Hydrogeochemical characterization of an evaporite karst area affected by sinkholes (Ebro Valley, NE Spain)

Authors

  • F. GUTIÉRREZ Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • J.P. GALVE Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • L.F. AUQUÉ Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • D. CARBONEL Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • M.J. GIMENO Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • J.B. GÓMEZ Earth Sciences Department, University of Zaragoza. C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
  • M.P. ASTA Instituto Andaluz de Ciencias de la Tierra (IACT) (CSIC-UGR) Av. de las Palmeras, 4; 18100 Armilla, Granada, Spain
  • Y. YECHIELI Geological Survey of Israel, Jerusalem 95501, and Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Studies, Ben Gurion University of the Negev, Sede Boqer, Israel

DOI:

https://doi.org/10.1344/105.000002052

Keywords:

Salt karst. Alluvial aquifer. Geochemical modeling. Hydrochemistry.

Abstract

The main processes controlling the hydrochemistry of an alluvium-covered evaporite karst area with high sinkhole risk (Ebro Valley, NE Spain) are examined by means of multivariate analyses (Principal Component Analysis and Hierarchical Cluster Analysis), ion correlations and geochemical speciation-solubility calculations. The hydrogeochemistry of the studied system seems to be governed by the interaction between the groundwater from the salt-bearing evaporitic karst aquifer and from the overlying Ebro River alluvial aquifer. The observed hydrochemical features in the alluvial-karst aquifer system are mainly determined by the relative contribution of gypsum/anhydrite and halite dissolution, showing a wide spectrum from relatively fresh recharge waters (mainly irrigation waters) to highly evolved groundwater from the evaporitic aquifer. The variability of these contributions is especially evident at sinkhole ponds which, in some cases, seem to be associated with discharge areas of the karst aquifer in the valley bottom alluvium. Calculated saturation indexes suggest that, in contrast to gypsum, the amounts of halite in the sampled portions of evaporitic aquifer are not large enough to attain equilibrium, which is consistent with the predominance of gypsum/anhydrite reported for these materials. Furthermore, the observed Na:Cl and Ca:SO4 correlations and stoichiometries suggest that other possible processes, such as glauberite dissolution or Na/Ca-exchange, generally play a minor role (compared to halite and gypsum dissolution) in this system. Another important process in the system is the dissolution of carbonate minerals (dolomite and, possibly, calcite) fostered by the input of CO2(g), which is probably produced by pedogenic processes. Dolomite dissolution seems to be particularly relevant in the evaporitic materials probably due to dedolomitisation triggered by gypsum/anhydrite dissolution.

References

Apaydin, A., Aktas, S.D., 2012. Assessment of groundwater quality of the Tatlicay aquifer and relation to the adjacentevaporitic formations (Cankiri, Turkey). Environmental Monitoring and Assessment, 184, 2337-2357.

Aquilina, L., Ladouche, B., Doerfliger, N., Bakalowicz, M., 2003. Deep water circulation residence time and chemistry in a karst complex. Ground Water, 41(6), 790-805.

Aquilina, L., Ladouche, B., Doerfliger, N., 2005. Recharge processes in karstic systems investigated through the correlation of chemical and isotopic composition of rain and spring-waters. Applied Geochemistry, 20, 2189-2206.

Aquilina, L., Ladouche, B., Doerfliger, N., 2006. Water storage and transfer in the epikarst of karstic systems during high flow periods. Journal of Hydrology, 327(3-4), 472-485.

Auqué, L.F., Acero, P., Gimeno, M.J., Gomez, J.B., Asta, M.P., 2009. Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage. Chemical Geology, 268, 324-336.

Ball J.W., Nordstrom, D.K., 2001. User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. USA, US Geological Survey Open File Report, 91-183.

Barbieri, M., Boschetti, T., Petitta, M., Tallini, M., 2005. Stable isotope (2H, 18O and 87S/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Applied Geochemistry,

, 2063-2081.

Barberá, J.A., Andreo, B., 2012. Functioning of a karst aquifer from S Spain under highly variable climate conditions, deduced from hydrochemical records. Environmental Earth Sciences, 65, 2337-2349.

Beck, B.F., 2005. Soil piping and sinkhole failures. In: White, W.B. (ed.). Encyclopedia of Caves. New York, Elsevier, 523-528.

Bicalho, C.C., Batiot-Guilhe, C., Seidel, J.L., Van Exter, S., Jourde, H., 2012. Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. Journal of Hydrology, 450-451, 206-218.

Calaforra, J.M., Pulido-Bosch, A., 1999. Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, southern Spain. Geomorphology, 29, 251-264.

Chiesi, M., Waele, J.D., Paolo, F., 2010. Origin and evolution of a salty gypsum/anhydrite karst spring: The case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18, 1111-1124.

Cooper, A.H., Gutiérrez, F., 2013. Dealing with gypsum karst problems: hazards, environmental issues and planning. In: Shroder, J. (ed.). Treatise on Geomorphology. Volume 6: Karst Geomorphology. Elsevier, 451-462.

Dassi, L., 2011. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach. Applied Geochemistry, 26, 1386-1398.

Diputación General de Aragón, 2007. Atlas climático de Aragón. Gobierno de Aragón, Departamento de medio ambiente, 222pp. Available at: http://www.aragon.es/DepartamentosOrganismosPublicos/Departamentos/AgriculturaGanaderiaMedioAmbiente/AreasTematicas/MA_CambioClimatico/EACCEL/LineasActuacionProyecto/ci.07_01_Atlas_Climatico_Aragon.detalleDepartamento).

Durán, J., Garrido, E., García, M., 2005. Informe: Trabajos técnicos para la aplicación de la Directiva Marco del Agua en materia de Aguas Subterráneas. Caracterización Adicional Aluvial del Ebro-Zaragoza. Instituto Geológico y Minero de España, Dirección General del Agua. 112pp.

Fidelibus, M.D., Gutiérrez, F., Spilotro, G., 2011. Humaninduced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy). Engineering Geology, 118, 1-19.

Galve, J.P., Gutiérrez, F., Lucha, P., Bonachea, J., Cendrero, A., Gimeno, M.J., Gutiérrez, M., Pardo, G., Remondo, J., Sánchez, J.A., 2009. Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain). Geomorphological mapping and analysis as a basis for risk management. Geomorphology, 108, 145-158.

Guerrero, J., Gutiérrez, F., Lucha, P., 2008a. The impact of halite dissolution subsidence on fluvial terrace development. The case study of the Huerva River in the Ebro Basin (NE Spain). Geomorphology, 100(1-2), 164-179.

Guerrero, J., Gutiérrez, F., Bonachea, J., Lucha, P., 2008b. A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid-Barcelona high-speed railway built over gypsum- and salt-bearing evaporites (NE Spain). Engineering Geology, 102, 62-73.

Guerrero, J., Gutiérrez, F., Galve, J.P., in press. Large depressions, thickened terraces and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain). Evidence of glauberite and halite interstratal karstification. Geomorphology, 196, 162-176.

Günay, G., 2002. Gypsum karst, Sivas, Turkey. Environmental Geology, 42, 387-398.

Gutiérrez, F., Galve, J.P., Guerrero, J., Lucha, P., Cendrero, A., Remondo, J., Bonachea, J., Gutiérrez, M., Sánchez, J.A., 2007. The origin, typology, spatial distribution, and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream Zaragoza city (NE Spain). Earth Surface Processes and Landforms, 32, 912-928.

Gutiérrez, F., Calaforra, J.M., Cardona, F., Ortí, F., Durán, J. J., Garay, P., 2008a. Geological and environmental implications of the evaporite karst in Spain. Environmental Geology, 53, 951-965.

Gutiérrez, F., Guerrero, J., Lucha, P., 2008b. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environmental Geology, 53, 993-1006.

Gutiérrez, F., Johnson, K.S., Cooper, A.H., 2008c. Evaporite karst processes, landforms and environmental problems. Environmental Geology, 53, 935-936.

Gutiérrez, F., Galve, J.P., Lucha, P., Bonachea, J., Jordá, L., Jordá, R., 2009. Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique (Zaragoza city, NE Spain). Environmental Geology, 58, 1107-1122.

Jiménez-Torrecilla, N., Galve, J.P., Asta, M.P., Gómez, L., Fuentes, J., 2004. Los humedales salinos del entrono de Zaragoza: una singularidad hidrogeomorfológica. GeoTemas, 6, 115-118.

Johnson, K. S., Neal, J.T., 2003. Evaporite karst and engineering/environmental problems in the United States. Oklahoma Geological Survey circular, 109, 353pp.

Kaçaroglu, F., Degirmenci, M., Cerit, O., 2001. Water quality problems of a gypsiferious watershed: Upper Kizilirmak Basin, Sivas, Turkey. Water, air and soil pollution, 128, 161-180.

Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141-151.

Klimchouk, A., Lowe, D., Cooper, A., Sauro, U., 1996. Gypsum karst of the World. International Journal of Speleology, 25(3-4), 307pp.

Kushnir, J., 1980. The coprecipitation of strontium, magnesium, sodium, potassium and chloride ions with gypsum. An experimental study. Geochimica et Cosmochimica Acta, 44, 1471-1482.

Lamont-Black, J., Younger, P.L., Forth, R.A., Cooper, A.H., Bonniface, J.P., 2002. A decision-logic framework for investigating subsidence problems potentially attributable to gypsum karstification. Engineering Geology, 65, 205-215.

Lamont-Black, J., Baker, A., Younger, P.L., Cooper, A.H., 2005. Utilising seasonal variations in hydrogeochemistry and excitation-emission fluorescence to develop a conceptual groundwater flow model with implications for subsidence hazards: an example from Co. Durham (UK), Environmental Geology, 48, 320-335.

Land, A.L., 2003. Evaporite karst and regional groundwater circulation in the Lower Pecos Valley of Southeastern New México. In: Johnson, K.H., Neal, J.T. (eds.). Evaporite karst and engineering/environmental problems in the United States. Oklahoma Geological Survey Circular, 109, 227-232.

Langmuir, D., Melchior, D., 1985. The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin, Texas. Geochimica Cosmochimica Acta, 49, 2423-2432.

López-Chicano, M., Bouamama, M., Vallejos, A., Pulido-Bosch, A., 2001. Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain. Applied Geochemistry, 16, 1179-1192.

Lu, F.H., Meyers, W.J., Schoonen, M.A.A., 1997. Minor and trace element analyses on gypsum: an experimental study. Chemical Geology, 142(1-2), 1-10.

Martín, P., 1993. Hidrogeología del Campo Nacional de Maniobras y Tiro de San Gregorio. MSc Thesis. Universidad Politécnica de Catalunya, Unpublished, 88pp.

Moore, P.J., Martin, J.B., Screaton, E.J., 2009. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer. Journal of Hydrology, 376, 443-455.

Nemeth, K., 1963. Photometric determination of sulphate in soil extracts. Zeitschrift für Pflanzenernährung, Düngung 103,

-196.

Ninyerola, M., Pons, X., Roure, J.M, 2005. Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Bellaterra, Universidad Autónoma de Barcelona, 44pp.

Omelon, C.R., Pollard, W.H., Andersen, D.T., 2006. A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic. Applied Geochemistry, 21, 1-15.

Ortí, F., Salvany, J.M., 1997. Continental evaporitic sedimentation in the Ebro Basin during the Miocene. In: Busson, G., Schreiber, B.Ch. (eds.). Sedimentary deposition in rift and foreland basins in France and Spain. New York, Columbia University Press, 420-429.

Parkhurst, D.L., Appelo, C.A.J., 2013. Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43, 497pp. Available only at http://pubs.usgs.gov/tm/06/a43/

Plummer, N., Busby, J., Lee, R., Hanshaw, B., 1990. Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming and South Dakota. Water Resources Research, 26, 1981-2014.

Quirantes, J., 1978. Estudio sedimentológico y estratigráfico del Terciario continental de los Monegros. Zaragoza, Institución Fernando el Católico (CSIC), 200pp.

Sánchez, J.A., Jiménez, N., Galve, J.P., Asta, M.P., 2004. Estudio hidrogeológico de la subsidencia y los humedales salinos en el entorno de Zaragoza. Unidad de Montes y Áreas Naturales, Excmo. Zaragoza, Ayuntamiento de Zaragoza, Unpublished Report.

Salvany, J.M., García-Veigas, J., Ortí, F., 2007. Glauberite-halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain). Sedimentology, 54, 443-467.

Salvany, J.M., 2009. Geología del yacimiento glauberítico de Montes de Torrero (Zaragoza). Zaragoza, Prensas Universitarias de Zaragoza, 80pp.

Salvati, R., Sasowsky, I.D., 2002. Development of collapse sinkholes in areas of groundwater discharge. Journal of Hydrology, 264, 1-11.

Torrescusa, S., Klimowitz, J., 1990. Contribución al conocimiento de las evaporitas miocenas (Formación Zaragoza) de la Cuenca del Ebro. In: Ortí, F., Salvany, J.M. (eds.). Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas y de la zona de Levante. Barcelona, Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) and Departament de Geoquimica, Petrologia i Prospecció Geològica of the University of Barcelona (GPPG), 120-122.

Tuccimei, P., Salvati, R., Capelli, G, Delitala, M.C., Primavera, P., 2005. Groundwater fluxes into a submerged sinkhole area, Central Italy, using radon and water chemistry. Applied Geochemistry 20, 1831-1847.

Waltham, T., Bell, F., Culshaw, M., 2005. Sinkholes and subsidence. Chichester, Springer, 382pp.

Williams, P., 2004. Dolines. In: Gunn, J. (ed.). Encyclopedia of Caves and Karst Science. New York, Fitzroy Dearborn, 304-310.

Yechieli, Y., Abelson, M., Bein, A., Crouvi, O., Shtivelman, V., 2006. Sinkhole “swarms” along the Dead Sea coast: Reflection of disturbance of lake and adjacent groundwater systems. Geological Society of America Bulletin, 118(9-10), 1075-1087.

Downloads

Published

2023-10-26

Issue

Section

Articles