 37. MS Ea 66r.

Jabir b. Aflah then provides a short introduction in which he accounts for the
effect of the parallax depending on the location of the true conjunction.

He divides the visible section of the ecliptic into two quadrants: the first one
defined by the ascendant and the mid-heaven of the ascendant —either arcs GW
or HK—; and the second one defined by the mid-heaven of the ascendant and the
descendant —either arcs WB or HT —.

If the conjunction takes place in the first quadrant, the solar and lunar paral-
laxes in longitude take place along the direction of the zodiac; in turn, if the con-
junction takes place in the second quadrant, the solar and lunar parallaxes in lon-
gitude take place in the opposite direction of the zodiac, as shown by Figure 38.
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Altitude

2 b
p p
2 )

First quadrant Second quadrant

Direction of the zodiac
-—

Figure 38. Parallax in longitude according to the direction of the zodiac.

Next, he points out that the parallaxes decrease with altitude. For instance,
when the Moon reaches the mid-heaven of the ascendant, points W or H, the par-
allax in longitude is zero and its true position agrees with the apparent one. When
the Moon traverses the mid-heaven of the ascendant and its altitude begins to
decrease, its parallax increases, and its parallax in longitude lays along the direc-
tion of the zodiac.

He, then, points out that, if in the true conjunction the parallax in longitude
lays along the direction of the zodiac, the apparent conjunction takes place before
the time of the true conjunction; whereas, if the parallax in longitude lays in the
opposite direction of the zodiac, the apparent conjunction takes place after the
time of the true conjunction. This is so because of the time correction needed to
account for the effect of the parallax, as shown in Figure 39.

If the apparent conjunction, Jabir b. Aflah continues, takes place before the
time of the true conjunction, as in the first quadrant, the parallax in longitude in
the apparent conjunction is greater than in the true conjunction. Nevertheless, he
does not point out, as this may seem obvious, that the motion of the celestial
sphere from east to west in the horizon is greater than the solar and lunar motions
in longitude. Likewise, if the apparent conjunction takes place after the time of
the true conjunction, as in the second quadrant, the parallax in longitude in the
apparent conjunction is greater than in the true one, because of the motion of the
celestial sphere from east to west, as in the previous case.

He, then, concludes that the parallax in longitude in the apparent conjunction
is always greater than in the true conjunction. That is,

pklca > pklcv (40)

Next, Jabir b. Aflah aims to obtain the longitude of the apparent conjunction
from the true one.

266



Ptolemy and Jabir b. Aflah on Solar Eclipses

Motion of the Motion of the
celestial sphere celestial sphere
during mA? during mA?

Altitude

. A
True longitude True longitude

of the apparent of the apparent
P conjunction conjunction /)

True longitude True longitude

Gl of the true of the true \B

conjuncion conjuncion

First quadrant Second quadrant

Direction of the zodiac
-—

Figure 39. True and apparent conjunctions in both quadrants.

Method to find the apparent conjunction from the true one

Jabir b. Aflah’s approach to the topic differs from Ptolemy’s on some points, al-
though, broadly speaking, he follows the same steps. The main difference is that
Jabir b. Aflah provides a figure that clarifies Ptolemy’s method, since Jabir b.
Aflah adds a number of points aiding in the understanding of Ptolemy’s method.
In addition, the above introduction by Jabir b. Aflah helps the reader to under-
stand the evolution of solar eclipses in the sky, and provides him with a basis to
present his criticisms of Ptolemy.

After his short introduction, Jabir b. Aflah focuses on finding the apparent
conjunction from the true one, as a preliminary step to find the magnitude of solar
eclipses. However, in his first approach to the topic, Jabir b. Aflah presents his
method without making any reference to the evolution of the eclipse over time.

The method he presents is independent from the quadrant in which the true
conjunction takes place. He only needs to know that the parallax in longitude in
the apparent conjunction is greater than in the true one. However, in the pro-
vided figure (see Figure 37), the conjunction takes place in the first quadrant.
Thus, we will show Jabir b. Aflah’s method if the conjunction takes place in the
first quadrant.

Before mentioning what Jabir b. Aflah says, it is worth pointing out what he
does not. For Ptolemy, the first step to account for the effect of the parallax is to
obtain the position of the true conjunction in the horizon of the observer. To do
s0, he sought the difference in equinoctial hours between the true conjunction and
the meridian of Alexandria to find the difference in longitude between the merid-
ian of Alexandria and that of the observer in equinoctial hours. He, then, found
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the difference in equinoctial hours between the true conjunction and the meridian
of the observer.

Jabir b. Aflah does not mention this point, although this is a necessary step to
compute a solar eclipse. In addition, he only uses parallaxes in longitude without
pointing out how to find them. As in previous occasions, Jabir b. Aflah’s interest
is purely theoretical; and does not take into account any practical application.

To find the longitude of the apparent conjunction, Jabir b. Aflah needs the
longitude of the true Moon whose apparent longitude is equal to the apparent
longitude of the Sun in the true conjunction. Firstly, he mentions a number of
points needed to find the time of the true conjunction, as shown in Figure 40.

Lunar inclined
orbit

Apparent
course
of the Moon

Ecliptic

Apparent
course
of the Sun

True
conjunction

- Longitude +

Figure 40. True conjunction.

In Figure 40, point L is the longitude of the true conjunction, M the longitude
of the apparent Moon in the true conjunction, and R the longitude of the apparent
Sun in the true conjunction. That is,

)\'())CV = )\'(Q)CV = L

M) =M
MO*) =R

Consequently, the solar and lunar parallaxes in the true conjunction are

p}\())cv =LM
p}»(e)cv =LR.
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Jabir b. Aflah seeks to find the point of the ecliptic that corresponds to the true

position of the Moon when its apparent position is point R.
Firstly, he finds the difference between the lunar and solar parallaxes in the

true conjunction, Ap,,. That is,
Ap)\l :p}n())cv_p)»(Q)cv (41)
And according to the points in Jabir b. Aflah’s figure,

Ap,,=LM-LR=RM .

Q LIRC M

True
conjunction
Longitude +
Figure 41. Finding the apparent conjunction.
Once Jabir b. Aflah knows Ap,, = RM, he seeks to compensate the effect of
the parallax in longitude in the true conjunction by finding a point in the ecliptic

in the opposite direction to the parallax in longitude at a longitude Ap,, = RM
from that of the true conjunction. He, thus, seeks point Q (see Figure 41), so that

RM=QL=Ap,, .

And, consequently,
QR =LM =p,(D),, ,since QR = QL+ LR =RM + LR =LM = p,(D),, .
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In our notation, point Q refers to A(D,). Once Jabir b. Aflah has obtained this
point, he deems a second situation, in which the Moon’s longitude is point Q, that
is M(D,), to examine the parallax effect. If the lunar parallax in longitude on point
Q —he points out— is equal to its parallax on point L, the apparent longitude of
the Moon is point R, and thus point Q is the one being sought. That is

= (D), =p(Q) =LM = p,(D),,
~MD)=R.

But, because of the epiparallactic effect of point Q relative to point L, p,(D),
=p,(Q) #LM = p,(D),,. Consequently, M(D’,) # R.

Hence, the parallax on point Q —he continues— is greater than the parallax
on point L. Jabir b. Aflah, thus, deems point C as the longitude of the apparent
Moon in this second situation. That is

A7) =C
p(2),=pi(Q) =QC.
He then finds a second increment aiming to account for the effect of the epiparal-
lax between point Q and point L. The increment to account for the epiparallax is RC.
We can obtain RC from QC and QR as

RC=QC-QR.

But we know that QC is the lunar parallax in longitude in this second situation
and that QR is the lunar parallax in longitude in the true conjunction. Thus,

RC=QC-QR =p,(2), - pi(D)ev » since QR =LM = p;(D),, .

We have referred to RC as Ap,,. However, we have seen that Ptolemy deems
Ap,, as

Ap}»z = [p}‘())z _p)\(o)z] - [p}»())cv _pk(o)cv] = ep())l(z:v - ep(e)laf (42)a
with

ep(D)kv:p)\(D)z _p)»())cv and ep(Q)lgv:pK(G)z _pk(e)cv .

270



Ptolemy and Jabir b. Aflah on Solar Eclipses

Thus, Jabir b. Aflah does not take into account the effect of the solar epiparal-
lax during the interval defined by this second situation and the true conjunction,
e (O,

Once Jabir b. Aflah has obtained Ap,,, he needs to account for the effect of the
epiparallax, as Ptolemy already did. He, thus, considers a third situation in which
the Moon is at a longitude Ap,, = RC from A(D,) = Q in the opposite direction to
that of the parallax. To do so, he seeks point O, see Figure 42, so that

0Q=RC=Ap,, .

And consequently

OR =QC = p,(D), since OR=0Q + QL +LR =QL +LR +RC
=QC=p(?), .

|

0 Q L|RFC M

True
conjunction

- Longitude +

Figure 42. Finding the apparent conjunction.

Next, he finds the parallax in this new situation. If the parallax in longitude of
the Moon on point O —he points out— is equal to its parallax on point Q, the
apparent longitude of the Moon is point R, and thus point O would be the one
being sought. That is
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= (D), = p,(0) = QC = p,(Q) = pi(D),
MDY =R.

But since the effect of the epiparallax of point O relative to point Q is p;(D),
=p,(0) # QC = p,(D), , consequently, A(D’,) #R.

The parallax on point Q —he adds— is greater than the parallax on point L.
Thus, the point obtained is not R, but F, namely the longitude of the apparent
Moon in this third situation. That is

MDY’ =F
Pi(2);=p,(0) = OF .
Since the apparent longitude of the Moon when its true longitude is O is not

R, but F, Jabir b. Aflah ops for a new approximation. Jabir’s procedure is close to
the one followed by Ptolemy. According to Ptolemy,

we take the longitudinal parallax of this by itself, plus an additional amount (if it is
significant) which is the same fraction of the latter as the latter is of the original [lon-
gitudinal] parallax.*’

That is, the total epiparallax, e,, is
ep = Apkz + l (43)

with [
l = Apk} = Apkzz/ ApM (44)

In turn, Jabir b. Aflah points out that (see Figure 45):

O 0l e =32l 5 5 us8 ] Ll 08 < o usd 50 e da § oshain Bl oS8
Ao GO e g wsd A e dhi e @b blasg Mo 5 pwsd e bosje Jis Luguow
Ayslall Zhill o (nw dads (o ,ddl

32. Almagest V1.10 (see Toomer p. 311).
33. MSs Ea and Eb give slo <15.
34. MSs Ea and Eb give ose =6
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And in translation:

Be its parallax on point O arc OF. If we add to arc RF [or FC]* a section of itself (al-
Jjuz’ minha), if it is significant, in the same proportion of itself to arc RC [or FM] P and
we add this value to point O, as if [resulting in] arc SO, point S is approximately the
point we are looking for.

MSs Ea and Eb differ from MS B on the notation of relevant points. The trans-
mission of the two Escorial manuscripts—MSs Ea and Eb— gives arcs FC and
FM, whereas MS B gives, instead, arcs RF and RC. We will, firstly, study the
transmission of the Escorial manuscripts, and then the transmission by the Berlin
manuscript. We will, then, check which is the correct one.

We will refer to the longitude we are seeking with letter /. Jabir b. Aflah, as in
the transmission of the Escorial manuscripts, points out that this longitude is «a
section of itself [that is, of FC], if it is significant, in the same proportion of itself
[that is of FC] to arc FM». That is,

[ _FC /

/
FC M

so that [ is
[=FC*/FM .

In Figure 43, we show the graphical resolution of /. It is surprising that the
transmission of the Escorial manuscripts takes into account ratio FC / FM to find
[, since FM includes the solar parallax whereas FC does not include the effect of
the solar epiparallax.

But longitude / should be added to FC. The obtained arc, after adding / to FC,
should, then, be added, Jabir b. Aflah keeps on, to point O—logically, in the op-
posite direction to that of the parallax, although Jabir does not point this out—,
resulting in arc SO. That is,

SO =FC + FC*/FM .

35. MS B gives RF; MSs Ea, Eb give arc FC.
36. MS B gives RC; MSs Ea, Eb give arc FM.
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— O

O Q L|RFC M

True
conjunction

Longitude +

Figure 43. Graphical resolution of / 3

He, thus, finds point S in the fourth situation. In this new situation, we should
consider which would be the apparent longitude of the Moon if it would be placed
on longitude S. Thus, SO corresponds to the third increment in longitude, which
we will refer to as

SO = Ap, 0™,

in which the superscript 9B refers to the increment obtained by Jabir according
to the transmission of the Escorial manuscripts.

Lastly, Jabir remarks that point S is the one he was seeking; that is, the true
longitude of the Moon whose apparent longitude agrees with the apparent longi-
tude of the Sun in the true conjunction —point R—, that is

MD)=S so that MY)=MO"),=R.

37. To facilitate the graphical representation, the scale of the abscissae does not agree with that
of the ordinates.
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However, longitudes FC and FM approximately correspond to the following
increments:

FC =RC = Ap,,
FM = RM = Ap,,

so that the obtained longitude SO corresponds approximately to
SO = Ap)\gu’ES) = Apk+2 Apkzz / Apkl (45)

In turn, the third increment obtained according to Ptolemy’s method —which
we refer to as Ap,,”’— does not correspond to the one obtained by Jabir b. Aflah,
since

SO = Ap,0") = Ap,+, Ap,,2 | Apy, = Apy, + Ap,,®  (46).

Consequently, both increments differ in Ap,,. To find out if the obtained incre-
ment makes sense, it should be approximately equal to RF. However, since

SO = Ap, % = FC + FC*/FM = RC + RC*RM >>RF ,

the suggested increment SO = Ap, " is far greater than the one we are look-
ing for, that is RF. Thus, the increment Ap, ,"** in the Escorial transmission does
not seem to make sense, as we shall see below.

In turn, in the transmission of the Berlin manuscript, this new increment —
which we refer to as Ap,,"®, that is the «additional increment in longitude ob-
tained by Jabir in the transmission of the Berlin manuscript» — is

SO = Ap,,0® = RF + RF?/RC .
However, what does RF refer to? In Figure 42, we see that RF corresponds to
the epiparallactic increment between the third situation and the second one; that

is, between the lunar parallaxes of longitudes O and Q, since

RF=0F-O0OR.
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We know that

OF :pk())g
OR =QC =p,(D),

since OR =0Q + QL+ LR = QL + LR + RC = QC = p,(D),. Hence, RF is
RF =p;(D), - p:(D), -

As with Ap,,, here the procedure in the transmission of the Berlin manuscript
does not take into account the solar epiparallax either. Since Jabir b. Aflah adds
RF to point O —and, although he does not point this out, as before, the sign of the
addition should be in the opposite direction to that of the parallax —, he is, in fact,
taking a fourth situation into account, which entails a new epiparallactic incre-
ment relative to point O. Thus, RF stands as increment Ap, ; in Ptolemy’s proce-
dure. We will refer to RF as Ap, .0, that is «the third increment obtained by Jabir
in the transmission of the Berlin manuscript». The difference between Jabir and
Ptolemy’s methods regarding this increment is that Ptolemy finds Ap,, through an
interpolation, whereas the Berlin manuscript applies the procedure used to obtain
Ap;,, now, to obtain Ap; ..

Consequently, let be S’ a point in longitude —Jabir b. Aflah does not make
reference to this point— at distance Ap;,"® = RF from O, and in the direction
opposite to the lunar parallax. This point yields a new situation, the fourth one.
Once the Moon is placed on this point, Jabir b. Aflah deems whether the apparent
longitude of the Moon is close to R —which corresponds to the apparent longi-
tude of the Sun in the true conjunction— . Once he realizes that it does not match
R, he considers a new increment, which we will refer to as Ap,;,®. This time,
Jabir b. Aflah, as in the version in the Berlin manuscript, finds a new increment
through an interpolation. Jabir b. Aflah suggests this new increment to be

Ap, " =RF/RC  (47).

We know that

RF = Ap, 0»
RC = AI))\2 .
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Thus, the increment Ap, ,*® = RF*/RC corresponds to
Apy P = Apy P [ Apy, (43),

which clearly follows Ptolemy’s interpolation obtained for Ap,,”) = Ap;,> / Ap;,.
Figure 44 provides a graphical explanation of this interpolation.

Nevertheless, is this new approximation really needed —that is, Ap;,®— if
compared with the one, Ap;,®, given by Ptolemy, considering the accepted errors in
the astronomy of the time? The answer should be negative. The reason behind this
new increment introduced by Jabir b. Aflah seems to owe to a feeling of mathemat-
ical scrupulousness and elegance. Jabir b. Aflah should have been aware that, by
dealing with longitudes and not time intervals, the geometrical approximation en-
tailed to disregard the solar epiparallax, and this from the Ap,, situation. Thus, mak-
ing use of Ptolemy’s interpolation in Ap; , entails to link an exclusively lunar epipar-
allactic increment —as in the case of Ap,,— with a lunisolar parallactic increment
—as in the case of Ap;,—. This time, with Ap, ,*®, Jabir links two epiparallactic
increments, and both exclusively lunar —as in the case of Ap;, and Ap,,"® — . Such
an interpolation seems to meet Jabir b. Aflah’s standards of scrupulousness.

Epiparallax

By

A e PR R R EEEE

Correction

) in longitude

Ap,=RC = because of
RF the parallax

By

Figure 44. Graphical resolution of ApM<"B>.38

Thus, after he obtained Ap, ,"® as

AP, = Ap, 0B + Ap, 0P = Ap, 0B + Ap, 9] Ap,, =

38. To facilitate the graphical representation, the scale of the abscissae does not agree with that
of the ordinates.
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=RF + RF?/RC = SO (49),

Jabir b. Aflah can obtain a new situation —the fifth one— which corresponds
to point S. Jabir b. Aflah regards this point as the sought one, since it corresponds
to the true longitude of the Moon whose apparent longitude, approximately,
matches the apparent longitude of the Sun in the true conjunction —point R—,
that is

YOREN so that MD') = MO, =R (50).
Thus, the total parallax according to the transmission of the Berlin manuscript is
Ap)\: ZAp}»i Wlth l: I..4 (SI).

Figure 45 shows the result of Jabir. Aflah’s method according to the transmis-
sion of the Berlin manuscript.

o,
oo o——
S L||R M
True Apparent

conjunction  conjunction

Longitude +

Figure 45. Jabir b. Aflah’s method
to obtain the apparent conjunction.

We have pointed out above that Ptolemy bases his approximation to obtain the
apparent longitude of the Moon in the apparent conjunction by adding increments
in longitude corresponding, firstly, to the difference of parallaxes —Ap,, —, sec-
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ondly, to the epiparallactic difference —Ap,,— between the Moon and the Sun,
and, lastly, to an interpolation of the previous increments —Ap,,— . The true longi-
tude of the Moon, whose apparent longitude matches the apparent longitude of the
Sun in the apparent conjunction, can be obtained through the indefinite iteration of
the procedure used above to obtain the first two non-interpolated increments. Since
Jabir b. Aflah, as in the transmission of the Berlin manuscript, iterates the correction
one more time than Ptolemy, his approximation is more accurate than the latter’s.
Likewise, we have already pointed out that the slope obtained through interpolation
—in this case, m = Ap, ;%" / Ap,,— is always greater than the one obtained by the
iterative addition of successive epiparallactic increments. However, since the inter-
polation is applied to the increment Ap, ,"® —since Ap;,"® = m-Ap,,"® with m =
Ap, ;9B | Ap,,—, the error introduced by the difference between m and the real
slope is smaller than in Ptolemy’s approximation. Thus, point S obtained as in the
transmission of the Berlin manuscript is far more accurate than the one obtained by
Ptolemy, and, no doubt, far more correct than Jabir b. Aflah’s method as in the
transmission of the Escorial manuscripts.

An analysis based on Figure 42 helps us show the degrees of accuracy of the
different methods to find point R. These methods include the one by Ptolemy and
the ones in the two transmissions of the al-Kitab fr I-Hay’a. Figure 46 illustrates
the accuracy of the different methods.

In this Figure, be point J the value obtained by Jabir b. Aflah according to the
transmission of the Escorial manuscripts. To facilitate the graphical representa-
tion, the scale in Figure 42 has been augmented ten times. Ptolemy’s approxima-
tion with increment Ap,, alone is far more accurate than the one in the transmis-
sion of the Escorial manuscripts. In turn, be point Pt the result obtained by Ptolemy,
and point J; the result obtained by Jabir b. Aflah in the transmission of the Berlin
manuscript. To compare both accuracies in this second case, the scale in Figure
42 has been augmented five hundred times. As presumed above, the more accu-
rate procedure is the one in the transmission of the Berlin manuscript, so that it
can be presumed that Jabir b. Aflah’s actual method is the one in the transmission
of the Berlin manuscript. It is more accurate and it agrees with Jabir b. Aflah’s
scrupulousness.

However, Jabir b. Aflah claims that the result obtained, point S, corresponds
to the true longitude of the Moon in the apparent conjunction, since its apparent
longitude agrees with point R, the apparent longitude of the Sun in the true con-
junction. However, Ptolemy adds a further step by which he multiplies the total
obtained parallax times 13/12 to find the longitude of the true Moon in the apparent
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Figure 46. Graphical accuracy
of the different methods.

conjunction, since the solar motion during the time the Moon traverses a longi-
tude equivalent to the total parallax should be taken into account.

Nevertheless, as pointed out above, in this preliminary stage, Jabir b. Aflah
presents his method without making any reference to time intervals, which he
will introduce next.

Magnitudes of the solar eclipse

Jabir b. Aflah follows the same steps as in Ptolemy’s method. Firstly, he aims to
compute the longitude, latitude and lunar anomaly in the apparent conjunction.
Then, he computes the apparent latitude. And, lastly, he finds the magnitude of
the solar eclipse following the same steps of the lunar eclipse.

Longitude, latitude and lunar anomaly in the apparent conjunction

In this second theoretical approximation to the problem, in which he does take into
account time increments, Jabir b. Aflah’s method is the same as the one presented
above, although the main difference, this time, is that he turns parallaxes and
epiparallaxes into time increments. To do so, he divides these longitudes by the
true motion of the Moon in the true conjunction. Depending on angle y, the time
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increments obtained are added to or subtracted from the time of the true conjunc-
tion to find the time of the apparent conjunction. He then finds the longitude, lati-
tude and lunar anomaly using the above time as an argument in tables. Let us see
this method when time intervals are considered instead (see Figure 47).

a. First time increment (At,)

The steps to find the first-time increment, At,, which corresponds to Ap,,, are the
following ones:

* Firstly, he finds the total lunar parallax in the true conjunction —p(D),,—
and subtracts the total solar parallax —p(®),,—. That is, p(D),, — p(®©).,.

* He, then, finds the lunar parallax in longitude —p;(D).,—, that is, arc RM.
Jabir b. Aflah —or maybe a scribe — makes a mistake, since in the previous
step he found the difference between the parallaxes of the Moon and the Sun
in the true conjunction. That is, Ap, = p(D),, — p(©),,. It is the component in
longitude of this parallatic difference which, in fact, corresponds to arc RM.
That is,

RM = Ap}u[ =pk())cv _p)»(o)cv .

e Next, he finds the first time increment — A¢,— by dividing RM by the mo-
tion of the true Moon in the true conjunction —w(D),, —. That is,

At = Apy, I w(D)e, =RM/ w(D),, .

¢ Once he has obtained At,, he adds or subtracts it to or from the time of the
true conjunction according to angle y’so that,
o if the parallax in longitude takes place in the direction of the zodiacal signs
across the ecliptic, he subtracts Az, from the time of the true conjunction;
that is,

t,=t,—At;

o and, if the parallax takes place in the opposite direction of the zodiacal
signs across the ecliptic, he adds At, to the time of the true conjunction;
that is,
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t,=t,+ At,.

The difference with the procedure presented before is mainly that, instead of
finding the time increment after obtaining the total parallax corrected with the
solar motion in the interval and adding or subtracting it to or from the time of the
apparent conjunction according to the orientation of the parallax, he does this step
for each of the increments.

\))(g 3,
\\\
CN
o,
| -
o| [o L|RFC M

At, At

Figure 47. Correspondences between
increments in longitude and time.

b. Second time increment (Atz,)

The steps to find the second time increment A¢,, which corresponds to Ap,,, are
the following ones:

* He, first, finds the lunar parallax in longitude at time ¢,, which corresponds

to arc QC. That is, p;(D), = QC.
* He, then, finds the parallactic difference in longitude between time ¢, and the
time of the true conjunction. This difference corresponds to arc CR. That is,
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Ap)\z =p}»())2 _p)\())l =CR.

e Next, he finds the time increment related to Ap,, —i.e., At,— by dividing it
by the true motion of the Moon. That is,

Atz = Apkz / W())cv =CR/ w())cv .

Jabir b. Aflah understands that the true motion of the Moon, although he
does not point it out, is the true motion of the Moon in the true conjunction,
since this is the one used to find the two subsequent increments.

* Once he has obtained At,, he adds or subtracts it to or from time #, according
to angle y, although he presents this in a slightly different way. In this case,
he makes reference to the distance of the position of the true conjunction
relative to the degree of the ascendant at this specific time, so that,

o if the parallax in longitude takes place in the direction of the zodiacal signs
across the ecliptic —or if it takes place in the second quadrant, that is if the
distance of the true conjunction relative to the degree of the ascendant is
greater than 9o°—, he subtracts Az, from time z,; that is,

tL=t,—-At,;

o and, if the parallax takes place in the opposite direction of the zodiacal
signs across the ecliptic —or if it takes place in the first quadrant, that is if
the distance of the true conjunction relative to the degree of the ascendant
is smaller than 90°—, he adds A¢, to time ¢,; that is,

L=t+At,.

Even though, at a first glance, in this case Jabir’s method does not seem to
make sense, since he takes angle y as the reference value to obtain the distance
of the true conjunction relative to the degree of the ascendant at time, #,, and
not the longitude of the Moon at this time, it is always true that the Moon finds
itself in the same quadrant during the interval defined by the true conjunction
and the apparent one. Thus, all the time increments have the same sign. Hence,
he can establish the sign of the time increments by using the angle y of any
longitude of the Moon between the true conjunction and the apparent conjunc-
tion at any time between the true conjunction and the apparent one.
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¢. Additional time increment (At,)

Next, Jabir finds the additional time increment, At,, which corresponds to the
increment in longitude Ap,,, in our notation. This additional increment includes
the increments Ap,, and Ap,,, mentioned above. The procedure to find this addi-
tional increment is the following:

* He, first, finds the lunar parallax in longitude at time 7,, which corresponds
to arc OF. That is, p;(), = OF.

* He, then, finds the parallatic difference in longitude between time ¢, —with
p:(D), = OF— and time 7, —with p,()), = OR—. This difference corre-
sponds to arc RF. That is,

APM = Px())g -p(2),=RF.

* Next, he adds a longitude which, relative to RF, has the same ratio as RF
relative to RC. In our notation, Ap,,. That is,

ApM = Apk}z / Ap)\z = RF2 / RC .
And, thus, the additional longitude is
Ap}ﬂ_ = Ap}% + Al))L4 = A]))L3 + Ap)gz / Apkz = RF + RF2 / RC (52).

In this case, all the manuscript versions agree and follow the method in
the Berlin manuscript regarding the increments in longitude. This adds to
the hypothesis that this is Jabir’s original method, and not the one presented
in the Escorial manuscripts.

* He, then, adds the increment in longitude obtained, Ap,,, to arc OR and
finds arc SR.

* Point S is approximately the point of the position of the true Moon when its
apparent position is point R. MS Ea gives point Z, which refers to the south
in the Figure, instead of point R, making clear that the scribe did not under-
stand the procedure.
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d. Finding the time difference between the true and apparent conjunctions and the
longitude, latitude and lunar anomaly in the apparent conjunction.

* Once he has obtained point S, he divides arc SL. —the total parallax— by the
true motion of the Moon in the true conjunction —w(D),,— and finds the
time difference between the true conjunction and the apparent one. That is,

AtCZ\-CV = A>\‘())CH-CV / W())CV (53)'

e He, then, adds or subtracts Az, , to or from the time of the true conjunction
according to angle y , so that,
o if the parallax in longitude takes place in the direction of the zodiacal signs
across the ecliptic, he subtracts At,, ., from the time of the true conjunc-
tion; that is,

tca = tcv - Atca—cv 5

o and, if the parallax takes place in the opposite direction of the zodiacal
signs across the ecliptic, he adds Az, ., to the time of the true conjunction;
that is,

tCil = tCV + At ca-cv *

e Thus, we find —according to Jabir b. Aflah— the positions of the Moon in
longitude, latitude and anomaly at this time, that is, at the time of the appar-
ent conjunction.

At this point, it becomes completely clear that Jabir b. Aflah deems point S as the
true longitude of the Moon in the apparent conjunction. Hence, he does not take into
account the additional motion of the Sun during the added time interval, as he does
not multiply the time interval added because of the parallactic correction 13/12
times. This important mistake does not seem to have been introduced by a scribe,
since all three Arabic manuscripts in Arabic script agree on this point, and both Jabir
b. Aflah’s introductory section to his method and his actual method clearly state that
point S is the true longitude of the Moon in the apparent conjunction. Additionally,
Jabir b. Aflah does not seem to regard Ptolemy’s correction because of the addi-
tional motion of the Sun as a mistake. He neither mentions this correction in the
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criticisms he levels at Ptolemy on the latter’s treatment of solar eclipses, nor when
Jabir presents his own method. It is also unlikely that Jabir b. Aflah would have
missed this correction because of a hasty reading of the Almagest. The text is diffi-
cult and can only be understood after studying it very carefully. In addition, Jabir b.
Aflah’s list of criticisms of Ptolemy’s treatment of solar eclipses, that will be ad-
dressed below, shows his painstaking punctiliousness. The only plausible explana-
tion seems to be that his copy of the Almagest would have a textual lacuna together
with the fact that Jabir b. Aflah should have missed this error in the manuscript he
owned. It does call the attention that this mistake remained in the different versions
of Jabir’s al-Kitab fi I-Hay’a across his different editions over the years.

Apparent latitude

Once Jabir b. Aflah knows the degree of the Moon in longitude, latitude and
anomaly in the apparent conjunction, he obtains the apparent latitude to find the
magnitude of the solar eclipse following his method for the lunar eclipse, which,
as in the case of the lunar eclipse, completely differs from Ptolemy’s.

To illustrate Jabir’s method, let us consider Figure 48, where Jabir’s incorrect
apparent conjunction is referred to with subscript ca*. Jabir’s method is as follows:

* Firstly, he states that the true latitude of the Moon —f(?),,— and its total
parallax —p(D).,— in the apparent conjunction is known.

* He, then, points out that the parallax in latitude of the Sun should be sub-
tracted to find the parallax in latitude. The result seems to refer to the paral-
lactic difference in latitude between the Moon and the Sun in the apparent
conjunction —Apg—. Thus, the solar parallax in latitude should not be sub-
tracted from the total lunar parallax in the apparent conjunction —the imme-
diate antecedent in the text—, but from the lunar parallax in latitude in the
apparent conjunction. That is,

ApB = p[ﬂ())ca _pﬁ(Q)ca .

* Hence, he finds the apparent latitude of the Moon in the apparent conjunc-
tion. That is,

B’(),)ca = I’s())ca - Apﬁ .
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Figure 48. Apparent latitude of the apparent Moon
in the apparent conjunction.

Magnitude of the solar eclipse

Once he has accounted for the effect of the solar and lunar parallax, and, thus, he
has found the apparent latitude in the apparent conjunction, Jabir b. Aflah seeks
to find the magnitude of solar eclipses. Since the method is equivalent to that for
lunar eclipses, he summarizes the needed steps as follows:

e Firstly, he finds the distance between the apparent centers of the Sun and the
Moon (d,¢) at the eclipse mid-time (Figure 48).

Next, he obtains the lunar radius (ry) from the lunar anomaly in its epicy-
cle in the apparent conjunction.

e He, then, adds the lunar and solar radii. That is, 7y + 7.

* And, lastly, he obtains the difference between the previous sum of the lunar
and solar radii —that is, ry + ro— and the distance between their centers at
the eclipse mid-time —dys— and finds the immersion at the eclipse mid-
time (u),i.e.,

U=ry+rg—dye (54).
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In this case, the immersion formula at the eclipse mid-time is correct, contrary
to this formula in Jabir b. Aflah’s treatment of lunar eclipses, where he pointed
out that the distance between the centers should be subtracted from the sum of the
diameters of the Moon and, in the case of lunar eclipses, the Earth shadow cone.

Lastly, the magnitude of the eclipse, m, can be obtained from the immersion,

u,as
m=12u/dy (55),

where d, is the lunar diameter.

Phases of the solar eclipse

Once Jabir b. Aflah has obtained the value of the magnitude of the solar eclipse,
he aims to study the duration of the phases of the solar eclipse. Contrary to the
lunar eclipse, the phases of the solar eclipse are only two: immersion and emer-
sion. Jabir b. Aflah divides the topic in two different steps. Firstly, he finds the
minutes of immersion of both phases without taking into account the effect of the
parallax in their duration. Then, he studies the effect of the parallax in the dura-
tion of both phases.

The first step is similar to the solution of the minutes of immersion of the
phases of the lunar eclipse, although in the latter case he considered four phases.
The two phases of the solar eclipse correspond to the first and last phases of the
lunar eclipse. Jabir b. Aflah finds the duration of the phases of the solar eclipse as
follows:

Firstly, he assumes that the Sun is motionless during the eclipse. Since the
distance between the center of the Sun and the Moon at the eclipse mid-time and
the sum of the radii of the Sun and the Moon are known, the arcs between the
initial time of the eclipse and its middle time and between its middle time to its
end time are known.

Given Figure 49, BD is the value of the minutes of immersion, i.e.,

BD = [AB* — AD?|" = [(r + ro)* - (ry + o - )] =

=[‘LL2—21u(r))+r®)]l/2.

39. See HAMA p. 136.
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Once Jabir b. Aflah has obtained the minutes of immersion, he, then, finds the
course of the Moon with its apparent motion by adding a twelfth part of arc BD
to it —that is, he multiplies arc BD 13/12 times—. He, thus, finds the arc relative
to the course of the Moon with its apparent motion between the eclipse initial and
middle times and between its middle and end times.

1 uo| rotr-u

Figure 49. Minutes of immersion
in the solar eclipse.

However, Jabir b. Aflah points out, following Ptolemy, that the parallax affects
the duration of each of the eclipse phases differently. To account for this effect, Jabir
b. Aflah describes, first, how the parallax affects the apparent motion of the Moon
and the duration of the phases in a broad way. Then, he describes this effect in de-
tail. Thus, we will first study his broad approach. In the following steps, we will
indicate the initial, middle and end times of the eclipse with subscripts i, m and f.

Firstly, he shows that the apparent motion in the phase of immersion is differ-
ent from that of the phase of emersion:

-+ Parallax in longitude is different in the initial, middle and end times of
the eclipse. That is,

Pi( D) # pi( D) # Pr( D) £ (D),

. Apparent motion relative to the phase of immersion is different from the
apparent motion relative to the phase of emersion. That is,

WD Yo # WD i (56).
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And, then, he deduces that the duration of the phase of immersion must be
different from that of the emersion:

- The arcs that correspond to equal phases of immersion and emersion are
equal. That is,

A(1)()’)em: A('l)(),)im

-- Apparent motions relative to the phase of immersion and emersion are
different.
. Durations of the phases of immersion and emersion are different.

Al‘em * Atim (57)

Having stated that both the apparent motion and the duration of each phase
must be different from the true one, Jabir b. Aflah aims to study how these differ-
ences occur, relying on a detailed proof in Figure 50, which we reproduce in what
follows. In this Figure, points Z and H appear repeated twice. This is because
Jabir b. Aflah brings together in a single Figure the two situations that can occur
in a solar eclipse: (i) when the parallax in longitude takes place along the direc-
tion of the zodiac across the ecliptic, that is, if the eclipse takes place in the first
quadrant of the ecliptic; and (ii) when the parallax takes place in the opposite di-
rection of the zodiac across the ecliptic, that is, if the eclipse takes place in the
second quadrant of the ecliptic.

K D T
-O——0-
B H M E L HZ A Z

Figure 50. MS Ea 66v.
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K D T
O——0
B M E L H A Z

Figure 51. Solar and lunar positions for an eclipse in the first quadrant.

K D T
-O——0-
B H M E L Z A

Figure 52. Solar and lunar positions for an eclipse in the second quadrant.

Firstly, he defines the apparent positions of the Sun and the Moon across the
solar eclipse. Arc AB represents the lunar inclined orbit. In turn, he does not define
arc TK, although it represents the apparent course of the Sun, since he defines
points T, D and K as the argument in latitude —and we add apparent— of the
center of the solar disk in the initial, middle and end times of the eclipse respec-
tively —that is, ®(©’), =T, ®(©’),, = D and w(®’); = K—. Points A, E and B, in
turn, refer to the apparent positions of the center of the lunar disk at the initial, mid-
dle and end times of the eclipse, that is, ®(D’), = A, w(D’),, = E and o(D’); = B.

For this disposition, arcs AT and BK refer to the sum of the solar and lunar
radii. That is, AT =BK =ry + rg.

Consequently,

-+ AT =BK
~AE=EB.

291



JOSE BELLVER

However, although it is not indicated, for the above deduction to be fulfilled it
is necessary that TD = DK that is, that the arcs that the Sun traverses during the
phases of immersion and emersion are equal.

Next, once the apparent dispositions of the Sun and the Moon across the solar
eclipse are defined, he indicates the true positions of the Moon and the parallaxes
at the three significant times. For a given apparent disposition, he considers two
possible true positions that depend on the direction of the parallax, that is on the
quadrant of the ecliptic in which the eclipse takes place. This gives two true posi-
tions of the Moon for each of the initial and middle times of the eclipse.

Points Z and H are the true positions of the Moon at the initial and middle
times respectively, that is, (D), = Z and w(D),, = H. Then, Jabir b. Aflah points
out that arc AZ is the lunar parallax in longitude at the initial time of the eclipse
and arc EH is its parallax at the middle time. Lastly, he points out that both paral-
laxes are different —that is, p,(D); = AZ # p;(D),, = EH—. Jabir b. Aflah is ap-
proximating longitudes by arguments in latitude by representing parallaxes in
longitude in the lunar inclined orbit.

Once the apparent and true positions of the Sun and the Moon are defined,
Jabir b. Aflah proceeds to illustrate the demonstration by dealing, firstly, with the
apparent motion of the Moon in both phases.

* Firstly, he points out that, during the time in which the Moon apparently
traverses arc AE, its true course is arc ZH. That is,

Ao(D’),. = AE and Ao(D),, =ZH .

* Then, he establishes the difference between arcs AE and ZH depending on
the initial and middle parallaxes in longitude as:

AE-ZH = A0(D") - A(D) 4, = py(D); — ps(D),, = AZ ~EH..

At this point, Jabir b. Aflah considers the demonstration in terms of the two
situations that can occur. These two situations are: (i) if the parallax in longitude
takes place in the direction of the zodiac across the ecliptic —that is, if its com-
ponent in longitude is positive or, alternatively, if the eclipse takes place in the
first quadrant of the ecliptic; and (ii) if the parallax takes place in the opposite
direction of the zodiac signs across the ecliptic —that is, if its component in lon-
gitude is negative, or, alternatively, if the eclipse takes place in the second quad-
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rant of the ecliptic. Let us remember that Ptolemy takes the meridian as a refer-
ence. This will be one of the criticisms that Jabir b. Aflah will make of him.

o— A+
B S M E L |H A /4
(D) O (D),
Aw(D”) Ao(D7),,
% P
' Ao(D)., ' Ae(d),,
-Fig.a- - Fig. b -

Figure 53. Duration of the phases of the solar eclipse with parallax in the direction of the zodiac.

Firstly, he considers the case in which the parallax takes place in the direction
of the zodiacal signs across the ecliptic to obtain the ratio between the apparent
and true motions of the Moon in the first quadrant. Figure 53 shows Jabir b.
Aflah’s method. Figure -a- is similar to the one presented in the manuscript, al-
though we have added point S corresponding to the true position of the Moon at
the final time of the eclipse, that is, (D), = S.

Figure -b-, in turn, shows the same previous arrangement based on the series
of Figures that have been used throughout this study. In it, the true positions are
indicated as Z’, H” and S’ to distinguish them from points Z, H and S, since Jabir
b. Aflah projects them on the same line in which the apparent positions of the
Moon are. Thus, to obtain the ratio between the true and apparent motions of the
Moon in the first quadrant, Jabir b. Aflah points out that:

* if the parallax takes place in the direction of the zodiacal signs across the
ecliptic, the parallax at the initial time of the eclipse should be greater than
the parallax at the middle time, so that the arc ZH is greater than the arc AE.
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-+ p,(D) > o (in the direction of the zodiacal signs)
= (D) > p(D),,
~ZH>AE .

And the conclusion that he draws from this is that, in this first quadrant,
* the apparent motion is slower than the true one:
WD) i <W(D) iy -

Next, he considers the case in which the parallax takes place in the opposite
direction of the zodiacal signs across the ecliptic to obtain the ratio between the
apparent and true motions of the Moon in the second quadrant of the ecliptic.
Figure 54 shows Jabir b. Aflah’s method. Figure -a-, as in the previous case, is
similar to the one presented in the manuscript, although we have added a new
point S again. Figure -b- is similar to the one that appears in the previous case.
Thus, to obtain the ratio between the apparent and true motions of the Moon in
the first quadrant of the ecliptic, Jabir b. Aflah points out that:

K D T
A +
-
S B TﬁM E Liz |A
rOr | N P0),
Aw (D)., Aw(D),,
B = |
Ao(D),, | Ao(D),, |
-Fig.a- -Fig. b -

Figure 54. Duration of the phases of the solar eclipse with parallax
in the opposite direction of the zodiacal signs across the ecliptic.
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e if the parallax takes place in the opposite direction of the zodiacal signs
across the ecliptic, the parallax at the initial time of the eclipse is smaller
than the one at the middle time, so that, as in the first quadrant of the ecliptic,
arc ZH is also greater than arc AE.

+ p(D) < o (opposite direction of the zodiacal sings)

=) <D
- ZH>AE .

And the conclusion that he draws from this is that,

* in this second quadrant of the ecliptic, the apparent motion is slower than the
true one; so it is true that in both quadrants the apparent motion is always
slower than the true one. That is,

WD) iy <W(D) iy -

The next step consists of extending to the phase of emersion the results that have
been obtained for the phase of immersion. Jabir b. Aflah points out, shortly, that

e the same goes exactly for arc EB.

That is, in the phases of emersion is true that, in both quadrants,
WD) e < WD) ey -

And, therefore, throughout the solar eclipse, it is true that
w(D’) <w(D) (58).

Once he has obtained the ratio between the apparent and true motions, he aims
to obtain the duration of the phases of immersion and emersion. To do this, he com-
putes the true course of the Moon, from the apparent one and the parallaxes at the
initial and end times of the phase. Once the true course is obtained —the increment
in its argument in latitude —during the phase, he divides it by the true motion of the
Moon and finds the duration of the phase. These steps are indicated as follows:
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* Firstly, he finds arc ZH from the difference between arcs AZ and EH and
adds it to arc AE. Arc ZH corresponds to the true course of the Moon during
the phase of immersion. That is,

ZH = AE + (AZ - EH) .

* Then, he divides ZH —the true course of the Moon during the phase of im-
mersion— by the true motion of the Moon —w(D)—. The result is the time
during which the Moon traverses with its apparent motion arc AE.

ZH / w(D) = At,, and thus Aw(D’),, =AE .

* And, lastly, he extends the previous result to the phase of emersion pointing
out that the same thing happens exactly in case of arc EB when adding the
parallax at points E and B to the arc EB. To explain this last step, it should
be recalled that, in Figure 53 and Figure 54, point S has been added, and thus
(D), =S, p,(D); = BS and Aw(D) ,, = HS. Thus, the duration of the phase
of emersion can be found, since

HS =EB + (EH - BS)
HS / w(D) = At,, and thus Aw(D’) ., = EB .

Finally, once he has obtained the duration of each phase separately, he only
has to compare the duration of both phases to determine whether they are equal
or not, and, in this second case, which of them is greater than the other.

As a premise, he points out that parallaxes in longitude vary the most in areas
close to the mid-heaven of the ascendant and the least in areas close to the degrees
of the ascendant or the descendant.

He, then, takes into account if the distance of the Moon to the ascendant,
throughout the eclipse, is smaller or greater than 9o0°, or if the distance of the
Moon to the ascendant at the eclipse mid-time is equal to 90° (the mid-heaven of
the ascendant).

And he draws the conclusion that if the distance of the Moon to the ascendant
is smaller than 9o°, the duration of the immersion is smaller than that of the emer-
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sion; if it is greater than 9o0°, the duration of the immersion is greater than that of
the emersion; and if, at the eclipse mid-time, is equal to 90°, the duration of the
immersion is equal to that of the emersion.

Firstly, to explain his premise, i.e., that parallaxes in longitude vary the most
in areas close to the mid-heaven of the ascendant, Jabir b. Aflah points out that
this fact can be considered analogous to the variation (tafadul) of the angles of
the anomaly (ikhtilaf) of the hypothesis in eccentricity (al-falak al-kharij al-
markaz).

That is, he establishes a very interesting comparison between the parallax and
the hypothesis in eccentricity. The phenomenon of the parallax is due to a differ-
ence between the observed position and the true one, since the observer is on the
Earth’s surface. In turn, the hypothesis in eccentricity addresses a difference be-
tween the observed and true motions, since the center of the motion of the heav-
enly body is eccentric relative to the center of the universe. Thus, a series of
correspondences occur between the parallax and a hypothesis in eccentricity,
which are listed in the table below.

Graphically, given Figure 55, where O is the point of the observer —in the
eccentricity, the center of the universe, and, in the parallax, the Earth’s surface —
and C is the reference center—in the eccentricity, the center of the eccentric cir-
cle, and, in the parallax, the center of the Earth—, then /4 is the geocentric altitude
and A, is the observed altitude —so that, i, = h — p—, the eccentricity —e— is
equivalent to the Earth radius —r;—, the angle of the equation of the center
—q— is equivalent to the angle of the parallax —p— and the radius of the ec-
centricity —R_,— is equivalent to the distance of the Moon to the center of the
Earth — dn_‘

Correspondences between the hypothesis in eccentricity and parallax

Hypothesis in eccentricity | Parallax

. Apparent Motion of the ..
Anomalous variable PP Apparent position
heavenly body
Point of reference Center of the motion Center of the universe
Point of observation Center of the universe Surface of the Earth

Difference between the
point of reference and the | Eccentricity Earth radius
point of observation
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Angle of the difference Equation of the center Parallax

Minimum variation of the .
) In the mesogee In the horizon
anomalous variable

Maximum variation of the . .
. In the perigee In the zenith
anomalous variable

N

Hypothesis in eccentricity Parallax

Figure 55. Geometric correspondences between the eccentricity and the parallax.

To prove that parallaxes in longitude vary the most in areas close to the mid-
heaven of the ascendant, Jabir b. Aflah refers to a section in the al-Kitab fi [-Hay’a
in which he addresses the variation in the eccentricity. His text is as follows:

And this is explained by what we have mentioned about the variation (tafadul) of the
angles of the anomaly (ikhtilaf) relative to the eccentricity (al-falak al-kharij al-
markaz).

Jabir b. Aflah is referring to the section in which he studies the variation of the
angles of the equation, whether it is the hypothesis in epicycle or eccentricity. The
text is as follows:
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G SoSUl 0555 Lo phasl ()lall ezl JS' e SN Lls3 § o] OF Uy Gustuns
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The above text can be translated as:

And it is made clear by this that the variation of the angles of the equation according
to both hypotheses [i.e., in epicycle or in eccentricity] is maximum when the heav-
enly body is in the apogee or the perigee and the [said variation] gradually decreases
until the heavenly body is situated in its mesogee (al-majaz al-awsar), that is the point
whose distance from the apogee is in appearance a quarter of a circle. [i.e., 90°].

Jabir b. Aflah develops Almagest 111.3, where Ptolemy studies the correspond-
ence between the hypotheses in epicycle and in eccentricity. Specifically, Jabir b.
Aflah addresses the argument in which Ptolemy shows that, given a hypothesis in
eccentricity, the maximum differences between the mean and true motion occur
in the mesogees, at £90° from the apogee in the apparent circle.*'

Jabir b. Aflah points out that the maximum variation of the lunar parallax in
latitude occurs when the Moon is in the mid-heaven of the ascendant. Indeed, as
the mid-heaven of the ascendant is determined by the intersection with the eclip-
tic of the great circle that passes through the zenith and would be orthogonal to it,
the mid-heaven of the ascendant is the point of the ecliptic with maximum alti-
tude. Hence, it is the point of the ecliptic with minimum parallax and in which its
variation would be maximum.

Having studied the premise, i.e., that the maximum variation of the lunar paral-
lax in latitude occurs when the Moon is in the mid-heaven of the ascendant, and its
geometrical equivalence with the hypothesis in eccentricity, we shall finally con-
sider how this premise affects the duration of the phases according to the criterion
that Jabir b. Aflah has defined. Jabir gives the conclusion without demonstrating it,
perhaps aware that it follows from what he has indicated previously, but in contrast
to the certain care that he has shown until now. We shall fill this gap.

We know that the higher the altitude, the lower the parallax, and the lower it
is, the greater its variation.

40. See MS Ea 34r-34v for this quotation and MS Ea 34r-35r for the complete section.
41. See Almagest 111.3 (Toomer pp. 145-147).
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Firstly, we will study what happens when the solar eclipse takes place in the
first quadrant, that is when the distance to the ascendant is less than 9o°. To do
this, we will consider Figure 59a. In it, the parallax in longitude is greater at the
eclipse initial time than at the end time and, therefore, the variation of the parallax
is greater in the phase of emersion than in the phase of immersion.

B [S M E L|H A z S B IH M E L[z A
b < ~ ~ >
PO, PO ), PO, T 0 )
/,\m()‘)_.m B /,\m()’),m Ae(D),. Ao(D),,
I: I: < l: |
f AO(D)ey I A(D), Aa(D),, I Aa(D),, |
-Fig.a- -Fig. b-

Figure 56. Duration of the phases depending on the quadrant.

Hence,
Ap}»()) im < Ap)\()) em (59)
And consequently
Aw(D),, < Aw(D),, or,alternatively, HZ < SH (60).
Hence, since the duration of the phase of immersion —A¢,,— is Aw(D);, /
w(D) and the duration of the phase of emersion —A?,,— is Aw(D) .,/ w(D), the
duration of the phase of immersion should be smaller than that of the phase of

emersion. That is,

At < At (61).
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Secondly, we will study what happens when the solar eclipse takes place in the
second quadrant, that is when its distance to the ascendant is greater than 9o°. To
do this, we will consider Figure 56b. In it, the parallax in longitude is smaller at
the eclipse initial time than at the final time and, therefore, the variation of the
parallax is grater in the phase of immersion than in the phase of emersion.

Hence,

Apk())im> Apk())em (62)
And, consequently,
Aw(D),,>Aw(D),, or,alternatively, HZ>SH (63).

Hence, since the duration of the phase of immersion —Af,,— is Aw(D),, /
w(D) and the duration of the phase of emersion —A¢,,,— is Aw(D) ., / w(D), the
duration of the phase of immersion should be greater than that of the phase of
emersion. That is,

At im > At em (64) .

When the middle time of the eclipse takes place in the mid-heaven of the as-
cendant, contrary to Ptolemy’s statement, the variation of the parallax in both phas-
es of the eclipse is the same, and therefore the duration of both phases as well.

In summary, Jabir b. Aflah’s method is much clearer than that of Ptolemy.
Jabir b. Aflah’s method broadly agrees with the one presented by Ptolemy, except
for the correction of the meridian by the mid-heaven of the ascendant, which we
will see below. Since Jabir b. Aflah only criticizes this aspect and his interpreta-
tion agrees with that which we have made of Ptolemy’s procedure, Jabir b. Aflah
considered that Ptolemy interpreted the minutes of immersion obtained with the
tables and corrected with the additional motion of the Sun as apparent intervals.

3.2. Jabir b. Aflah’s criticisms of Ptolemy

We have just studied Jabir b. Aflah’s method to find the magnitude and phases of
solar eclipses. After presenting his method, Jabir b. Aflah then introduces some
criticisms of Ptolemy’s method, as he already advanced in his introduction. Jabir b.

301



JOSE BELLVER

Aflah raises three criticisms, although in the introduction he groups them into two:

the first and second criticism on the one hand, and the third on the other. He groups

the first and second criticism since they are due to the same cause. We will study

these first two criticisms grouped together; and we will finally focus on the third.
In his Introduction to the al-Kitab fi I-Hay’a, Jabir b. Aflah points out:

There is another mistake in the computation of solar eclipses and in the values of their
phases. All this is mentioned in Book V of this work.

The text of his first criticism in Book V is as follows:

This matter is not as Ptolemy thinks, for he said that if the middle time of the eclipse
takes place at noon, both times are equal. But this is a mistake, for between the degree
[in longitude] of the mid-heaven and the degree [in longitude] of the mid-heaven of
the ascendant in the northern countries there may be an arc with a value [which cannot
be neglected] and which in the seventh climate reaches up to 37°. Thus, if the Moon
during the eclipse is on this arc, its distance from the ascendant after noon would be
less than 9o°, or its distance from the ascendant before noon would be greater than 9o°.
Hence, the matter about the duration of the phases (azmina) [of solar eclipses] differs
from what [Ptolemy] mentioned.

And the second criticism follows right after:

Likewise, Ptolemy makes a mistake when he adds that the times that correspond to the
arcs of the parallaxes in longitude always depend on the distance of the true conjunc-
tion to the meridian, be it before it or after it. This is never the case except in an eclipse
whose ascendant would be the head of Aries or Libra. [Only] in this case, the degree
[in longitude] of the mid-heaven is [the same as that of] the mid-heaven of the ascend-
ant. In turn, when the ascendant is not one of these two points, these two degrees [in
longitude] are different. If the position of the true conjunction is between these two
degrees [in longitude], as [if the true conjunction] takes place before noon and its
distance to the degree [in longitude] of the ascendant is greater than 9o°, or [as if it]
takes place after noon and its distance to the ascendant is less than 9o°, then the time
interval which corresponds to the parallax in longitude should be subtracted from the
time interval which corresponds to the distance [in longitude] between the true con-
junction and the meridian, although [Ptolemy] adds it. Therefore, there is a mistake in
the apparent conjunction with a [non negligible] error, since the parallax in longitude
in the northern countries has a significant value. Thus, the error (khilaf) [introduced by
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Ptolemy] in the apparent conjunction is a time [difference] that corresponds to the
double of the parallax in longitude.

For Jabir b. Aflah, the reason behind Ptolemy’s mistake is that he takes the
meridian as a reference instead of the mid-heaven of the ascendant.

This mistake, according to Jabir b. Aflah, affects two places and hence the two
criticisms. Firstly, by taking the mid-heaven as a reference, Ptolemy makes a
mistake in pointing out that the phases of immersion and emersion of an eclipse
that takes place in the mid-heaven are equal. In any case, he should have pointed
out, according to Jabir b. Aflah, that only the phases of immersion and emersion
of an eclipse that takes place in the mid-heaven of the ascendant are equal.

Secondly, this mistake also affects the resolution of the apparent conjunction
from the true one, since Ptolemy —according to Jabir b. Aflah—takes the mid-
heaven, and not the mid-heaven of the ascendant, as the reference to decide wheth-
er to add or subtract the correction in time to obtain the apparent conjunction.

We will study, below, the effect of choosing the mid-heaven, instead of the
mid-heaven of the ascendant, as reference to compute the magnitude and phases
of solar eclipses. The meridian is the great circle that passes through the pole of
the equator, P_, and the zenith, Z. The mid-heaven is the point of the ecliptic that
cuts the meridian. Likewise, the mid-heaven of the ascendant is the great circle
that passes through the pole of the ecliptic, P,, and the zenith, Z. Since the pole of
the ecliptic is inclined relative to the pole of the equator at an angle equal to the
obliquity of the ecliptic and revolves around it on an approximately daily basis,
the mid-heaven and the mid-heaven of the ascendant only coincide twice during
the day when the poles of the ecliptic, the equator and the zenith are aligned. In
those times, the ascendant coincides with Y’ or 2 .and vice versa in case of the
descendant. On all other occasions, the mid-heaven of the ascendant, when we
face the south, falls to the east or west of the meridian. The angle determined by
the mid-heaven and the mid-heaven of the ascendant is maximum when the angle
P.P.Z is approximately 9o°. The transit of the Sun through the meridian — which
drags with it the ecliptic and consequently also the Moon, as its longitude is close
to that of the Sun in solar eclipses — defines the time in which the Sun reaches its
maximum altitude. Likewise, approximately at this time, the Moon also reaches
its maximum altitude. Consequently, the absolute value of the parallax of both
heavenly bodies at this time is minimal. In turn, the transit of the Sun through the
mid-heaven of the ascendant defines the time in which the parallax in longitude
of the Sun—and therefore also of the Moon in solar eclipses—is minimal, al-
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though the total parallax —that is the resultant of the components of the parallax
in longitude and latitude— is not.

Thus, we will consider the first case in which, when facing towards the south,
the mid-heaven of the ascendant falls to the east of the meridian (Figure 57). We
can define three intervals in the courses of the Sun and the Moon. Firstly, we will
define the interval determined by the ascendant and the solar transit through the
mid-heaven of the ascendant. In this interval, the total parallax is decreasing,
while the parallax in longitude is positive and decreasing. In turn, in the second
interval determined by the transit of the Sun through the mid-heaven of the as-
cendant and by its transit through the meridian, the total parallax is decreasing,
but in turn, the parallax in longitude is negative and its absolute value is increas-
ing. Finally, in the third interval, determined by the solar transit through the me-
ridian and the descendant, the total parallax is increasing, the parallax in longi-
tude is negative and its absolute value is increasing.

o»:
Ecliptic

Apparent
course
of the Sun

Mid-heaven Mid-heaven
of the ascendant

Figure 57. Mid-heaven of the ascendant east of the meridian.

If, in turn, we consider a second case in which, facing south, the mid-heaven
of the ascendant falls to the west of the meridian (Figure 58), we can define three
intervals in the paths of the Sun and the Moon. First, we define the interval deter-
mined by the ascendant and its transit through the meridian. In this interval, the
total parallax is decreasing, while the parallax in longitude is positive and de-
creasing. In turn, in the second interval determined by the Sun’s transit through
the meridian and by its transit through the mid-heaven of the ascendant, the total
parallax is increasing, but in turn, the parallax in longitude is positive and de-
creasing. Finally, in the third interval, determined by the solar transit through the
mid-heaven of the ascendant and by its transit through the descendant, the total
parallax is increasing and the parallax in longitude is negative but its absolute
value is increasing.
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Ecliptic

Apparent
course
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Mid-heaven Mid-heaven
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Figure 58. Mid-heaven of the ascendant west of the meridian.

Since time corrections depend on longitudes, any time increment that Ptolemy
has referenced relative to the meridian, should in fact be referenced a priori rela-
tive to the mid-heaven of the ascendant, since it is with respect to this point that
the parallax in longitude changes from positive to negative or vice versa. Ptolemy
uses time increments determined by increments in longitude twice: (i) when he
finds the apparent conjunction from the true one, which is the topic of the second
criticism by Jabir b. Aflah; and (ii) when he studies the different durations of the
phases of immersion and emersion in the solar eclipse, the topic of the first criti-
cism. We will study now the first of these two criticisms.

Ptolemy finds the longitude of the apparent conjunction from the longitude of
the true conjunction. To do this, he uses a correction in longitude from the differ-
ence between the parallaxes of the Moon and the Sun in the true conjunction to
which he adds successive epiparallactic corrections. To this increment in longitude,
he adds the additional motion of the Sun and, from the total correction in longitude,
he obtains a time increment dividing the correction in longitude by the true motion
of the Moon in the true conjunction. Jabir b. Aflah’s criticism focuses on the crite-
rion applied by Ptolemy to add or subtract this correction in time to or from the time
of the true conjunction to obtain the apparent one. Jabir b. Aflah points out that
Ptolemy is wrong because he should have taken as reference the mid-heaven of the
ascendant and not the meridian. Let us compare the text by Ptolemy to see if Jabir
b. Aflah’s criticism of him makes sense. Ptolemy points out:

If the longitudinal parallax we found is towards the rear [i.c. in the order] of the signs
(we explained previously how to determine this), we subtract the amount in degrees
which we had converted into equinoctial hours from the moon’s position, as previ-
ously determined, at the moment of the true conjunction, in longitude, latitude and
anomaly (each separately): this gives us the [corresponding] true positions of the
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moon at the moment of apparent conjunction, while the number of hours itself [result-
ing from the above computation] tells us by how much the apparent conjunction pre-
cedes the true one. But if the longitudinal parallax we found is in advance [i.e., in the
reverse order] of the sings, contrariwise, we add the amount in degrees to the position,
as previously determined, at the moment of true conjunction, in longitude, latitude
and anomaly (each separately); and the number of hours will give us the amount by

which the apparent conjunction is later than the true one.**

Thus, from this quotation it does not follow that Ptolemy uses the meridian as
a criterion to add or subtract the correction in time to or from the time of the true
conjunction to obtain the apparent one. The criterion that Ptolemy uses is if the
parallax in longitude is positive, for which he uses the expression «towards the
rear of the signs» or if it is negative, for which he uses the expression «in advance
of the signs». The point that delimits both situations is the intersection of the
ecliptic with the mid-heaven of the ascendant and not with the meridian. Hence,
Ptolemy is using the mid-heaven of the ascendant and not the meridian as a crite-
rion. Consequently, the criticism of Jabir b. Aflah is surprisingly baseless. So,
does Jabir b. Aflah refer to this fragment? And if so, do the Arabic translations of
the Almagest refer to the meridian?

The answer to the first question is unequivocally affirmative. The elements
in this section of the al-Kitab fr I-Hay’a point to this. For instance, Jabir b.
Aflah speaks about adding or subtracting time intervals determined by the par-
allax in longitude to or from the time of the true conjunction, as well as about
the apparent conjunction. These elements do not appear in any other paragraph
of Ptolemy’s study of solar eclipses in the Almagest. It could be argued that
Jabir b. Aflah refers to the section in which Ptolemy transfers the position of the
true syzygy according to the meridian of Alexandria to the local meridian,* but
in this section no parallaxes in longitude appear yet. Consequently, it should be
ruled out that Jabir b. Aflah refers to any other section of the Almagest study on
solar eclipses.

Thus, we must ask ourselves if Jabir b. Aflah’s criticism is due to the fact that
he was using a poor Arabic translation of the Almagest?

The text in the Ishaq/Thabit version is the following one:

42. See Toomer p. 311.
43. See Toomer p. 310.
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Whereas the text in the version by al-Hajjaj is the following one:
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Reading both translations shows that the Arabic Almagest makes no reference

at any point to the meridian, so the criticism by Jabir b. Aflah seems to make no
sense. If we continue reading the Arabic Almagest at the point where we left off
—that is, when Ptolemy begins the resolution of the argument on the apparent
latitude of the apparent conjunction—, we find the following in the version by

Ishag/Thabit:
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44.MS Paris, BnF, Ar. 2482, f. 126r.

45.MS London, British Museum, Add. 7474, f. 178v, and MS Leiden, Universiteitsbibliotheek,
Or. 680, ff. 101V-102r.

46. MS Paris, BnF, Ar. 2482, f. 126r.
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The translation by al-Hajjaj, is as follows:
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That is, the paragraph in the Almagest that follows up the text which is the
object of Jabir b. Aflah’s criticism points out that, in order to obtain the difference
between the parallax in latitude of the Moon and the Sun, the distance between
the apparent conjunction and the meridian should be taken into account. Thus, we
can venture two hypotheses: either Jabir b. Aflah was working with a abridgment
of the Almagest that was not sufficiently accurate at this point; or the criterion that
Ptolemy used to discriminate the addition or subtraction of the correction in time
was missing from the manuscript of the Almagest with which Jabir was working,
and, after the gap, the text linked with the resolution of the argument in apparent
latitude of the Moon at the point at which Ptolemy speaks about the meridian. It
is also possible that he did not understand the text well and interpreted it in light
of the first criticism, where he considers that Ptolemy should have used the mid-
heaven of the ascendant as a reference.

Jabir b. Aflah’s criticism contains other surprises. Although, as regards the ad-
dition or subtraction of the correction in time, the criterion used by Jabir b. Aflah
is exactly the same as that used by Ptolemy, the author of the al-Kitab fr I-Hay’a
differs in the correction he proposes in his criticism of Ptolemy from the method
he has just previously presented in his study.

Jabir b. Aflah proposes in his study of solar eclipses that, to obtain the time of
the apparent conjunction, the time increment must be subtracted from the time of
the true conjunction when the true conjunction takes place in the first quadrant,
before the mid-heaven of the ascendant, and must be added when it takes place in
the second quadrant, after the mid-heaven of the ascendant.

However, in his criticism he points out that, when a true conjunction takes
place in the interval defined by the meridian and the mid-heaven of the ascendant
regardless of whether the conjunction takes place after reaching 9o° or before
reaching 9o° of the ascendant —so that the mid-heaven of the ascendant can be

47.MS Leiden, Universiteitsbibliotheek, Or. 680, f. 102r.
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found east or west of the meridian—, the time increment corresponding to the
parallax in longitude is subtracted. However, according to Ptolemy’s method and
Jabir b. Aflah’s, as in his study, the time increment can only be subtracted when
the true conjunction takes place less than 9o° from the ascendant; that is, when it
occurs in an interval defined by the meridian, as the closest limit to the east, and
the mid-heaven of the ascendant, as the closest limit to the west (Figure 58).

However, in the other situation—when the true conjunction takes place in an
interval defined by the mid-heaven of the ascendant, as the closest limit to the
east, and the meridian, as the closest limit to the west (Figure 57)—, the time in-
crement must be added, contrary to what Jabir b. Aflah says in his criticism.
However, this correction to his criticism is in agreement with what Jabir b. Aflah
himself says in his study of solar eclipses.

Finally, it only remains for us to clarify some consequences that follow from
this criticism. At the end of his criticism, Jabir b. Aflah points out that the error
committed amounts to twice the final correction in time. This is so because the
correction in time was added instead of being subtracted.

Once we have seen Jabir b. Aflah’s second criticism focused on the resolution of
the apparent conjunction from the true one, we will study the first criticism in which
Jabir b. Aflah discusses the disposition on the horizon that makes the duration of the
phases of immersion and emersion equal. Jabir’s criticism is as follows:

This matter is not as Ptolemy thinks, for he said that if the middle time of the eclipse
takes place at noon, both times are equal. But this is a mistake, for between the degree
[in longitude] of the mid-heaven and the degree [in longitude] of the mid-heaven of
the ascendant in the northern countries there may be an arc with a value [which cannot
be neglected] and which in the seventh climate reaches up to 37°. Thus, if the Moon
during the eclipse is on this arc, after noon its distance from the ascendant would be
less than 90°, or before noon its distance from the ascendant would be greater than 9o°.
Hence, the matter about the duration of the phases (azmina) [of solar eclipses] differs
from what [Ptolemy] mentioned.

When the middle time of the eclipse takes place in the meridian, Ptolemy
points out that the duration of the phases of immersion and emersion is the same.
Ptolemy says:

For this reason, the only situation in which the time of immersion is approximately
equal to the time of emersion is when mid-eclipse occurs precisely at noon, for then
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the appearance of motion in advance resulting from the parallax is about equal on both

sides [of mid-eclipse] -

Jabir b. Aflah points out that the middle time of the eclipse should take place
in the mid-heaven of the ascendant for the duration of both phases to be equal.
Along these lines, in MS Paris, BnF, Ar. 2482, containing Ishaq/Thabit’s transla-
tion of the Almagest, we find the following marginal gloss:
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Additionally, when Ptolemy presents an example in which he shows the effect
of the parallax in the duration of the phases,” we find the following marginal
gloss in MS Paris, BnF, Ar. 2482:
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Ay 05 b 63 lede Lo sl Ll Caaty BouSIl 0l Jaws ou I Oleludl (o lpaiiy
Olsabl ol Jasdl oly @ el 065G O V] dale fumy (s S &S § ol Il Cons (po o]

> gay puadd Yl 5ladl Jase 3515 o ol ) S 5509

Both marginal glosses criticize Ptolemy for taking the meridian as a reference.
Let us consider whose statement is the correct one, either Ptolemy’s or Jabir b.
Aflah’s.

For the duration of the phase of immersion to be equal to the phase of emer-
sion, it should be true that:

* the variation of the lunar altitude as a function of time should be zero —dh,/
dt = 0—, and that

48. See Toomer p. 312.
49. MS Paris, BnF, Ar. 2482, f. 126v.
50. See Toomer p. 313.
51. MS Paris, BnF, Ar. 2482, f. 127r.
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¢ the variation of the lunar motion in altitude as a function of time should be
equal on both sides of the eclipse.

We will only consider the first condition, since it is the only one necessary to
discriminate between Ptolemy and Jabir b. Aflah’s theses. Thus, we look for a point
on the horizon at which the tangent of the lunar course would be parallel to the ho-
rizon. Consequently, we must analyze the different components of the lunar motion.

We will momentarily consider that the Moon moves across the ecliptic and not
in its inclined orbit. The lunar motion is the composition of the motion of the
ecliptic over the horizon and the motion of the Moon across the ecliptic.

Given Figure 59, where line ZS is the meridian with Z the zenith and S the
geographical South, line ESO is the horizon with points E and O the geographical
East and West points, points E, and E, the solar rising in the summer and winter
solstices, and points O, and O; the solar setting in both solstices, then arc EM,0O,
represents the apparent ecliptic at the time in which the ascendant is E; and the
descendant is O,, and point M, is the mid-heaven of the ascendant. Let the Moon
be on point L.. We will consider two components of the lunar motion on point L:
one parallel to the equator; and a second one following along the ecliptic in the
opposite direction to the motion in the horizon of the ecliptic. The absolute value
of the motion of the Moon in the ecliptic is always smaller than the motion of the
ecliptic in the horizon, and, thus, the resultant is always a motion in the opposite
direction of the zodiacal signs over the horizon.

Figure 59. Mid-heaven of the ascendant over the horizon.

Be ), the Moon at the eclipse mid-time and be [ the vector of the position of
the Moon over the horizon. Thus, [ = (h(D) , a(D)) where h indicates the compo-

311



JOSE BELLVER

nent in altitude and a the component in azimuth. Let us consider as an initial
condition that the vector position of the Moon at the eclipse mid-time is /(D,,) =
(h(D,)), a(,,)). For a given time increment, Az, the Moon is on point /(D) + Al
=(h(D,) + AR(D) ,a(D,) + Aa(D)). We know that the lunar motion over the ho-
rizon is the composition of the lunar motion over the ecliptic, i.e., A\, and the
motion of the ecliptic around the equator, i.e., At, with T the hourly angle. Thus,
for a given time increment, At, Al = (AN, + AT, , A\, + At,) with A\, and A\, the
components in altitude and azimuth of the increment in longitude, and At, and
AT, the components in altitude and azimuth of the increment in the hourly angle.
If we only take an infinitesimal time increment of the component in altitude of the
lunar motion, we will obtain di = d\, + dr,,, where d\, and dr,, are the components
in altitude of the lunar motion in longitude and in the hourly angle. Since dA, dA,
and dt, are motions linked to a same d¢, we will obtain the variation in altitude of
the Moon as a function of time as

dhy,  _dh(D), | du(D)
/4= /i » (65).

Thus, the first condition —i.e., that the variation of the altitude as a function
of time would be zero— is

dh})/ :d)\’h()m)/ +dth()m)/ =0 (66).
dr dr dr

Figure 60. Eclipse mid-time in the meridian or in the mid-heaven of the ascendant.

Let us examine the thesis by Ptolemy. Given Figure 60, let us consider that the
middle time of the eclipse takes place on point M, in the local meridian. In this
case, the variation in altitude of the hourly angle of the Moon as a function of
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time is zero, but not the variation in altitude of its longitude as a function of time.
That is,

dr 7 e

Consequently, the thesis by Ptolemy —the phases of immersion and emersion
are equal when the middle time of the eclipse takes place on the local meridian—
does not meet the condition that the variation of the lunar altitude as a function of
time would be zero.

Now, let us examine the thesis by Jabir b. Aflah. Given Figure 60, let us con-
sider that the middle time of the eclipse takes place on the mid-heaven of the as-
cendant, point M,. In this case, the variation in altitude of the longitude of the
Moon as a function of time is zero, but not the variation in altitude of its hourly
angle as a function of time. That is,

dth()m)/ #+0: d)\'h()m)/ =0
e 7 d

Consequently, the thesis by Jabir b. Aflah — i.e., the phases of immersion and
emersion are equal when the middle time of the eclipse takes place on the mid-
heaven of the ascendant— does not meet the condition that the variation of the
lunar altitude as a function of time would be zero again.

Thus, neither Ptolemy’s nor Jabir b. Aflah’s theses meet the first condition
needed for the phases of immersion and emersion to be equal. Interestingly, one
of the solutions that makes zero the variation in altitude of the Moon as a function
of time at the eclipse mid-time is when it occurs in a lunar transit through the
meridian and the mid-heaven of the ascendant at the same time. That is, the dura-
tion of the immersion phase is equal to that of emersion —at least as far as the
first criterion is concerned— when the middle time of the eclipse occurs at noon
of the summer solstice or at noon of the winter solstice (Figure 61). Both situa-
tions are probably the only ones in which the second criterion is met —that the
variation of the lunar motion in altitude as a function of time would be equal on
both sides of the eclipse.

If, instead of the ecliptic, we take into consideration the lunar inclined orbit,
the first criterion would be

dh))/ t=dwh()m)/ t+ drh()m)/ 67).

=0
d d dt
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Summer solstice Winter solstice

Figure 61. Eclipse mid-time with equal phases of immersion and emersion.

That is, we must take into account the argument in latitude of the ecliptic and
not the longitude. In addition, since this is a solar eclipse, it is true that

dw,(D,) dr,(D,)
/dt # /dt (68),

except when the middle time of the eclipse coincides with the node in the local
zenith. Except in this case, the middle time of the eclipse that makes the phases
of immersion and emersion equal does not coincide with the mid-heaven of the
ascendant.

In short, assuming the approximation of the ecliptic by the lunar inclined orbit
at the eclipse mid-time, the solution provided by Jabir b. Aflah is only correct if
taken as a complement to the solution given by Ptolemy.

We have just seen the first two critiques of Jabir b. Aflah on Ptolemy grouped
together. We will, now, study the third criticism of the author of the al-Kitab fr
[-Hay’a. In his index of criticisms in the introduction, Jabir b. Aflah points out:

There is another mistake in the computation of the solar eclipse regarding the delimi-
tation of the lunar parallax in latitude, where he adds it to the ecliptic, whereas he should
have added it to the Moon itself. However, we will not mention this in our book, since
it is only necessary for the composition of tables used in the computation of the solar
eclipse, and this belongs to the realm of practical questions (umiir ‘amaliyya).

At the end of his study of solar eclipses, we find the text of the criticism that
Jabir mentioned in his Introduction to his al-Kitab fi I-Hay’a:

Likewise, the same thing happened to him in the delimitation of the side of the parallax
in latitude to obtain from it the apparent latitude of the Moon. Ptolemy pointed out:
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If the parallax in latitude is northwards with respect to the ecliptic, we consider the
matter. If [the position of] the Moon moves towards the node of the head [of the
dragon], we add [this value], and if it moves towards the node of the tail [of the
dragon], we subtract [it]. If the parallax in latitude is southwards with respect to
the ecliptic, we will act in the opposite way.”

Thus, he added (adafa) the parallax in latitude in this position to the ecliptic. However,
it must be added (yajib an yudifahu) to the Moon itself, not to the ecliptic. Therefore, he
introduces an error (khilaf) in the distance to the node, and he enters the table with [an
argument] smaller or greater than the one that should be entered with in reality. Hence,
for its apparent latitude —i.e., the [value] opposite the [argument] with which one enters
the table— there will necessarily be a large error (khilaf kathir). The same goes for the
degrees (ajza’) of the phase of immersion and the phase of emersion [obtained with the
table]. And it is for this reason that we have drawn attention to it here.

Jabir b. Aflah refers to Ptolemy’s resolution of the argument in apparent lati-
tude to be able to enter the tables to obtain the magnitude and the duration of the
phases of the solar eclipse, once the apparent longitude of the apparent conjunc-
tion is found. Briefly, the argument in apparent latitude in the apparent conjunc-
tion —Aw(D’,,)— is obtained from the argument in true latitude in the apparent
conjunction —Aw(D,,)— after the addition or subtraction of the argument in
latitude that corresponds to the difference of the parallax in latitude between the
Moon and the Sun in the apparent conjunction —Apy / sin i—; that is,

A0(D ) = Ao(d) b/ (69).
Sin 1

If the direction of the parallax in latitude is towards the north of the ecliptic,

the equivalent argument in latitude is added when the Moon is close to the as-
cending node, and is subtracted if it is close to the descending node; and if the

52. «If the effect of the latitudinal parallax is northwards with respect to the ecliptic, we add the
result to the previously determined true position in [argument of] latitude at the moment of apparent
conjunction when the moon is near the ascending node, but subtract it when the moon is near the
descending node. Contrariwise, if the effect of the latitudinal parallax is southwards with respect
to the ecliptic, we subtract the distance derived from the parallax from the apparent conjunction,
when the node is near the ascending node, but add it when the moon is near the descending node».
See Toomer p. 311.
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direction of the parallax in latitude is towards the south of the ecliptic, it should
be done in the opposite way.

Jabir b. Aflah does not need the argument in apparent latitude of the apparent
conjunction. However, since he believes that Ptolemy has made a mistake, he ad-
dresses the topic in this criticism. However, the text of his criticism is not com-
pletely clear. Jabir b. Aflah’s quotation of the Arabic Almagest is as follows:

Badis 925 ,adll OIS OIS Lylas oyl elld s Jloidl o Lie ooyl @ Skl (Bl Ol o)
o5 wsizdl b e ooyl § Sl sl IS o)y Lkals Codll Suds 525 OIS Ol by gulJ)
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Jabir b. Aflah quotes Ishaq/Thabit’s version although with some lacunae. Ishag/
Thabit’s version is as follows:

Bude 950 Hadll OIS OB Uyl oyl ells ge Jddl b Lo po,l § Shadk) sl oS o)
ol Bads so5 OIS Ols 650 s glazz ¥l Oley) Ledid Lis [...] oyl § skl e 055 ol
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The main difference between the manuscript used by Jabir b. Aflah and Ishag/
Thabit’s version of the Almagest is that the result should be added —according to
the Almagest— to the al-mastr fi I-‘ard, that is to the argument in latitude, deter-
mined for the time of the apparent conjunction, whereas in the quotation by Jabir
b. Aflah, the text does not indicate the complement of the verb zidna, i.e., that to
which the result should be added.

The lacuna in the base manuscript used by Jabir b. Aflah prevented him from
understanding that Ptolemy added, or subtracted, the argument in latitude deter-
mined by the parallax in latitude to, or from, the argument in latitude of the ap-
parent conjunction to obtain the argument in apparent latitude of the apparent
conjunction.

An additional source for the study of this criticism is a gloss in the margin of
MS Paris, BnF, Ar. 2482, containing Ishag/Thabit’s version. The marginal gloss
is as follows:

53. Ibid.
54.MS Paris, BnF, Ar. 2482, f. 126r.
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The wording of this gloss is similar to the criticism by Jabir b. Aflah. The same
verb used by Jabir in this criticism appears in the marginal gloss of the Paris
manuscript containing Ishaq/Thabit’s version.

We should now consider if this criticism makes sense. It should be weighed
whether the method by Ptolemy is incorrect or whether the criticism is due to
mistakes in the transmission.

The method by Ptolemy does not seem to contain any mistake. It could, perhaps,
be argued that he uses plane trigonometry instead of spherical trigonometry, or that
he considers the apparent course of the Moon to be parallel to its inclined orbit, but
neither Jabir b. Aflah nor the criticism in the margin of the Paris manuscript allude
to these approximations. In addition, the criticisms leveled at Ptolemy on this topic
do not seem to square with the extant text of the Almagest. Thus, the criticisms lev-
eled by Jabir b. Aflah and the Paris manuscript should have their origin in a mistake
of interpretation. Jabir b. Aflah’s criticism is probably due to a lacuna in his manu-
script of the Almagest. To understand the rationale behind Jabir b. Aflah’s criticism,
we can propose three possible hypotheses of interpretation.

The first hypothesis, and the most plausible, is that Jabir b. Aflah considers
that Ptolemy’s method operates with latitudes and not with arguments in latitude.
According to this hypothesis, Jabir b. Aflah interprets Ptolemy as saying that the
difference between the parallax in latitude of the Moon and the Sun must be
added—or subtracted depending on the situation— to the true latitude of the
Moon, to obtain the apparent latitude of the Moon. That is,

B’ =P D) = Apg (70).

The next step would be to obtain the argument in apparent latitude as
Ao(D’,) =B(D°,) /sini (7D).

Thus, in this context, «adding to the ecliptic» should be understood as adding

the component in latitude of the difference between the lunar parallax and the

55. Ibid.
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solar parallax to the null latitude of the ecliptic. In turn, «adding to the Moon»

should be understood as adding the difference of the parallax in latitude to the

latitude of the true Moon. Thus, if the difference of the parallax in latitude is

added to the ecliptic, and not to the true Moon, there would be an error of £ 2Apj,.
Let us list the different reasons supporting this hypothesis:

* The expression «delimitation of the side of the parallax» makes sense be-
cause the fact of adding —or alternatively subtracting— a parallax to the
ecliptic, and not to the true Moon, is equivalent to adding —or alternatively
subtracting— a parallax of opposite sign to the true Moon, which would
result in a change of sign and therefore a change of side between the north
and south hemisphere as defined by the plane of the ecliptic.

e Jabir b. Aflah points out that he aims to obtain the apparent latitude (‘ard
al-mar’7) of the Moon. Sometimes, the term ‘ard refers to the argument in
latitude. However, shortly after Jabir b. Aflah seems to allude to the argu-
ment in latitude as «distance to the node» (al-bu‘d min al-‘ugda).

e Jabir b. Aflah considers that Ptolemy added the parallax in latitude to the
ecliptic and not the argument in latitude that corresponds to the parallax in
latitude, since after quoting the Almagest, he says: «Thus, he added (adafa)
the parallax in latitude in this position to the ecliptic».

 Jabir b. Aflah could not have known that the distance in question —which
he interpreted as a parallax in latitude— should be added to, or subtracted
from, an argument in latitude, since at this point there was a gap in his man-
uscript.

e The criticism that appears in the margin of the Paris manuscript is congruent
with this hypothesis.

* And, in his method for the computation of the magnitude of the eclipse,
Jabir b. Aflah uses the apparent latitude of the apparent Moon, which is the
value that he considers Ptolemy should use.

In turn, the following arguments weaken this hypothesis:

e Just before the quotation from the Almagest that appears in the al-Kitab fi
[-Hay’a, Ptolemy makes it clear that the variable to be added was an argu-
ment in latitude. Either the manuscript in use by Jabir b. Aflah had also a
lacuna on this point or this fact went unnoticed by him. In turn, the Paris
manuscript contains these references alongside the criticism.
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e Jabir b. Aflah must have expected when reading the Almagest that Ptolemy,
after operating with latitudes according to his interpretation, would convert
the apparent latitude of the Moon into an argument in latitude, but this was
not the case because Ptolemy operates with arguments in latitude and not
with latitudes. Jabir b. Aflah must have been aware that this step was not in
the text. However, he did not draw attention to it, perhaps because he did not
want to extend himself when dealing with a practical point, or perhaps be-
cause the operation was obvious.

* The gloss in the Paris manuscript is written in the margin of a copy of the
Almagest without gaps on this point. The scribe must have copied the crit-
icism in the margin from some previous manuscript without understand-
ing it.

Despite these negative factors, this interpretation seems to us to be the most
correct, since it does not force the texts. These negative factors are generally due
to the fact that the text of the criticism is not congruent with the text of the Almag-
est, but this may be due to problems in the transmission of the fextus receptus that
Jabir b. Aflah was using.

The second hypothesis of interpretation is closer to the text of the Almagest
and, consequently, does not accurately represent the texts of the criticisms. This
hypothesis basically understands the reference to the ecliptic that appears in the
texts as an allusion to a longitude relative to the node, and the reference to the
Moon as an allusion to the argument in latitude. In this sense, the criticism could
be understood as Jabir b. Aflah calling attention to the fact that Ptolemy is adding
—or alternatively subtracting— an argument in latitude —i.e., the correction Apy
/ sin i— to a longitude relative to the node, and thus the reference to the ecliptic.
The criticism would, thus, point out that the correction Ap[j / sin i should be
added to the argument in latitude of the true Moon —and thus the reference to the
Moon— to obtain the argument in apparent latitude of the apparent Moon.

In general, the arguments that support this hypothesis are the same as those
that discredit the previous one, and the arguments that discredit it are the same as
those that support the previous one.

The third hypothesis is suggested by the marginal gloss in the Paris manu-
script. A possible interpretation of this gloss —a‘ant an yugala—would suggest
that we should not take the ecliptic as a reference to add or subtract the argument
in latitude corresponding to the parallax in latitude, but rather we should take the
lunar inclined orbit as a reference.
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Let us see if this possible interpretation makes sense. In most cases, since the
angle of inclination of the lunar inclined orbit relative to the ecliptic is small,
when the effect of the parallax would be towards the north of the ecliptic, it will
also be towards the north of the inclined orbit. Likewise, in general, when the ef-
fect of a parallax would be towards the south of the ecliptic, it will also be to-
wards the south of the inclined orbit. But how would the method of Ptolemy re-
spond when the parallax takes place, for instance, to the north of the ecliptic and
to the south of the lunar inclined orbit, or to the north of the lunar inclined orbit
and to the south of the ecliptic. This possible interpretation of the criticism in the
margin of the Paris manuscript would refer to these cases.

Let us consider Figure 62. In this figure, we can see a case close to the ascend-
ing node with parallax in latitude to the north of the ecliptic. Likewise, the paral-
lax in latitude takes place to the north of the inclined orbit. To obtain the argument
in apparent latitude we must subtract Apg / sin i from the argument in latitude of
the true Moon. The criticism in the marginal gloss of the Paris manuscript leads
us to study a situation in which, as in the previous case, the parallax in latitude
takes place to the north of the ecliptic and to the south of the inclined orbit. We
show this case in Figure 63.

As in the previous case, Ap;; / sin i must be subtracted to obtain the argument
in apparent latitude from the argument in latitude of the true Moon in the apparent
conjunction, i.e., Aw(D,). Consequently, it is not significant to take into consid-
eration the lunar inclined orbit as a reference to determine if Apg / sin i must be
added or subtracted instead of taking the ecliptic as reference. This result is logi-
cal, since the parallax in latitude is orthogonal to the ecliptic. Let us suppose that
the parallax in latitude is null. In this case, the argument in latitude of the true
Moon in the apparent conjunction —Aw(D,,)— and the argument in apparent
latitude of the apparent Moon are equal —Aw(D’.,)— . Thus, a null component in
latitude of the parallax indicates a point of inflection in the sign of the correction
Apg /sin i, so that it is the orthogonality relative to the ecliptic that determines the
sign, that is the addition or subtraction of Apg/sin i. Hence, the plane of reference
is the ecliptic and not the inclined orbit.

In short, this third interpretation of the criticism leads us to a correction that
makes no sense. In addition, some of the textual references in the text by Jabir b.
Aflah do not agree with this interpretation, and this makes us to reject it.

Considering these three interpretations, we opt for the first one, as it is the one
that best fits the text of the criticism. However, this interpretation assumes that
the text of the Almagest used by Jabir b. Aflah had lacunae. An additional element
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that should be highlighted is the close relationship between the criticisms in the
margin of the Paris manuscript and those by Jabir b. Aflah. The text of the Paris
manuscript does not present any lacunae, as does that of Jabir b. Aflah.
Furthermore, the marginal gloss is written by the same hand as in the main text of
the manuscript, so that the scribe probably copied it from the base manuscript.

Apparent
conjunction

Pu(o)m

2D |

Figure 62. Argument in apparent latitude with parallax in latitude to the
north of the ecliptic and the inclined orbit and close to the ascending node.

Apparent
conjunction

Z(ON

M |

Figure 63. Argument in apparent latitude with parallax in latitude to the north
of the ecliptic and to the south of the inclined orbit and close to the ascending node.
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We have already pointed out the agreement between the contents and terminolo-
gy of the gloss and Jabir b. Aflah’s criticism in the al-Kitab fi [-Hay’a. All these
elements lead us to think that ultimately Jabir b. Aflah was the source of this
criticism, although a common source cannot be ruled out.

In short, only the first criticism, discussed in the second place, levelled by Jabir
b. Aflah is pertinent. However, the solution he proposes is not adequate either. Two
seem to be the main reasons why these three criticisms are not justified: (i) a
deficient text of the Almagest used by Jabir, and (ii) a geometric oversimplification
that allowed him to overstress the motion of the ecliptic over the horizon to find the
point in which the phases or immersion and emersion are equal.

4. CONCLUSIONS

Even though two of the three criticisms of Ptolemy’s method to find out the mag-
nitude and phases of solar eclipses in the Almagest leveled by Jabir b. Aflah do
not seem justified, they provide us with valuable information about him.

In order to understand and discard these criticisms, we have devoted a long
study to Ptolemy’s method, since Neugebauer did not address this topic at length
in his History of Ancient Mathematical Astronomy.

Jabir b. Aflah works with a manuscript of Ishaq/Thabit’s version of the Almag-
est very defective. For instance, the second criticism—which we have dealt with
firstly —as well as the third seem to be due to lacunae in his base manuscript of
the Almagest. Likewise, the fact that he did not take into account the additional
motion of the Sun in the resolution of the longitude of the apparent conjunction
seems the result of a lacuna in his manuscript of the Almagest. It is also possible
that Jabir b. Aflah would be working with a particularly poor abridgement of the
Almagest.

Jabir b. Aflah advances in his work on the Almagest by understanding and
checking what Ptolemy says. He is in no way a mere scribe who makes an uncritical
reading of the text. For instance, his improvements in the successive time incre-
ments due to the various parallactic and epiparallactic effects in the Berlin manu-
script show that he understood perfectly the procedure followed by Ptolemy.
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Jabir b. Aflah tends to reduce the complexity of the celestial motions to geomet-
ric models rather than relying on them to understand that complexity. Thus, Jabir b.
Aflah can easily lose sight of the celestial motions, as when he does not take into
account the solar epiparallax in the resolution of the apparent conjunction.

Jabir b. Aflah is a good mathematician, but a novice in the art of astronomy, as
evidenced by the fact that he missed the additional motion of the Sun in the reso-
lution of the apparent conjunction. This shows that Jabir b. Aflah has never com-
puted a solar eclipse.

Jabir b. Aflah seems to work alone, since the al-Kitab fi I-Hay’a does not seem
to have been corrected by any professional astronomer who could draw his atten-
tion to the fact that he did not take into account the additional motion of the Sun
or that his criticisms due to textual problems could ultimately be unjustified. In
short, Jabir b. Aflah seems to be an excellent mathematician, but a novice though
creative astronomer, capable of the best and the worst. He, nevertheless, is one of
the very few medieval astronomers able to gain a thorough understanding of the
Almagest.

5. TRANSLATION

/Ea 64v, Eb 781, and B 66v/

On the solar eclipse

As for solar eclipses, the magnitudes (magadir al-munkasif) and durations of the
phases of the eclipse (maqgadir azman al-kusiif) are obtained from the arc that
passes through the centers of the apparent Sun and Moon, which is the apparent
conjunction (ijtima‘). To do so, it is necessary to establish the time of the true
conjunction and its position, the time of the apparent conjunction and its position
for the desired place, the true positions of the Moon in longitude, latitude and
anomaly at the time of this apparent conjunction. The computation of all this
needs an introduction, which I will describe [in what follows].

[See Figure 64.] Be /Ea 651/ circle BZGE the circle of the horizon, point A the
zenith of this horizon and line ZAE its meridian. Be arcs BDG and TDK two
semicircles of the ecliptic. Be the ascendant in the true conjunction one of the two
points G or K. Let two arcs of great circle —that is, arcs AW and AH— pass
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Figure 64. Ea 66r

through the poles of arcs BDG and TDK, and the zenith. Points H and W divide
the semicircles in two halves. If the position of the true conjunction takes place in
one of arcs GW or HK, that is if its distance to the ascendant is less than 90°, the
parallax in longitude takes place in the direction of the zodiacal signs across the
ecliptic; whereas if it takes place in one of arcs BW or HT, that is if its distance to
the ascendant is greater than 90°, /B 67r/ the parallax in longitude takes place in
the opposite direction of the zodiacal signs across the ecliptic. When [the Moon]
is above the eastern horizon, the parallax in longitude is maximum and decreases
gradually as the Moon rises with the universal motion until the Moon reaches the
mid-heaven of the ascendant, that is one of points W or H. At that point, the paral-
lax in longitude becomes null and its apparent position becomes exactly its true
position. When the Moon moves with the universal motion and its distance to the
degree of the ascendant is greater than 9o°, the parallax begins to increase with
the universal motion and continues in this way until it reaches the western hori-
zon. When, in the conjunction, the parallax in longitude takes place in the direc-
tion of the zodiacal signs across the ecliptic, the apparent conjunction occurs be-
fore the true conjunction, and, thus, the parallax in longitude in the apparent
conjunction is greater than in the true conjunction. If the parallax takes place in
the opposite direction of the zodiac, the apparent conjunction occurs after the true
conjunction, and, thus, the parallax /Eb 78v/ in longitude in the apparent conjunc-
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tion is greater than in the true conjunction. For this reason, the parallax in longi-
tude in the apparent conjunction is always greater than in the true conjunction.

[See Figure 64.] We will consider as a given condition that the position of the
true conjunction takes place in one of these two situations: either, that its dis-
tance to the ascendant is less than 9o°; or that its distance to the ascendant is
greater than 90°, as [in the figure] point L on arc WG. Be arc LM the parallax in
longitude, point M its apparent position, point R the position of the apparent Sun
and arc LR its parallax [i.e., of the Sun] in longitude. We want to know the point
of the ecliptic which corresponds to the true position of the Moon when its ap-
parent position is point R. If we take the lunar parallax in longitude of point L
and we subtract from it /Ea 65v/ the total solar parallax, we will determine from
the difference the arc of the total lunar parallax in longitude, that is, arc RM. If
we take an arc from point L, of value equal to arc RM, but in the opposite direc-
tion, which results in arc LQ, arc QR is similar to arc LM, which is the parallax
of point L. Let us imagine that the Moon is on point Q: if its parallax in longitude
on point Q is equal to the parallax on point L, which corresponds to arc LM, its
apparent position would be on point R, which is the result we are looking for.
However, the parallax on point Q is greater than the parallax on point L, which
[in the figure] corresponds to arc QC, and exceeds the result we are looking for
by arc RC. If we take from point Q [an arc] as arc RC, which will result in arc
QO, arc RO will be like arc CQ. Let us imagine [now] that the Moon is on point
O: if the parallax on point O is equal to its parallax on point Q, which corre-
sponds to [arc] QC, its apparent position would be point R, which is the result
we are looking for. However, its parallax /B 67v/ on point O is greater than on
point Q. Be its parallax on point O arc OF. If we add to arc RF a section of itself
(al-juz’ minha), if it is significant, in the same proportion of itself to arc RC, and
we add this value to point O, as if [resulting in] arc SO, point S is approximately
the point we are looking for; that is, [the position] of the true Moon when its ap-
parent position is point R, which is, in turn, the apparent position of the Sun.
Thus, point R will be the position of the apparent conjunction. Quod erat demon-
strandum.

/Eb 791/ Let us present the method regarding the solar eclipse to confirm what
we have mentioned and [to explain it] in an easier way. Let us, also, clarify the
mistakes that Ptolemy committed in his method regarding this eclipse and in the
delimitation of its phases.

We say: firstly, we will obtain the total lunar parallax in the true conjunction
and we will subtract the total solar parallax. From the difference, we will know the

325



JOSE BELLVER

lunar parallax in longitude, which corresponds to arc RM in the figure. We divide
it by the true motion of the Moon in the true conjunction and we save the resulting
time in hours. If the parallax in longitude takes place in the direction of the zodia-
cal signs across the ecliptic, and we have already explained this, we subtract this
time from the time of this true conjunction. If the parallax takes place in the op-
posite direction of the zodiacal signs across the ecliptic, we add [this time] to the
time (zaman) of this true conjunction. From the result after the addition or the
subtraction in hours, we obtain the lunar parallax in longitude for the second time,
which is arc QC. We take the difference between the parallaxes —that is, arc
CR —, so that we know the time in which the Moon traverses arc CR with its true
motion. We add this time to the time (zaman) in which the Moon is on /Ea 661/
point Q, or we subtract it depending on the difference in longitude between the
true conjunction and the degree of the ascendant at this time. From the resulting
time, we obtain the parallax in longitude for the third time, which is arc OF. We
take the difference between this and the parallax of point Q, which is equal to arc
OR, [and this difference] is arc RF. We add to it the section of it [i.e., arc RF], if it
is significant, in the same proportion of itself to arc RC. We add it to arc OR and
we obtain arc SR. Point S is approximately the point of the true position of the
Moon when its apparent position is point R. Once we know this point —i.e, arc
SL—, we divide it by the true motion /B 681/ of the Moon in the true conjunction
and we consider the resulting time. If the parallax in longitude takes place in the
direction of the zodiacal signs across the ecliptic, we subtract this time from the
time (zaman) of the true conjunction; and if it takes place in the opposite direction
of the zodiacal signs across the ecliptic, we add it. The result /Eb 79v/ of the sum
or the subtraction is the time of the apparent conjunction.

Thus, we will know the positions of the Moon in longitude, latitude and anom-
aly for this time. Therefore, we will know its true latitude and its total parallax.
We subtract from it the solar parallax, and we know, from the difference, its paral-
lax in latitude. Thus, we will know its apparent latitude. Then, we will know,
thanks to the apparent latitude [of the Moon], according to what we have ex-
plained in the previous step, the distance (migdar) between the centers [of the
heavenly bodies] at the eclipse mid-time. Next, we will know, from the position
of the Moon in its epicycle, the value of the lunar radius that we will add to the
radius of the Sun. We take the difference between the result and the distance be-
tween the centers at the eclipse mid-time, and we obtain the eclipsed part of the
diameter of the Sun. Thus, we will know from this the eclipsed part of the surface
[of the Sun], according to what has been explained previously.
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We will also know the distance between the centers at the eclipse mid-time
and, thanks to the sum of the radii, the arc between the eclipse initial time and its
middle time, and between its middle time to its end time, according to what we
have explained previously. We add its twelfth part, which is the distance traversed
by the Sun until the Moon reaches it. The resulting arc is the course of the Moon
with its apparent motion from the initial time of the eclipse to its middle time, and
from its middle time to the end time.

Since the lunar parallax in longitude is different in the three significant times
(azmina) of the eclipse —I mean by that, in the initial, middle /Ea 66v/ and end
times of the eclipse—, the apparent motion [of the Moon during the interval]
between the eclipse initial time and the eclipse mid-time should not be equal to
its apparent motion [during the interval] between the eclipse mid-time to its end
time. Since both arcs are equal and the motions in both are different, both time
intervals, i.e., the one that goes from the initial time [of the eclipse] to its middle
time, and the one that goes from its middle time to its end time, must be different.

Let us clarify how these two phases are obtained with the greatest possible
accuracy and give an example so that its demonstration would be clearer.

[See Figure 65.] Be arc AB the inclined orbit and point A the apparent position
of the Moon at the initial time of the eclipse, point E its position at the middle time
and point B its position in the end time. Be point T the center of the Sun at the initial
time of the eclipse, point D at the middle time and point K at the end time. Arcs AT
and BK are the sum of the radii of the Sun and the Moon. Since they are approxi-
mately equal, arcs AE and EB are equal. Be arc AZ the lunar parallax in longitude
at the initial time of the eclipse and the arc EH at the middle time; both being dif-
ferent. The true positions of the Moon are points Z and H, and the apparent posi-
tions /Eb 8or/ points A and E. During the time in which the Moon apparently trav-
erses arc AE, its true course is arc HZ. The difference between arcs AE and ZH is
the difference between arcs AZ and HE, which are the parallaxes in longitude [at
the initial and middle times]. If /B 68v/ the parallax takes place in the direction of
the zodiacal signs across the ecliptic, the parallax at the initial time of the eclipse is
greater than [the parallax] at the middle time, so that arc ZH is greater than arc AE.
Therefore, the apparent motion is slower than the true one. If the parallax takes
place in the opposite direction of the zodiacal signs across the ecliptic, the parallax
at the initial time of the eclipse is smaller than at the middle time. Therefore, arc ZH
is also greater than arc AE. Thus, the apparent motion is always slower than the true
motion. The exact same thing happens for arc EB. If we take the difference between
arcs AZ and EH and add it to arc AE, we obtain arc ZH. We divide it by the true
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Figure 65. Ea 66v.

motion of the Moon and the resulting value is the time that the Moon takes to trav-
erse, with its apparent motion, arc AE. The exact same thing happens in the case of
arc EB, when adding the parallax on points E and B to arc EB.

Since the variation (fafadul) of parallaxes in longitude is maximum in areas
close /Ea 671/ to the mid-heaven of the ascendant and minimum in areas close to
the ascendant (al-tali‘) or the descendant (al-gharib) —and this is explained by
what we have mentioned about the variation (tafadul) of the angles of the equa-
tion (ikhtilaf) relative to the eccentricity (al-falak al-kharij al-markaz)—, the
phase of immersion (zaman wuqii’ f [-kusiif), if the distance of the Moon to the
ascendant during the total duration of the eclipse, is less than 90°, is smaller than
the phase of emersion (zaman tardju‘ al-imtila’). If the distance [of the Moon] to
the ascendant is greater than 9o°, the matter is the opposite; that is, the phase of
immersion is greater than the phase of emersion. And if the Moon is at the eclipse
mid-time in the mid-heaven of the ascendant, the two phases are equal.

This matter is not as Ptolemy thinks, for he said that if the middle time of the
eclipse takes place at noon, both times are equal. But this is a mistake, for be-
tween the degree [in longitude] of the mid-heaven and the degree [in longitude]
of the mid-heaven of the ascendant in the northern countries /Eb 8ov/ there may
be an arc with a value [which cannot be neglected] and which in the seventh cli-
mate reaches up to 37°. Thus, if the Moon during the eclipse is on this arc, after
noon its distance from the ascendant would be less than 9o°, or before noon its
distance from the ascendant would be greater than 9o°. Hence, the matter about
the duration of the phases (azmina) [of solar eclipses] differs from what [Ptole-
my] mentioned.
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Likewise, Ptolemy makes a mistake when he states that the addition of the
times that correspond to the arcs of the parallaxes in longitude always depends on
the distance of the true conjunction to the meridian, be it before it or after it. This
is never the case except in an eclipse whose ascendant would be the head of Aries
or Libra. [Only] in this case, the degree [in longitude] of the mid-heaven is [the
same of that of] the mid-heaven of the ascendant. In turn, when the ascendant is
not one of these two points, these two degrees [in longitude] are different. If the
position of the true conjunction is between these two degrees [in longitude], as [if
the true conjunction] takes place before noon and its distance to the degree [in
longitude] of the ascendant is greater than 9o°, or [as if it] takes place after noon
and its distance to the ascendant is less than 9o°, then the time interval which cor-
responds to the parallax in longitude should be subtracted from the time interval
which corresponds to the distance [in longitude] between the true conjunction
and the meridian, although [Ptolemy] adds it. Therefore, there is a mistake in the
apparent conjunction with a [non negligible] error, since the parallax in longitude
in the northern countries has a significant value. Thus, the error (khilaf) [intro-
duced by Ptolemy] in the apparent conjunction is a time [difference] that corre-
sponds to the double of the parallax in longitude.

Likewise, the same thing happened to him in the delimitation of the side of the
parallax in latitude to obtain from it the apparent latitude of the Moon. Ptolemy
pointed out:

If the parallax in latitude is northwards with respect to the ecliptic, we consider the
matter. If [the position of] the Moon moves towards the node of the head [of the dragon],
we add [this value], and if it moves towards the node of the tail [of the dragon], we
subtract [it]. If the parallax in latitude is southwards with respect to the ecliptic, we will

act in the opposite way.*®

56. «If the effect of the latitudinal parallax is northwards with respect to the ecliptic, we add the
result to the previously determined true position in [argument of] latitude at the moment of apparent
conjunction when the moon is near the ascending node, but subtract it when the moon is near the
descending node. Contrariwise, if the effect of the latitudinal parallax is southwards with respect
to the ecliptic, we subtract the distance derived from the parallax from the apparent conjunction,
when the node is near the ascending node, but add it when the moon is near the descending node».
See Toomer p. 311.
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Thus, he added (adafa) the parallax in latitude in this position to the ecliptic.
However, it must be added (yajib an yudifahu) to the Moon itself, not to the eclip-
tic. Therefore, he introduces an error (khildf) in the distance to the node, and he
enters the table with [an argument] smaller or greater than the one that should be
entered with in reality. Hence, for its apparent latitude —i.e., the [value] opposite
the [argument] with which one enters the table — there will necessarily be a large
error (khilaf kathir). The same goes for the degrees (ajza’) of the phase of immer-
sion and the phase of emersion [obtained with the table]. And it is for this reason
that we have drawn attention to it here.

6. EDITION
This working edition is based on the following manuscripts:

Ea = MS Escorial, Real Biblioteca del Monasterio de San Lorenzo, ar. 910;
Eb = MS Escorial, Real Biblioteca del Monasterio de San Lorenzo, ar. 913;
and

B = MS Berlin, Staatsbibliothek PreuBischer Kulturbesitz, Landberg 132.
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