Dissolution of minor sulphides present in a pyritic sludge at pH 3 and 25º C

Authors

  • J. CAMA
  • P. Acero

DOI:

https://doi.org/10.1344/105.000001411

Keywords:

Pyritic sludge, Galena, Sphalerite, Chalcopyrite, Dissolution kinetics

Abstract

The steady-state dissolution rates of galena, sphalerite and chalcopyrite at pH 3 under oxygen saturated atmosphere and at 25ºC are obtained by means of non-stirred flow-through experiments. These dissolution rates are compared with those estimated by dissolving pyritic sludge from the Aznalcollar mining tailings composed of pyrite and minor sulphides galena, sphalerite and chalcopyrite.Based on the respective release of Fe, Pb, Zn and Cu, the steady-state dissolution rates of pyrite (RateFe), galena (RatePb), sphalerite (RateZn) and chalcopyrite (RateCu) are 6.33 ± 0.95 x 10-11, 1.2 ± 0.18x10-10, 1.3 ± 0.20x10-11 and 1.71 ± 0.25x10-11 mol m-2 s-1, respectively, yielding RatePb RateFe RateZn = RateCu. Based on the release of metal and sulphur to solution, the stoichiometric ratios Pb/S, Zn/S and Cu/S are 4 ± 0.25, 1.2 ± 0.1 and 0.90 ± 0.05 for the respective dissolution reactions of galena, sphalerite and chalcopyrite, which are higher than the ideal ones. These high values result from a sulphur deficit in the output solutions attributed to the loss of H2S(aq) via gasification by which H2S(aq) partially converts to H2S(g). Nevertheless, the Cu/Fe ratio is 0.95 ± 0.05 during chalcopyrite dissolution at steady state, suggesting that chalcopyrite dissolves stoichiometrically.

References

Alastuey, A., García-Sánchez, A., López, F., Querol, X., 1999. Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalcóllar spill, southwest Spain. Science of Total Environment, 242, 41-55.

Ayora, C., Guijarro, A., Domènech, C., Fernández, I., Gómez, P., Manzano, M., Mora, A., Moreno, L., Navarrete, P., Sánchez, M., Serrano, J., 2001a. Actuaciones para la corrección y el seguimiento de la contaminación hídrica. Boletín Geológico y Minero, 112, 123-136.

Ayora, C., Baretitino, D., Doménech, C., Fernández, M., LópezPamo, E., Olivell S., De Pablo, J., Saaltink, M.W., 2001b. Meteorización de los lodos piríticos de Aznalcóllar. Boletín Geológico y Minero, 112, 137-162.

Barrante, J.R., 1974. Applied Mathematics for Physical Chemistry. New Jersey, ed. Prentice-Hall, 256 pp.

Bobeck, G.E., Su, H., 1985. Kinetics of dissolution of sphalerite in ferric chloride solution. Metallurgical Transactions B (Process Metallurgy), 16, 413-424.

Bonissel-Gissinger, P., Alnot, M., Ehrhardt, J.J., Behra, P., 1998. Surface oxidation of pyrite as a function of pH. Environmental Science and Technology, 32, 2839-2845.

Brandt, F., Bosbach, D., Krawczyk-Bärsch, E., Arnold, T., Bernhard, E., 2003. Chlorite dissolution in the acid pH-range: A combined microscopic and macroscopic approach. Geochimica and Cosmochimica Acta, 67, 1451-1461.

Brantley, S.L., Mellott, N.P., 2000. Surface area and porosity of primary silicate minerals. American Mineralogist, 85, 1767-1783.

De Giudici, G., Zuddas, P., 2001. In situ investigation of galena dissolution in oxygen saturated solution: Evolution of surface features and kinetic rate. Geochimica and Cosmochimica Acta, 65, 1381-1389.

Domènech, C., De Pablo, J., Ayora, C., 2002a. Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain). Chemical Geology, 190, 339-353.

Domènech, C., Ayora, C., De Pablo, J., 2002b. Sludge weathering and mobility of contaminants in soil affected by the Aznalcóllar tailing dam spill (SW Spain). Chemical Geology, 190, 355-370.

Drever, J.I., 1997. The Geochemistry of Natural Waters. Surface and groundwater environments. New Jersey, ed. PrenticeHall, 436 pp.

Fornasiero, D., Li, F., Ralston, J., Smart, R.S.C., 1994. Oxidation of galena surfaces. I. X-ray photoelectron spectroscopic

and dissolution kinetics. Journal of Colloid and Interface Science, 164, 334-344.

Ganor, J., Mogollón, J.L., Lasaga, A.C., 1995. The effect of pH on kaolinite dissolution rates and on activation energy. Geochimica and Cosmochimica Acta, 59, 1037-1052.

Higgins, S.R., Hamers, R.J., 1996. Chemical dissolution of the galena (001) surface observed using electrochemical scanning tunnelling microscopy. Geochimica and Cosmochimica Acta, 60, 3067-3073.

Hodson, M.E., 1998. Micropore surface area variation with grain size in unweathered alkali feldspars: implications for surface roughness and dissolution studies. Geochimica and Cosmochimica Acta, 62, 3429-3435.

Hsieh, Y.H., Huang, C.P., 1989. The dissolution of PbS(s) in dilute aqueous solutions. Journal of Colloid and Interface Science, 131, 537-549.

Kamei, G., Ohmoto, H., 2000. The kinetics of reaction between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system. Geochimica and Cosmochimica Acta 64, 2585-2601.

Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton, Princeton University Press, 810 pp.

Lengke, M.G., Tempel, R.N., 2002. Reaction rates of natural orpiment oxidation at 25 to 40ºC and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation. Geochimica and Cosmochimica Acta, 66, 3281-3291.

Lowson, R.T., 1982. Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82, 461-497.

Lu, Z.Y., Jeffrey, M.I., Lawson, F., 2000. The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy, 56, 189-202.

McKibben, M.A., Barnes, H.L., 1986. Oxydation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochimica and Cosmochimica Acta, 50, 1509-1520.

Metz, V., Ganor, J., 2001. Stirring effect on kaolinite dissolution rate. Geochimica and Cosmochimica Acta, 65, 3475-3490.

Moses, C.O., Herman, J.S., 1991. Pyrite oxidation at circumneutral pH. Geochimica and Cosmochimica Acta, 55, 471-482.

Nagy, K.L., Blum, A.E., Lasaga, A.C., 1991. Dissolution and precipitation kinetics of kaolinite at 80ºC and pH 3. American Journal of Science, 291, 649- 686.

Nicholson, R.V., Gillham, R.W., Reardon, E.J., 1988. Pyrite oxidation in carbonated-buffered solution: 1. Experimental kinetics. Geochimica and Cosmochimica Acta, 52, 1077-1085.

Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon M.B. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Colorado, Reviews in Economic Geology, 6A, 133-160.

Parker, A., Klauber, C., Kougianus, A., Watling, H.R., van Bronswijk, W., 2003. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy, 71, 265-276.

Pashkov, G.L., Mikhlina, E.V., Kholmogorov, A.G., Mikhlin, Y.L., 2002. Effect of potential and ferric ions on lead sulfide dissolution in nitric acid. Hydrometallurgy, 63, 171-179.

Prenat, M., Oelkers, E.H., 2000. Journal of conferences abstracts, Goldschmidt 2000, V. 5(2), 817.

Rimstidt, J.D., Chermark, J.A., Gagen, P.M., 1994. Rates of reaction of galena, sphalerite, chalcopyrite and arsenopyrite

with Fe (III) in acidic solutions. In: Alpers, C.N., Bowes, D.W. (eds.). Environmental geochemistry of sulphide oxidation. Washington, D.C., American Chemical Symposium Series 550, 2-13.

Rosso, K.V., Becker, U., Hochella Jr., M.F., 1999. The interaction of pyrite {100} surfaces with O2 and H2O: fundamental oxidation mechanisms. American Mineralogist, 84, 1549-1561.

Weisener, G.G., Smart, R.S.C., Gerson, A.R., 2003. Kinetics and mechanisms of the leaching of low Fe sphalerite. Geochimica and Cosmochimica Acta, 67, 823-830.

Wieland, E., Wehrli, B., Stumm, W., 1988. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochimica and Cosmochimica Acta, 52, 1969-1981.

Williamson, M.A., Rimstidt, J.D., 1994. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica and Cosmochimica Acta, 58, 5443-5454.

Wolery, T.J., 1992. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, User’s guide, and related documentation (version 7.0), Berkeley, CA, Lawrence Livermore National Lab, 246 pp.

Zhang, S., Li, J., Wang, Y., Hu, G., 2004. Dissolution kinetics of galena in acid NaCl solutions at 25-75ºC. Applied Geochemistry, 19, 835-841.

Downloads

Published

2005-01-11

Issue

Section

Articles