Resolution test of GOCE satellite data applied to density anomalies at crustal and upper mantle levels

Authors

  • M. PERAL Group of dynamics of the lithosphere, Institute of Earth Sciences Jaume Almera, ICTJA-CSIC C/ Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain. http://orcid.org/0000-0001-8026-2753
  • M. FERNÀNDEZ Group of dynamics of the lithosphere, Institute of Earth Sciences Jaume Almera, ICTJA-CSIC C/ Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain.
  • M. TORNÉ Group of dynamics of the lithosphere, Institute of Earth Sciences Jaume Almera, ICTJA-CSIC C/ Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain.

DOI:

https://doi.org/10.1344/GeologicaActa2018.16.1.6

Keywords:

GOCE, gravity gradients, geological structures resolution, NW Iberian margin

Abstract

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission was devised by the European Space Agency to study the Earth’s gravity field with an unprecedented accuracy using gravity gradient data. The goal of this study is to analyze the resolution in terms of size, burial depth and density contrast of anomalous bodies related to geological structures that can be identified from GOCE data. A parametric study is performed by calculating the gravity gradients associated with rectangular prisms with fixed aspect ratio of 9:3:1 and varying the size, burial depth, and density contrast, selecting those structures showing amplitudes and wavelength variations comparable to the accuracy of GOCE data. Results show that the minimum size for crustal anomalies to be resolved for the vertical component of the gravity gradient is 22.5x7.5x2.5km for a Δρ=500kg/m3 , burial depth of 0km, and at computation height of 255km. To generate a sufficient signal in amplitude and wavelength in all the components, the size of the anomalous body is 270x90x30km. For a body with Δρ=50kg/m3 and 0km burial depth a minimum size of 41.4x13.8x4.6km is required for the vertical component at a computation height of 255km. In addition, the application to the 3D case of a passive continental margin which broadly resembles the crustal structure of the NW-Iberia shows that the signal of all gravity gradient components is dominated by the crustal thinning associated with the passive continental margins and the corresponding isostatic response.

References

Afonso, J.C., Fullea, J., Griffin, W.L., Yang, Y., Jones, A.G., Yang, Y., Connolly, J.A.D., O’Reilly, S.Y., 2013. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. In: A priori petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 118, 2586-2617.

Barton, P.J., 1986. The relationship between seismic velocity and density in the continental crust - a useful constraint? Geophysical Journal - Royal Astronomical Society, 87, 195-208.

Barzaghi, R., Reguzzoni, M., Borghi, A., de Gaetani, C., Sampietro, D., Marotta, A.M., 2015. Global to local moho estimate based on GOCE geopotential model and local gravity data. International Association of Geodesy Symposia, 275-282.

Bingham, R.J., Knudsen, P., Andersen, O., Pail, R., 2011. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophysical Research Letters, 38(1), L01606, DOI: 10.1029/2010GL045633

Bouman, J., Fuchs, M.J., 2012. GOCE gravity gradients versus global gravity field models. Geophysical Journal International, 189, 846-850.

Bouman, J., Ebbing, J., Fuchs, M., 2013. Reference frame transformation of satellite gravity gradients and topographic mass reduction. Journal of Geophysical Research: Solid Earth, 118, 759-774.

Bouman, J., Ebbing, J., Meekes, S., Fattah, R.A., Fuchs, M., Gradmann, S., Haagmans, R., Lieb, V., Schmidt, M., Dettmering, D., Bosch, W., 2015. GOCE gravity gradient data for lithospheric modeling. International Journal of Applied Earth Observation and Geoinformation, 35, 16-30.

Bouman, J., Ebbing, J., Fuchs, M., Sebera, J., Lieb, V., Szwillus, W., Haagmans, R., Novak, P., 2016. Satellite gravity gradient grids for geophysics. Scientific Reports, 6:21050, 11pp. DOI: 10.1038/srep21050

Braitenberg, C., Mariani, P., De Min, A., 2013. The European Alps and nearby orogenic belts sensed by GOCE. Bollettino di Geofisica, Teorica ed Applicata, 54, 321-334.

Brocher, T.M., 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America, 95, 2081-2092. DOI:10.1785/0120050077

Cambiotti, G., Sabadini, R., 2012. A source model for the great 2011 Tohoku earthquake (Mw=9.1) from inversion of GRACE gravity data. Earth and Planetary Science Letters, 335-336, 72-79. DOI: 10.1016/j.epsl.2012.05.002

Cambiotti, G., Sabadini, R., 2013. Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku earthquake. Journal of Geophysical Research: Solid Earth, 118, 183-194. DOI: 10.1029/2012JB009555

Cammarano, F., Tackley, P., Boschi, L., 2011. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: Global thermochemical models. Geophysical Journal International, 187, 1301-1318.

Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research, 100, 9761-9788.

Díaz, J., Gallart, J., 2014. Seismic anisotropy from the Variscan core of Iberia to the Western African Craton: New constrains on upper mantle flow at regional scales. Earth and Planetary Science Letters, 394, 48-57.

Fadel, I., van der Meijde, M., Kerle, N., Lauritsen, N., 2015. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System. International Journal of Applied Earth Observation and Geoinformation, 35, 44-53.

Fecher, T., Pail, R., Gruber, T., 2015. Global gravity field modeling based on GOCE and complementary gravity data. International Journal of Applied Earth Observation and Geoinformation, 35, 120-127.

Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B., Steiger, C., Piñeiro, J., da Costa, A., 2011. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy, 85, 749-758.

Fuchs, M.J., Bouman, J., 2011. Rotation of GOCE gravity gradients to local frames. Geophysical Journal International, 187, 743-753.

Fullea, J., Fernàndez, M., Afonso, J.C., Vergés, J., Zeyen, H., 2010. The structure and evolution of the lithosphereasthenosphere boundary beneath the Atlantic-Mediterranean Transition Region. Lithos, 120, 74-95.

Fullea, J., Muller, M.R., Jones, A.G., Afonso, J.C., 2014. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling II: 3D thermal and compositional structure. Lithos, 189, 49-64.

Fullea, J., Rodríguez-González, J., Charco, M., Martinec, Z., Negredo, A., Villaseñor, A., 2015. Perturbing effects of sublithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the AtlanticMediterranean transition zone. International Journal of Applied Earth Observation and Geoinformation, 35, 54-69.

Globig, J., Fernàndez, M., Torne, M., Vergés, J., Robert, A., Faccenna, C., 2016. New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. Journal of Geophysical Research: Solid Earth, 121, 5389-5424.

Godah, W., Krynski, J., 2013. Evaluation of recent goce geopotential models over the area of Poland. Acta Geodynamica et Geomaterialia, 10, 379-386.

Hirt, C., Kuhn, M., Featherstone, W.E., Gtötl, F., 2012. Topographic/isostatic evaluation of new-generation GOCE gravity field models. Journal of Geophysical Research: Solid Earth, 117, B05407, 16pp. DOI: 10.1029/2011JB008878

Holzrichter, N., Ebbing, J., 2016. A regional background model for the Arabian Peninsula from modeling satellite gravity gradients and their invariants. Tectonophysics, 692, 86-94. DOI: 10.1016/j.tecto.2016.06.002

Köther, N., Götze, H.-J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsente, R., Sharma, R., Zeumann, S., 2012. The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? Journal of Geodynamics, 59-60, 207-218. DOI: 10.1016/j.jog.2011.11.004

Mariani, P., Braitenberg, C., Ussami, N., 2013. Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations. Journal of South American Earth Sciences, 45, 209-223.

Martinec, Z., Fullea, J., 2015. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations. International Journal of Applied Earth Observation and Geoinformation, 35, 70-87.

Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W.D., Kusche, J., Brockmann, J.M., Krasbutter, I., Becker, S., Eicker, A., Schall, J., Rieser, D., Zehentner, N., Baur, O., Höck, E., Hausleitner, W., Maier, A., Krauss, S., Jäggi, A., Meyer, U., Prange, L., 2012. The new combined satellite only model GOCO03s. International Symposium on Gravity, Geoid and Height Systems, Venice, Italy (Poster). [Available at: http://www.goco.eu]

Maystrenko, Y., Scheck-Wenderoth, M., 2009. Density contrasts in the upper mantle and lower crust across the continentocean transition: Constraints from 3-D gravity modelling at the Norwegian margin. Geophysical Journal International, 179, 536-548.

Mysen, E., 2015. A mascon adjustment of the Earth’s gravity field using GOCE gradiometer data. Journal of Applied Geodesy, 9, 63-71.

Pal, S.K., Majumdar, T.J., 2015. Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in situ gravity data. International Journal of Applied Earth Observation and Geoinformation, 35, 96-119.

Reguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31-43.

Saad, A.H., 2006. Understanding gravity gradients - A tutorial. Leading Edge (Tulsa, OK), 25, 942-949.

Spakman, W., Wortel, M.J.R., 2004. A tomographic view on the Western Mediterranean geodynamics. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., (eds.). The TRANSMED Atlas-the Mediterranean Region from Crust to Mantle. Springer, Berlin, Heidelberg, 31-52.

Torne, M., Fernàndez, M., Vergés, J., Ayala, C., Salas, M.C., Jimenez-Munt, I., Buffett, G.G., Díaz, J., 2015. Crust and mantle lithospheric structure of the Iberian Peninsula deduced from potential field modeling and thermal analysis. Tectonophysics, 663, 419-433. DOI: 10.1016/j.tecto.2015.06.003

Uieda, L., Barbosa, V.C.F., Braitenberg, C., 2015. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics, 81(5), F41-F48. DOI: 10.1190/GEO2015-0204.1

van der Meijde, M., Pail, R., Bingham, R., Floberghagen, R., 2015a. GOCE data, models, and applications: A review. International Journal of Applied Earth Observation and Geoinformation, 35, 4-15.

van der Meijde, M., Pail, R., Bingham, R., 2015b. Introduction to the special issue on GOCE Earth science applications and models. International Journal of Applied Earth Observation and Geoinformation, 35, 1-3.

Villaseñor, A., Chevrot, S., Harnafi, M., Gallart, J., Pazos, A., Serrano, I., Córdoba, D., Pulgar, J.A., Ibarra, P., 2015. Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle. Tectonophysics, 663, 238-249.

Downloads

Published

2018-03-26

Issue

Section

Articles