The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry

Authors

  • Y.G. LIU Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, Ministry of Land and Resources, Xi’an Center of Geological Survey Institute of Geological Survey, China University of Geosciences, Wuhan. 388 Lumo Road, Hongshan District, Wuhan 430074, China. College of Earth Science and Resources, Chang’an University.
  • W.Y. LI Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, Ministry of Land and Resources, Xi’an Center of Geological Survey
  • X.B. LÜ Institute of Geological Survey, China University of Geosciences, Wuhan. 388 Lumo Road, Hongshan District, Wuhan 430074, China.
  • Y.H. HUO School of Earth Science, Lanzhou University.
  • B. ZHANG Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University.

DOI:

https://doi.org/10.1344/GeologicaActa2017.15.1.4

Keywords:

Magmatic Cu-Ni sulfide deposit, Xiaochangshan Fe deposit, Crystallization differentiation, Magnetite-mineralized gabbro, Beishan, Early Permian

Abstract

The Pobei mafic-ultramafic complex in northwestern China comprises magmatic Cu-Ni sulfide ore deposits coexisting with Fe-Ti oxide deposits. The Poshi, Poyi, and Podong ultramafic intrusions host the Cu-Ni ore. The ultramafic intrusions experienced four stages during its formation. The intrusion sequence was as follows: dunite, hornblende-peridotite, wehrlite and pyroxenite. The wall rock of the ultramafic intrusions is the gabbro intrusion in the southwestern of the Pobei complex. The Xiaochangshan magmatic deposit outcrops in the magnetitemineralized gabbro in the northeastern part of the Pobei complex. The main emplacement events related to the mineralization in the Pobei complex, are the magnetite-mineralized gabbro related to the Xiaochangshan Fe deposit, the gabbro intrusion associated to the Poyi, Poshi and Podong Cu-Ni deposits, and the ultramafic intrusions that host Cu-Ni deposits (Poyi and Poshi). The U-Pb age of the magnetite-mineralized gabbro is 276±1.7Ma, which is similar to that of the Pobei mafic intrusions. The εHf(t) value of zircon in the magnetite-mineralized gabbro is almost the same as that of the gabbro around the Poyi and Poshi Cu-Ni deposits, indicating that the rocks related to Cu-Ni and magnetite deposits probably originated from the same parental magma. There is a trend of crystallization differentiation evolution in the Harker diagram from the dunite in the Cu-Ni deposit to the magnetite-mineralized gabbro. The monosulfide solid solution fractional crystallization was weak in Pobei; thus, the Pd/Ir values were only influenced by the crystallization of silicate minerals. The more complete the magma evolution is, the greater is the Pd/Ir ratio. The Pd/Ir values of dunite, the lithofacies containing sulfide (including hornblende peridotite, wehrlite, and pyroxenite) in the Poyi Cu-Ni deposit, magnetite-mineralized gabbro, and massive magnetite, are 8.55, 12.18, 12.26, and 18.14, respectively. Thus, the massive magnetite was probably the latest product in the evolution of the Pobei mafic-ultramafic intrusions. We infer that the Cu-Ni sulfide and Fe-Ti oxide ores in the Pobei area were products of a cogenetic magma at different evolutionary stages; at the late stage, the magma became iron enriched through crystallization differentiation. The magma differentiation occurred in a deep staging magma chamber emplaced in the upper magma chamber. Earlier crystallized olivine with some interstitial sulfides gathered at the bottom of the staging magma chamber because of its greater density. That is to say, the ultramafic magma hosting the Cu-Ni sulfide formed at the bottom of the staging magma chamber, while the magnetite-mineralized gabbro was in the upper part. However, the magnetite-mineralized gabbro injected into the upper magma chamber first and the ultramafic lithofacies containing the olivine and the interstitial Cu-Ni sulfides were subsequently emplaced in the upper magma chamber as crystal mush.

References

Adam, J., Green, T., 2006. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation

of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1), 1-17.

Anderson, A.T., Greenland, L.P., 1969. Phosphorus fractionation diagram as a quantitative indicator of crystallization differentiation of basaltic liquids. Geochimica et Cosmochimica Acta, 33(4), 493-505.

Barnes, S.J., Maier, W., 1999. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. Geological Association of Canada Short Course Notes, 13, 69-106.

Barnes, S.J., Makovicky, E., Makovicky, M., Rosehansen, J., Karupmoller, S., 1997. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni - Cu sulfide bodies by fractional crystallization of sulfide liquid. Canadian Journal of Earth Sciences, 34(4), 366-374.

Bowen, N.L., Schairer, J., 1956. The evolution of the igneous rocks. New York, Dover publications, 332pp.

Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region (BGMRXUAR), 1993. Regional Geology of Xinjiang Uygur Autonomous Region (in Chinese). Beijing, Geological Publishing House, 841pp.

Capobianco, C.J., Hervig, R.L., Drake, M.J., 1994. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt. Chemical Geology, 113(1), 23-43.

Cawthorn, R., Molyneux, T., 1986. Vanadiferous magnetite deposits of the Bushveld complex. Mineral deposits of Southern Africa. Johannesburg, Geological Society of South Africa, 1251-1266.

Chai, F., Zhang, Z., Mao, J., Dong, L., Zhang, Z., Wu, H., 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32(2-4),

-235.

Dong, L.H., Cui, B., Qu, X., He, Z.J., Liu, T., Sang, S.J., Wang, W.J., Han, C.M., Bai, G.Y., Guo, H.X., 2005. Location Prediction and evaluation of copper deposits in the middle part of Eastern Tianshan (in Chinese). Bureau of Geology and Mineral Resources and Development of Xinjiang, 268pp.

Fleet, M.E., Chryssoulis, S.L., Stone, W.E, Weisener, C.G., 1993. Partitioning of platinum-group elements and Au in the FeNi-Cu-S system: experiments on the fractional crystallization of sulfide melt. Contributions to Mineralogy and Petrology, 115(1), 36-44.

Gaetani, G.A., Grove, T.L., 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars.

Geochimica et Cosmochimica Acta, 61(9), 1829-1846.

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E.V., O’Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1),133-147.

Guo, N.X., Jiang, C.Y., Song, Y.F., Xia, M.Z., Ling, J.L., Xia, Z.D., Wang, B.Y., 2012, Petrogenesis of the Olivine Gabbronorite in Pobei complex, Northeast Tarim Plate (in Chinese with English abstract). Geological Review, 58(5), 873-886.

Han, B., Ji, J., Song, B., Chen, L., Li, Z., 2004. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Nibearing mafic-ultramafic complexes, North Xinjiang, and geological implications (in Chinese with English abstract). Chinese Science Bulletin, 49(22), 2424-2429.

Han, C., Xiao, W., Zhao, G., Ao, S., Zhang, J., Qu, W., Du, A., 2010. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: constraints on the timing and genesis of the mineralization. Lithos, 120(3), 547-562.

Han, C., Xiao, W., Zhao, G., Benxun, S.U., Songjian, A.O., Zhang, J., Wan, B., 2013. Age and tectonic setting of magmatic sulfide Cu-Ni mineralization in the Eastern Tianshan Orogenic Belt, Xinjiang, Central Asia. Journal of Geosciences, 58(3), 233-250.

He, Z.Y., Sun, L.X., Mao, L.J., Zong, K.Q., Zhang, Z.M., 2015. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth (in Chinese with English abstract). Chinese Science Bulletin,

(4), 389-399.

Hill, E., Wood, B.J., Blundy, J.D., 2000. The effect of CaTschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos, 53(3), 203-215.

Hirokazu, F., Mitsunobu, T., Ken-Ichiro, A., 1984. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Journal of Geophysical Research Solid Earth, 89(S02), B662-B672.

Hu, Z., Gao, S., Liu, Y., Hu, S., Chen, H., Yuan, H., 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8), 1093-1101.

Hu, Z., Liu, Y., Gao, S., Liu, W., Zhang, W., Tong, X., Lin, L., Zong, K., Li, M., Chen, H., 2012a. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9), 1391-1399.

Hu, Z., Liu, Y., Gao, S., Xiao, S., Zhao, L., Günther, D., Li, M., Zhang, W., Zong, K., 2012b. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78, 50-57.

Jia, C., 1997. Tectonic Characteristics and Oil-gas, Tarim Basin (in Chinese). Beijing, Petroleum Industry Press, 438pp.

Jiang, C., 2014. Study on Origin of Xiangshan Copper Nickel Sulfide-Ni-Fe Oxide Deposits Petrogenesis and Mineralization of Xiangshan in Eastern Tianshan (in Chinese with English abstract). Dissertation for the Degree of Master. Xi’an (China), Chang’an University, 1-26.

Jiang, C., Cheng, S., Ye, S., Xia, M., Jiang, H., Dai, Y., 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei maric rock body, at Beishan region, Xinjiang (in Chinese with English abstract). Acta Petrologica Sinica, 22(1), 115-126.

Jiang, C.Y., Xia, M.Z., Yu, X., Lu, D.X., Wei, W., Yang, S.F., 2007. Liuyuan trachybasalt belt in the Northeastern Tarim Plate: products of asthenosphere mantle decompressional melting (in Chinese with English abstract). Acta Petrologica Sinica, 23(7), 1765-1778.

Jiang, C.Y., Xia, M.Z., Guo, N.X., Ling, J.L., 2010. geological comprehensive study of Cu-Ni deposit in Pobei area, Xinjiang (in Chinese). Chang’an University, 1-106.

Jiang, C.Y., Guo, N.X., Xia, M.Z., Ling, J.L., Guo, F.F., Deng, X.Q., Jiang, H.B., Fang, Y.Z., 2012. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate (in Chinese with English abstract). Acta Petrologica Sinica, 28(7), 2209-2223.

Jones, R.H., Layne, G.D., 1997. Minor and trace element partitioning between pyroxene and melt in rapidly cooled chondrules. American Mineralogist, 82(5-6), 534-545.

Kullerud, G., Yund, R.A., Moh, G.H., 1969. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. Economic. Geology, 4, 323-343.

Li, C.N., Lu, F.X, Chen, M.H., 2001. Research on petrology of the Wajilitag complex body in North edge in the Talimu Basin (in Chinese with English abstract). Xinjiang Geology, 19, 38-42.

Li, Z., Zhang, Z.C., Wang, F.S., Hao, Y.L., Ai, Y., Yang, T.Z., 2006a. Open-system magma chamber: an example from the Xinjie mafic-ultramafic layered intrusion in Panxi region, SW China (in Chinese with English abstract). Acta Petrologica Sinica, 22(6), 1565-1578.

Li, Y.C., Zhao, G.C., Qu, W.J., Pan, C.Z., Mao, Q.G., Du, A.D., 2006b. Re-Os isotopic dataing of the Xiangshan deposit, East Tianshan, NW China. Acta Petrologica Sinica, 22(1), 245-251.

Li, H., Chen, F., Mei, Y., Wu, H., Cheng, S., Yang, J., Dai, Y., 2006c. Isotopic ages of No. 1 intrusive body in Pobei maficultramafic belt of Xinjiang and their geological significance (in Chinese with English abstract). Beijing, Mineral Deposits, 25(4), 463.

Ling, J.L., 2011. Geoehemieal Charaeter and Petrogenesis of Luodong Mafic-Ultramafic Layered Intrusion in Beishan Area, Xinjiang, P.R.China (in Chinese with English abstract). Dissertation for the Degree of Master. Xi’an (China), Chang’an University, 1-50.

Liu, Y.R., 2011, Geological characteristics of mafic and ultramafic intrusions in the Eastern Xinjiang and the enriching mechanism of the metal elements (in Chinese with English abstract). Dissertation for the PhD Degree. China University of Geosciences, unpublished, 1-62.

Liu, Y.G., 2015. Diagenesis-mineralization of Copper-Nickel deposits and prospecting indicators in Pobei area, Xinjiang (in Chinese with English abstract). Dissertation for the PhD Degree. China University of Geosciences, unpublished, 1-170.

Liu, Y., Zong, K., Kelemen, P.B., Gao, S., 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1), 133-153.

Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and Oceanic Crust Recycling-induced MeltPeridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2), 537-571.

Liu, Y.G, Lv, X.B., Yang, L.S., Wang, H.F., Meng, Y.F., Yi, Q., Zhang, B., Wu, J.L., Ma, J., 2015. Metallogeny of the Poyi magmatic Cu-Ni deposit: revelation from the contrast of PGE and olivine composition with other Cu-Ni sulfide deposits in the Early Permian, Xinjiang, China. Geosciences Journal, 19(4), 613-620.

Liu, Y.G., Lü, X.B., Wu, C.M., Hu, X.G., Duan, Z.P., Deng, G., Wang, H., Zhu, X., Zeng, H., Wang, P., 2016. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGECu-Ni magmatic sulfide deposits in Xinjiang, NW China:

As suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geology Reviews, 72, 538-545.

Lorand, J.P., Luguet, A., Alard, O., 2008. Platinum-group elements: a new set of key tracers for the Earth’s interior. Elements, 4(4), 247-252.

Ludwig, K.R., 2003. User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkely: Berkely Geochronological Center Special Publication, 4(1), 1-71.

Mao, J.W., Yang, J.M., Qu, W.J., Du, A.D., Wang, Z.L., Han, C.M., 2003. Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and its Implication for Geodynamic Processes. Acta Geologica Sinica-English Edition, 77(2), 220-226.

Mao, J.W., Pirajno, F., Zhang, Z.H., Chai, F.M., Wu, H., Chen, S.P., Cheng, L.S., Yang, J.M., Zhang, C.Q., 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2), 184-203.

Misra, K.C., Fleet, M.E., 1973. The Chemical Compositions of Synthetic and Natural Pentlandite Assemblages. Economic Geology, 68(4), 518-539.

Misra, K.C., Fleet, M.E., 1974. Chemical Composition and Stability of Violarite. Economic Geology, 69(3), 391-403.

Nagasawa, H., Schreiber, H.D., Morris, R.V., 1980. Experimental mineral/liquid partition coefficients of the rare earth elements (REE), Sc and Sr for perovskite, spinel and melilite. Earth & Planetary Science Letters, 46(3), 431-437.

Naldrett, A.J., Craig, J.R., Kullerud, G., 1967. The central portion of the Fe-Ni-S system and its bearing on pentlandite exsolution in iron-nickel sulfide ores. Economic Geology, 62, 826-847.

Puchtel, I.S., Humayun, M., 2001. Platinum group element fractionation in a komatiitic basalt lava lake. Geochimica et Cosmochimica Acta, 65(17), 2979-2993.

Qi, L., Zhou, M.F., Wang, C.Y., Sun, M., 2007. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochemical Journal, 41(6), 407-414.

Qin, K.Z., Fang, T.H., Wang, S.L., Zhu, B.Q., Feng, Y.M., Yu, H.F., Xiu, Q.Y., 2002. Plate Tectonics Division, evolution and metallogenic setting in Eastern Tianshan mountains, NWChina (in Chinese with English abstract). Xinjiang Geology, 20(4), 302-308.

Qin, K.Z., Su, B.X., Sakyi, P.A., Tang, D.M., Li, X.H., Sun, H., Xiao, Q.H., Liu, P.P., 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3), 237-260.

Righter, K., Campbell, A., Humayun, M., Hervig, R., 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta, 68(4), 867-880.

Salters, V.J., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5), 1-27.

Scoon, R.N., Mitchell, A.A., 1994. Discordant iron-rich ultramafic pegmatites in the Bushveld complex and their relationship to iron-rich intercumulus and residual liquids. Journal of Petrology, 35(4), 881-917.

Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth &

Planetary Science Letters, 219(3-4), 311-324.

Song, X.Y., Zhou, M.F., Tao, Y., Xiao, J.F., 2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chemical Geology, 253(1), 38-49.

Song, X., Hu, R., Chen, L., 2009. Geochemical natures of copper, nickel and PGE and their significance for the study of origin and evolution of mantle-derived magmas and magmatic sulfide deposits (in Chinese with English abstract). Earth Science Frontiers, 16(4), 287-305.

Su, B.X., Qin, K.Z., Sakyi, P.A., Liu, P.P., Tang, D.M., Malaviarachchi, S.P., Xiao, Q.H., Sun, H., Dai, Y.C., Yan, H., 2011. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 41(1), 31-43.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. London, Geological Society, 42 (Special Publications), 313-345.

Tang, D.M., Qin, K.Z., Sun, H., Su, B.X., Xiao, Q.H., 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes. Journal of Asian Earth Sciences, 49(3), 145-160.

Wang, Y., Wang, J., Wang, L., Peng, X., Hui, W., Qin, Q., 2006. A intermediate type of Cu-Ni sulfide and V-Ti magnetite deposit: Xiangshanxi deposit, Hami, Xinjiang, China (in Chinese with English abstract). Acta Geologica Sinica, 80(1), 61-73.

Wang, Y.W., Wang, J.B., Wang, L.J., Long, L.L., 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V) Ti-Fe ore district, Xinjiang (in Chinese with English abstract). Acta Petrologica Sinica, 25(4), 888-900.

Wang, Y.W., Wang, J.B., Wang, L.J., Long, L.L., Tang, P.Z., 2010. Petrographical and lithogeochemical characteristics of the mafic-ultramafic complex related to CuNi-VTiFe composite mineralization: Taking the North Xinjiang as an example (in Chinese with English abstract). Acta Petrologica Sinica 26(2), 401-412.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., Quadt, A.V., Roddick, J., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards newsletter, 19(1), 1-23.

Wu, H., Li, H., Mo, X., Chen, F., Lu, Y., Mei, Y., Deng, G., 2005. Age of the Baishiqun mafic-ultramafic complex, Hami, Xinjiang and its geological significance (in Chinese with English abstract). Acta Petrologica Sinica, Chinese edition, 79(4), 498.

Xia, M.Z., 2009. The mafic-ultramafic intrusions in the Huangshan region EasternTianshan, Xinjiang: Petrogenesis and Mineralization implication (in Chinese with English abstract). Dissertation for the PhDegree. Xi’an (China), Chang’an University, 1-157.

Xiao, P.X., 2004. 1:200000 district geological Survey report of BiJiashan, 315pp. (in Chinese).

Xiao, W.J., Zhang, L.C., Qin, K.Z., Sun, S., Li, J.L., 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. American Journal of Science, 304(4), 370-395.

Xiao, Q.H., Qin, K.Z., Tang, D.M., Su, B.X., Sun, H., San, J.Z, Cao, M.J, Hui, W.D., 2010. Xiangshanxi composite Cu-NiTi-Fe deposit belongs to comagmatic evolution product: Evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China

(in Chinese with English abstract). Acta Petrologica Sinica, 26(2), 503-522.

Yang, S.H., 2011. The Permian Pobei mafic-ultramafic intrusion (NE Tarim, NW China) and associated sulfide mineralization. DoctoralThesis. Pokfulam (Hong Kong), 365pp.

Yang, S.H., Zhou, M.F., Lightfoot, P.C., Xu, J.F., Wang, C.Y., Jiang, C.Y., Qu, W.J., 2014. Re-Os isotope and platinumgroup element geochemistry of the Pobei Ni-Cu sulfidebearing mafic-ultramafic complex in the northeastern part of the Tarim Craton. Mineralium Deposita, 49(3), 381-397.

Zack, T., Brumm, R., 1999. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxene. In: J.J. Gurney (ed.). Proceedings of the 7th 1998: International Kimberlite Conference. Cape Town, South Africa, Red Roof Design, 986-988.

Zhang, C.L., Li, X.H., Li, Z.X., Ye, H.M., Li, C.N., 2008a. A Permian Layered Intrusive complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275-Ma Mantle Plume? The Journal of Geology, 116, 269-287.

Zhang, Z., Mao, J., Du, A., Pirajno, F., Wang, Z., Chai, F., Zhang, Z., Yang, J., 2008b. Re-Os dating of two Cu-Ni sulfide deposits in northern Xinjiang, NW China and its geological significance. Journal of Asian Earth Sciences, 32(2), 204-217.

Zhang, M., Li, C., Fu, P., Hu, P., Ripley, E.M., 2011. The Permian Huangshanxi Cu-Ni deposit in western China: intrusive-extrusive association, ore genesis, and exploration implications. Mineralium Deposita, 46(2), 153-170.

Zhao, Y., Xue, C., Zhao, X., Yang, Y.Q., Ke, J., 2015. Magmatic Cu-Ni sulfide mineralization of the Huangshannan maficultramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105, 155-172.

Zhong, H., Qi, L., Hu, R.Z., Zhou, M.F., Gou, T.Z., Zhu, W.G., Liu, B.G., Chu, Z.-Y., 2011. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochimica et Cosmochimica Acta, 75(6), 1621-1641.

Zhou, M.F., Michael, L.C., Yang, Z., Li, J., Sun, M., 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt.

Chemical Geology, 209(3), 233-257.

Zhu, W.G., Zhong, H., Hu, R.Z., Liu, B.G., He, D.F., Song, X.Y., Deng, H.L., 2010. Platinum-group minerals and tellurides from the PGE-bearing Xinjie layered intrusion in the Emeishan Large Igneous Province, SW China. Mineralogy and Petrology, 98(1-4), 167-180.

Downloads

Published

2017-02-21

Issue

Section

Short note