Geochemistry of Precordillera serpentinites, western Argentina: evidence for multistage hydrothermal alteration and tectonic implications for the Neoproterozoic–early Paleozoic

Authors

  • F.L. BOEDO Instituto de Estudios Andinos “Don Pablo Groeber” (UBA-CONICET). Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • M.P ESCAYOLA Instituto de Estudios Andinos “Don Pablo Groeber” (UBA-CONICET). Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • S. PÉREZ LUJÁN CONICET - Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan.
  • G. VUJOVICH Instituto de Estudios Andinos “Don Pablo Groeber” (UBA-CONICET). Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • J. P. ARIZA Instituto Geofísico Sismológico Volponi (UNSJ-CONICET). Universidad Nacional de San Juan.
  • M. NAIPAUER Instituto de Estudios Andinos “Don Pablo Groeber” (UBA-CONICET). Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

DOI:

https://doi.org/10.1344/GeologicaActa2015.13.4.1

Keywords:

Mafic-ultramafic belt, Mid-ocean ridge, Listvenites, Cuyania terrane, Chilenia terrane

Abstract

Serpentinites are a powerful tool to evaluate mantle composition and subsequent alteration processes during their tectonic emplacement. Exposures of this type of rocks can be found in the Argentine Precordillera (Cuyania terrane) and Frontal Cordillera, both located in central-western Argentina, within the Central Andes. In these regions are outcrops of a Neoproterozoic to Devonian mafic-ultramafic belt composed of serpentinites, metabasaltic dikes/sills and pillow lavas (with an E- to N-MORB geochemical signature) and mafic granulites, spatially associated with marine metasedimentary rocks. The serpentinite bodies consist of lizardite/chrysotile + brucite + magnetite, with scarce pentlandite and anhedral reddish-brown Cr-spinel (picotite, pleonaste and spinel sensu stricto) as relict magmatic phases. The original peridotites were moderately-depleted harzburgites (ultramafic cumulates) with an intermediate chemical signature between a mid-ocean ridge and an arc-related ophiolite. Whole-rock REE patterns of serpentinites exhibit enriched REE patterns ((La/Yb)CN=13-59) regarding CI chondrite with positive Eu anomalies. These features are the result of an interaction between hydrothermal fluid and serpentinites, in which moderate temperature (350º-400ºC), CO2-rich, mildly basic hydrothermal fluid was involved and was responsible for the addition of Ca, Sr and REE to serpentinites. The presence of listvenites (silica-carbonate rocks) in the serpentinite margins allow us to infer another fluid metasomatism, where low-temperatures (<250ºC), highly-oxidized, highly-acid fluid lead to the precipitation of silica. The association of these metasomatized serpentinite bodies with neoproterozoic continental margin sucessions and MORB magmatism at the suture zone of the Cuyania and Chilenia terranes suggests the development of an oceanic basin between them during the Neoproterozoic-early Paleozoic.

References

Abre, P., Cingolani, C.A., Cairncross, B., Chemale, F.Jr., 2012. Siliciclastic Ordovician to Silurian units of the Argentine Precordillera: Constraints on provenance and tectonic setting in the proto-Andean margin of Gondwana. Journal of South American Earth Sciences, 40, 1-22.

Akbulut, M., Piskin, O., Karayiğit, A., 2006. The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihaliccik region (Eskisehir), NW Turkey. International Geology Journal, 41, 557-580.

Allen, D.E., Seyfried, W.E.Jr., 2005. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochimica et Cosmochimica Acta, 69(3), 675-683.

Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc, 20, 157-137.

Astini, R.A., Benedetto, J., Vaccari, N., 1995. The Early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geological Society of America Bulletin, 17, 253-273.

Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12), 2279-2302.

Basei, M., Ramos, V., Vujovich, G., Poma, S., 1997. El basamento metamórfico de la Cordillera Frontal de Mendoza: nuevos datos geocronológicos e isotópicos. 10° Congreso Latinoamericano de Geología y 6° Congreso Nacional de Geología Económica, 2, 412-417.

Bjerg, E.A., Gregori, D.A., Losada Calderón, A., Labadía, C.H., 1990. Las metamorfitas del faldeo oriental de la Cuchilla de Guarguaraz, Cordillera Frontal, Provincia de Mendoza. Revista Asociación Geológica Argentina, 45, 234-245.

Bodinier, J.L., Godard, M., 2003. Orogenic, ophiolitic and abyssal peridotites. In: Carlson, R. (ed.). Treatise on geochemistry 2: the mantle and core. Oxford, ElsevierPergamon, 103-170.

Boedo, F.L., Vujovich, G.I., Barredo, S.P., 2012. Caracterización de rocas ultramáficas, máficas y metasedimentarias del Cordón del Peñasco, Precordillera occidental, Mendoza. Revista Asociación Geológica Argentina, 69(2), 275-286.

Bromiley, G.D., Pawley, A.R., 2003. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on highpressure stability. American Mineralogist, 88, 99-108.

Buggisch, W., Von Gosen, W., Henjes-Kunst, F., Krumm, S., 1994. The age of Early Paleozoic deformation and metamorphism in the Argentine Precordillera–Evidence from K-Ar data.

Zentrablatt für Geologie und Palaontologie, 1, 275-286.

Coish, R.A., Gardner, P., 2004. Suprasubduction zone peridotite in northern USA Appalachians: evidence from mineral composition. Mineralogical Magazine, 68, 699-708.

Coleman, R.G., 1977. Ophiolites. Ancient oceanic lithosphere? Heidelberg, Springer-Verlag, 229pp.

Cortés, J.M., Kay, S.M., 1994. Una dorsal oceánica como origen de las lavas almohadilladas del Grupo Ciénaga del Medio (Silúrico-Devónico) de la Precordillera de Mendoza, Argentina. 7º Congreso Geológico Chileno, 2, 1005-1009.

Cucchi, R., 1971. Edades radimétricas y correlación de metamorfitas de la Precordillera, San Juan-Mendoza, República Argentina. Revista Asociación Geológica Argentina, 26, 503-515.

Cucchi, R., 1972. Geología y estructura de la Sierra de Cortaderas, San Juan-Mendoza, República Argentina. Revista Asociación Geológica Argentina, 27, 229-248.

Dalla Salda, L.H., Dalziel, I.W.D., Cingolani, C.A., Varela, R., 1992. Did the Taconic Appalachians continue into South America? Geology, 20, 1059-1062.

Davis, J., Roeske, S., McClelland, W., Snee, L., 1999. Closing an ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera. In: Ramos, V., Keppie, J. (eds.). Laurentia-Gondwana connection before Pangea. Boulder, Geological Society, 336 (Special Paper), 115-138.

Davis, J., Roeske, S., McClelland, W., Kay, S.M., 2000. Mafic and ultramafic crustal fragments of the southwestern Precordillera terrane and their bearing on tectonic models of the early Paleozoic in western Argentina. Geology, 28, 171-174.

Deer, W.A., Howie, R.A., Zussman, J., 1962. Rock-forming minerals. Sheet Silicates. Wiley, 3, 270pp.

Deschamps, F., Godard, M., Guillot, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178, 96-127.

Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54-76.

Dickerson, P.W., 2012. The Circum-Laurentian Carbonate Bank, the Western Ouachita-Cuyania Basin and the Prodigal Llanoria Landmass. In: Derby, J., Fritz, R., Longacre, S., Morgan, W., Sternbach, C. (eds.). The great American carbonate bank: The geology and economic resources of the Cambrian-Ordovician Sauk megasequence of Laurentia. American Association of Petroleum Geologists, 98 (Memoir), 959-984.

Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric data. Mineralogical Magazine, 51, 431-435.

Evans, B.W., 1977. Metamorphism of alpine peridotite and serpentinite. Annual Review of Earth and Planetary Science, 5, 397-447.

Evans, B.W., 2004. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46, 479-506.

Fauqué, L.E., Villar, L.M., 2003. Reinterpretación estratigráfica y petrología de la Formación Chuscho, Precordillera de La Rioja. Revista Asociación Geológica Argentina, 58(2), 218-232.

Gargiulo, M.F., Bjerg, E.A., Mogessie, A., 2011. Caracterización y evolución metamórfica de las rocas ultramáficas de la Faja del río de las Tunas, Cordillera Frontal de Mendoza. Revista Asociación Geológica Argentina, 68(4), 571-593.

Gargiulo, M.F., Bjerg, E.A., Mogessie, A., 2013. Spinel group minerals in metamorphosed ultramafic rocks from Rio de Las Tunas belt, Central Andes, Argentina. Geologica Acta, 11(2), 133-148.

Gerbi, C., Roeske, S.M., Davis, J.S., 2002. Geology and structural history of the southwestern Precordillera margin, northern Mendoza Province, Argentina. Journal of South American Earth Sciences, 14, 821-835.

Gregori, D.A., Bjerg, E.A., 1997. New evidence on the nature of the Frontal Cordillera ophiolitic belt-Argentina. Journal of South American Earth Sciences, 10(2), 147-155.

Gregori, D.A., Martinez, J.C., Benedini, L., 2013. The Gondwana-South America Iapetus margin evolution as recorded by Lower Paleozoic units of western Precordillera, Argentina: the Bonilla Complex, Uspallata. Serie Correlación Geológica, 29(1), 21-80.

Haggerty, S.E., 1991. Oxide mineralogy of the upper mantle. Spinel mineral group. In: Lindsley, D.H. (ed.). Reviews in Mineralogy, Oxide minerals: Petrologic and magnetic significance. Mineralogical Society of America, 25, 355-416.

Haller, M.J., Ramos, V.A., 1984. Las ofiolitas famitinianas (Eopaleozoico) de las provincias de San Juan y Mendoza. 9º Congreso Geológico Argentino, 3, 66-83.

Halls, C., Zhao, R., 1995. Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30, 303-313.

Harrington, H.J., 1971. Hoja Geológica 22c Ramblón. Boletín 114. Buenos Aires, Dirección Nacional de Geología y Minería, 81pp.

Irvine, T.N., 1967. Chromian spinels as a petrogenentic indicator. Part 2 Petrologic applications. Canadian Journal of Earth Sciences, 4, 71-103.

Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655-671.

Kay, S.M., Orrell, S., Abbruzzi, J.M., 1996. Zircon and wholerock Nd-Pb isotopic evidence for a Grenville age and Laurentian origin for the basement of the Precordilleran terrane in Argentina. Journal of Geology, 104, 637-648.

Kay, S.M., Ramos, V.A., Kay, R., 1984. Elementos mayoritarios y trazas de las vulcanitas ordovícicas de la Precordillera occidental; basaltos de rift oceánico temprano(?) próximo al margen continental. 9º Congreso Geológico Argentino, 2, 48-65.

Kodolànyi, J., Pettke, T., Spandler, C., Kamber, B.S., Gméling, K., 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2), 235-270.

Loeske, W.P., 1993. La Precordillera del oeste argentino: una cuenca de back arc en el Paleozoico. 12º Congreso Geológico Argentino, 1, 5-13.

López, V.L., Gregori, D.A., 2004. Provenance and evolution of the Guarguaraz complex, Cordillera Frontal, Argentina. Gondwana Research, 7, 1197-1208.

López de Azarevich, V., Escayola, M., Azarevich, M.B., Pimentel, M.M., Tassinari C., 2009. The Guarguaraz Complex and the Neoproterozoic-Cambrian evolution of southwestern Gondwana: Geochemical signatures and geochronological constraints. Journal of South American Earth Sciences, 28, 333-344.

Massonne, H.-J., Calderón, M., 2008. P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian crustal thickening close to the western Gondwana

margin. Revista Geológica de Chile, 35(2), 215-231.

Mellini, M., Trommsdorff, V., Compagnoni, R., 1987. Antigorite polysomatism: behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97, 147-155.

Menzies, M., Long, A., Ingram, G., Tatnell, M., Janecky, D.R., 1993. MORB peridotite–seawater interaction: experimental constraints on the behaviour of trace elements, 87Sr/86Sr and 143Nd/144Nd ratios. In: Prichard, H.M., Alabaster, T., Harris, N.B.W., Neary, C.R. (eds.). Magmatic Processes and Plate Tectonics. London, Geological Society Special Publication, 76, 309-322.

Mukherjee, R., Mondal, S.K., Rosing, M.T., Frei, R., 2010. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contributions to Mineralogy and Petrology, 160, 865-885.

Naipauer, M., Vujovich, G.I., Cingolani, C.A., McClelland, W.C., 2010. Detrital zircon analysis from the Neoproterozoic–Cambrian sedimentary cover (Cuyania Terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system? Journal of South American Earth Sciences, 29(2), 306-326.

Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., 2006. Geochemistry of abbysal peridotites (Mid-Atlantic Ridge, 15º20’N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179-210.

Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic.

Contributions to Mineralogy and Petrology, 139, 36-53.

Ramos, V.A., 2010. The Grenville-age basement of the Andes. Journal of South American Earth Sciences, 29, 77-91.

Ramos, V.A., Basei, M., 1997. The basement of Chilenia: an exotic continental terrane to Gondwana during the Early Paleozoic. In: Bradshaw, J.D., Weaver, S.D. (eds.). Terrane dynamics 97. International Conference on Terrane Geology, 140-143.

Ramos, V.A, Escayola, M., Mutti, D., Vujovich, G.I., 2000. Proterozoic-Early Paleozoic ophiolites of the Andean basement of southern South America. Ophiolitic and Oceanic Crust: new insights from field studies and the Ocean Drilling Program. Boulder, Geological Society, 349 (Special Paper), 331-349.

Ramos, V.A., Jordan, T., Allmendinger, R., Kay, S., Cortes, J.M., Palma, M., 1984. Chilenia: un terreno alóctono en la evolución paleozoica de los Andes Centrales. 9º Congreso Geológico Argentino, 2, 84-106.

Ramos, V.A., Jordan, T.E., Allmendinger, R.W., Mpodozis, C., Kay, S.M., Cortes, J.M., Palma, M., 1986. Paleozoic terranes of the Central Argentine-Chilean Andes. Tectonics, 5, 855-880.

Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Galindo, C., Fanning, C.M., Dahlquist, J., 2010. The Western Sierras Pampeanas: Protracted Grenville-age history (1330–1030Ma) of intra-oceanic arcs, subduction–accretion at continental edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29, 105-127.

Robinson, P.T., Malpas, J., Zhou, M., Ash, C., Yang, J., Bai, W., 2005. Geochemistry and origin of listwanites in the Sartohay and Luobusa ophiolites, China. International Geology Review, 47, 177-202.

Rose, G., 1837. Mineralogisch-geognostiche Reise nach dem Ural, dem Altai and dem Kaspischen Meere. In: Eichhoff, C.W. (ed.). Reise nach dem sudlichen Ural und dem Altai. Berlin, Verlag der Sanderschen Buchhandlung, 1, 648pp.

Singh, A.K., Singh, R.B., 2013. Genetic implications of Zn- and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geological Journal, 48, 22-38.

Spear, F.S., 1995. Metamorphic phase equilibria and PressureTemperature-Time paths. Washington DC, Mineralogical Society of America Monograph, 1, 799pp.

Sun, S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Ocean Basins. London,

Geological Society, 42 (Special Publication), 313-345.

Taylor, S., McLennan, S., 1985. The Continental Crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Oxford, Blackwell, 312pp.

Thomas, W.A., Astini, R.A., 2003. Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review. Journal of South American Earth Sciences, 16, 67-79.

Thomas, W.A., Tucker, R.D., Astini, R.A., Denison, R.E., 2012. Ages of pre-rift basement and synrift rocks along the conjugate rift and transform margins of the Argentine Precordillera and

Laurentia. Geosphere, 8(6), 1-18.

Tsikouras, B., Karipi, S., Grammatikopoulos, T.A., Hatzipanagiotou, K., 2006. Listwaenite evolution in the ophiolite melange of Iti Mountain (continental Central Greece). European Journal of Mineralogy, 18, 243-255.

Uçurum, A., 2000. Listwaenites in Turkey: perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia. Ofioliti, 25(1), 15-29.

Villar, L.M., 1969. El complejo ultrabásico de Novillo Muerto, Cordillera Frontal, Provincia de Mendoza, República Argentina. Revista Asociación Geológica Argentina, 24, 223-238.

Villar, L.M., 1970. Petrogénesis del complejo ultrabásico de Novillo Muerto, Cordillera Frontal, Mendoza, Argentina. Revista Asociación Geológica Argentina, 25, 87-99.

Von Gosen, W., 1997. Early Paleozoic and Andrean structural evolution in the Rio Jáchal section of the Argentine Precordillera. Journal of South American Earth Sciences, 10, 361-388.

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.

Willner, A.P., Gerdes, A., Massonne, H.-J., 2008. History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°-36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chemical Geology, 253, 114-129.

Willner, A.P. Gerdes, A., Massonne, H.-J., Schmidt, A., Sudo, M., Thomson, S.N., Vujovich, G., 2011. The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure-temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contributions to Mineralogy and Petrology, 162, 303-327.

Winkler, H., 1978. Petrogénesis de rocas metamórficas. Madrid, Blume Ediciones, 346pp.

Wood, S.A., 1990. The aqueous geochemistry of the rare-earth elements and yttrium. I. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82, 159-186.

Wunder, B., Wirth, R., Gottschalk, M., 2001. Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13, 485-495.

Downloads

Published

2015-07-31

Issue

Section

Articles

Most read articles by the same author(s)